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Abstract

This paper presents an approach to network design when the responses at each site are
vector rather than scalar valued. The decision problem fits into the general framework of
Bayesian ranking and selection theory. We suppose the designer must add sites to or remove
sites from an existing environmental monitoring network. Optimality is based on entropy.
It yields a natural decision criterion in the usual situation, where there is no single well
defined design objective. We assume the responses have (possibly after transformation) a
joint multivariate Gaussian distribution. Furthermore, the observed data are from monitored
sites where some of the monitors have only recently been installed. Here “recent” means
relative to the start-up time of the oldest monitoring site in the ambient monitoring network
under consideration. Thus the monitoring data exhibit a monotone pattern, resembling
a “staircase” whose highest “step” comes from the oldest monitoring sites. The natural
conjugate, generalized inverted Wishart, is adopted as the first stage prior for the Gaussian
model parameters. An empirical Bayes strategy is used at the second stage. A reasonably
explicit form for the entropy of the resulting predictive distribution is derived. An application
of the developed methodology to the hourly PM;q concentrations in British Columbia is
presented.

Key words: Entropy; Bayesian design; environmental monitoring; network; generalized inverted
Wishart; monotone data.



1 Introduction

In this paper, using the approach of Zidek et al (2000) and the predictive distribution of Kibria
et al (2002) we develop an optimal method for designing an environmental monitoring network.
As in the earlier work, we rely on entropy and information theoretical considerations to define
the optimal design. A key feature of this method is its capacity to contend with data that
exhibit “monotone pattern” resulting from the monitors having begun operation at different
times. Such patterns very commonly occur in practice; our method allows all available data to
be used, thereby increasing confidence in the value of the design.

Our approach uses a hierarchical Bayes approach with some estimated components. That
framework is natural; designers invariably need prior information. For example, Linthurst and
his co—investigators ((Linthurst et al., 1986, p. 4) relied on their “expectations” of low alkalinity
to help select their sample of surface water bodies in the United States. After all, the real
information only comes from the experiment being designed to produce it!

Optimizing a design requires a design objective. However, defining that objective can be
difficult since usually a number of reasonable, often conflicting objectives can be discerned. For
example, regulators may wish to build a network that detects non-compliance with proclaimed
quality standards. They would prefer to “gauge” sites near anticipated “hot-spots.” In contrast,
epidemiologists concerned with the health effect of a perceived hazard, would want to split those
sites equally between areas of high risk and areas of low risk to maximize contrast and the power
of their health effects analyses. Some investigators might be interested in measuring extremes,
others trends. Each of these can be measured in a variety of different ways, and those different
metrics may well imply different optimal designs. Designing to monitor multivariate response
provides even greater challenges since now different levels of importance can attach to the differ-
ent co-ordinates or to some index computed from them. Also related to specifying the design are
factors such as cost as well as levels of temporal and spatial aggregation. In combination, these
identified goals and associated factors can lead to a myriad of possible objectives. Although
the multi-attribute decision paradigm has a useful role to play here, clearly the combination of
terms in the resulting objective may be very large indeed. (For a discussion of the multi-attribute
approach in the context of network design, see the document of PD Sampson, P Guttorp and
DM Holland, http://www.epa.gov/ttn/amtic/files/ambient/pm25/workshop/spatial /sampsn2.
pdf).

Specifying that objective may even seem impossible since many of the future uses of the
network simply cannot be foreseen. Zidek et al (2000) give an example of a network comprised
of several networks established at different times for different purposes. The original network,
established to measure acid deposition, tended to be located in rural areas. Later as the state of
knowledge of environmental risk evolved, air pollution came to dominate acid rain as a societal
concern and the (by now composite) network tended to be located in urban areas.

Yet the high cost of network construction and maintenance leads to persistent demand for



rational designs that in practice cannot be ignored. This led to a solution that seems to embrace
the spirit of all the objectives while not emphasizing any one of them. That solution which uses
entropy to define an objective function, was proposed by Caselton and Husain (1984), Caselton
and Zidek (1984, hereafter CZ) and again by Shewry and Wynn (1987), and Sebastiani and
Wynn (2000). It has also been embraced in the work of Bueso et al (1998, 1999b), Angulo,
Bueso, and Alonso (2000) and Angulo and Bueso (2001). GG In fact, the idea of using entropy
in experimental design goes back at least to Lindley (1956). There is a substantial body of
work on optimal design in the Bayesian context although none as far as we are aware covers the
application which is made here. For a review of Bayesian design see Verdinelli (1991).

The entropy approach to design was implemented by Caselton, Kan and Zidek (1990, here-
after, CKZ) to obtain a method of ranking stations for possible elimination from an existing
network; refinements are added by Wu and Zidek (1992). Guttorp, Le, Sampson and Zidek
(1993) tackle the complementary problem of extending an existing network. Le and Zidek
(1994) extend the approach to a multivariate setting. [We rely on the latter for elements of
the design review in this paper, provided here for completeness.] Zidek et al (2000) propose a
method for incorporating costs. In this paper the design problem for multivariate responses is
addressed where the existing monitoring network has stations with different operational periods,
resulting in a monotone (staircase) pattern.

The basic idea underlying the just cited work is that all data have a fundamental purpose,
that of reducing uncertainty about some aspect of the world. Uncertainty according to the
postulates of Bayesian theory is quantifiable in terms of probability distributions. And the
postulates of entropy theory, in turn, imply that the uncertainty in any distribution is indexed
by its entropy. Ineluctably, an optimal design must minimize residual entropy after data has
been collected.

However, before getting to the entropy based approach we give in Section 2, a review of
some of the basic approaches that have been taken to network design. From there we turn in 3
to a discussion of the entropy based approach. From there we go in Section 4 to the predictive
model that provides the framework in which our entropy approach develops. That leads in
Section 5 to the objective function we seek, the entropy based criterion. Section 6 addresses the
implementation problem of estimating some of the hyperparameters involved in the predictive
distribution. We proceed to an illustrative example in Section 8 and a wrap-up discussion in
Section 9.

2 Approaches to Design

Although a sampling domain may seem to offer a continuum of possible monitoring locations
(sites), the actual number will typically lie in a small discrete determined by such things as
accessibility or availability. Thus, in this paper we posit a discrete population of spatial sites.



Generally designs may be “probability-” or “model-based”. The former includes simple
random sampling: sites are sampled at random with equal probability (usually without replace-
ment). The measured responses, which may even be a time-series of values, would then be
(approximately) independent and their associated inferential theory quite simple. As well, such
designs prove quite robust since nothing is assumed about the population of possible responses.

However, these designs can also be very inefficient under the simplest of assumptions about
the population. Moreover, sampling sites could end up next to one another by chance, thereby
making one of them redundant except in exceptional cases. Thus, samplers commonly rely on
population models and achieve potentially dramatic increases in efficiency under these models.
For example, they may postulate a population that consists of a union of homogeneous geo-
graphical strata. Under that model, only a small number of sites would need to be selected from
each stratum. Because of their appeal, such designs have been used in a survey of US lakes
(citation) and in EMAP (citation).

While stratification tends to diversify sampling, adjacent pairs of sites can still obtain within
strata and on opposite sites of a common boundary. Moreover, knowledge about environmental
fields can well exceed what can be accommodated by the models of probability-based theory.
That knowledge can lead to greater gains in efficiency than achievable through probability-
based designs and hence model-based designs are commonly used in practice to achieve design
optimality.

Broadly speaking, two distinct approaches have emerged for selecting model-based (or op-
timal) network designs (Federov and Mueller, 1988, 1989), based either on regression models
or random field models. Although the latter will be emphasized in this paper, we include a
brief review of the former since it has come to be applied to the problem of network design.
Furthermore, we will emphasize advantages and disadvantages of that approach.

Regression model (optimal design) theory originally had nothing to do with monitoring
networks. It originated in Smith (1918) and was refined by Elfving (1952), Keifer (1959), and
others (see Silvey 1980, Fedorov and Hackl 1997, and Miiller 2001 for reviews). It concerned

continuous sampling domains, X and optimal designs, &, with finite support, z1,...,2, € X
with > &(z;) = 1. In all, né(x;) (suitably rounded) responses would then be measured at z;
for all i = 1,...,m to obtain y1,...,y,. Key to the method was a regression model, y(z) =

n(z,B) + e(x), that related the y’s to the selected (and fixed) x’s. Also key was the assumption
that the &’s were independent from one sample point x to another. Optimality was then defined
in terms of the efficiency of estimators of 8 to obtain an objective function, ®(M(£)), to be
optimized where M (£) denotes the information matrix and ®, a positive function that depends on
the criterion adopted. For example, in ordinary linear regression, M (£) = o?[X'X]~L. ® could be
any of a number of possibilities including ®(A) = —logdet(A) (D-optimality) or ®(A) = Tr(A)
(A-Optimality). An elegant mathematical theory emerged together with numerical algorithms
for computing the optimum design approximately.

To illustrate, suppose that conditional on z € [a,b], y(z) = a + Bz + e(x) and the €’s are



independent of the x’s as well as each other. Then to minimize the variance of the the least
squares estimator of 3, the optimal design would have z; = a,z2 = b while £(z1) = {(z2) = 1/2.

Regression based, optimal design theory as described above encounters difficulties in appli-
cation to network design. There monitors must be located at a subset of available sites and
then simultaneously measure the field of interest regularly for an indefinite period. For example,
every TEOM particulate air pollution monitor at an urban sampling site yields hourly observa-
tions. To measure n responses each time would entail “gauging” n sites, forcing £ = 1/n, that
is, completely determined once its support is specified, making the classical theory of design
irrelevant.

Nevertheless, a sustained effort has been made to adapt the regression model paradigm to
encompass network design. Federov and Miiller (1989) cite Gibrik (1976) as an early attempt.
However, the major push came later (Fedorov 1987 1989, as well as Fedorov and Miiller 1987
1989). The motive may in part have been a unified optimal design theory. However, Fedorov
and Miiller (1989) give a more pragmatic reason. They argue in their paper that hitherto,
only sub-optimal designs could be found, feasible algorithms being limited to adding just one
station at a time, albeit optimally. However, algorithms from the regression model theory offered
promise (and algorithms!) by which genuinely optimal designs could be computed. (This reason
may need be quite as compelling for the maximum entropy designs proposed in the next section
where quick algorithms are now available for finding the optimum designs, at least for networks
of moderate size.)

To that end, Fedorov and Miiller (1988), assumed that at time ¢ = 1,..., T, y(z;) =
n(zi, Bt) + €t(x;) where once again the ¢’s are all independent of each other but the f§;’s are
random and autocorrelated. Moreover, 7(z;, 8;) = g” (x;)B; for a known vector-valued g. Thus,
this rather ingenious model captures both temporal and spatial covariance. The latter is not
as restricted as it might seem since the co-ordinates of g can be eigenfunctions of the spatial
covariance kernel when it is known. That covariance can thus be approximated well if the
dimension of g is sufficiently large. But this comes at the expense of fixing the variances of these
random effects to be eigenvalues of that kernel. The design objectives embrace the performance
of either a linear predictor of a single 8;, say at time t=‘now’ or of the mean of the common
[; distribution. These objectives would not seem compelling when the coefficients are merely
artifacts of the eigenvector expansion associated with the covariance kernel rather than quantities
of substantive interest such as the slope of a genuine regression model.

The authors recognize the limitation we mention above, that in this context the optimum
design must be a subset of the available design set. However, to bring in the classical theory
and associated algorithms, they relax that restriction and admit general ¢’s, albeit subject to a
boundedness requirement, so that established numerical search solutions now obtain. They call
this substitution a “continuous approximation” and solve that problem instead of the original.
The result will not usually be a feasible solution to the original problem and Fedorov and Miiller
(1988, 1989) note the challenge of interpreting it, seen variously as a local density, an indicator of



a “hot spot” or a design with more than one monitor at some sites. Further work in this direction
described in Miiller (2001) may help clarify the nature of this approximation. However, we are
unclear about the value of substituting the approximate problem (and big associated toolbox of
computational algorithms) for the hard - to - solve exact discrete design problem (and inevitable
feasible - to - compute approximations), and issue that seems to need further investigation.

Apart from the problem of interpreting the optimum, issues of a more technical nature arise.
First, suppose a genuine regression model (as opposed to eigenfunction expansion) is used above
so that the objective function is substantively meaningful. Then the range of spatial covariance
kernels will be restricted unless the €’s are allowed to be spatially correlated. That need is met
in the extensions of the model above described in in the reviews of Fedorov (1996) and Miiller
(2001). However, the resulting design objective function “does not have to much in common
with [the original] besides notation” in the words of Fedorov (1996, p524). A new toolbox is
needed except in has to be created except in simple cases where an exhaustive search is needed.
Back to square one!

While the regression model above does have substantive appeal, its value is uncertain. En-
vironmental space - time fields tend to be so complex that their random response fields are only
crudely related to spatial site co-ordinates. Moreover, the shape of that field can vary dramati-
cally over time and season. Thus, a model like that in Example 1 of Fedorov et al (1987) seems
quite unrealistic. In other words, finding a meaningful, known vector - valued function g would
generally be difficult or impossible.

The alternative, the eigenfunction expansion also presents difficulties according to Fedorov
(1996) relating to the problem of accurately approximating the spatial covariance kernel. Com-
plications can arise in particular when the size of the proposed network is large. Moreover, while
the eigenfunctions are know to exist under very general conditions, its not clear that actually
finding them in usable form will be possible in problems of realistically size.

To summarize, the regression model approach does offer a very highly evolved theory for
design, along with a substantial toolbox of algorithms for computing optimal designs, at least
approximately. It also offers a broad range of objective functions which formally embraces that
which comes out of the maximum entropy approach in the Gaussian case we introduce in the
next section. However, forcing the network design problem into the regression model mold
proves challenging both in terms of interpretation of the resulting optima as well as satisfying
the assumptions underlying that approach.

Perhaps the strongest linkage of the regression modelling and random field approaches can
be found in geostatistics. Because until very recently, that subject has concerned spatial fields
while we focus on monitoring space - time fields, we will not describe this approach in detail.
(Wackernagel 1999 gives a very readable recent account. Myers 2002 addresses space-time
processes from a geostatistical modelling perspective.)

Unlike the regression modelling approach above, that emphasizes parameter estimation, geo-
statistics has tended to focus on the prediction of unmeasured values in a spatial field that para-



doxically, is regarded as random even though its fixed. Two methods are commonly employed,
co-kriging and universal kriging. The first concerns the prediction of an unmeasured co-ordinate
of the response vector, say yi(zo) using an optimal linear predictor based on the observed re-
sponse vectors at all the sampling sites. The coefficients of that optimal predictor are found by
requiring it to be unbiased and to minimize the mean square prediction error. They will depend
on the covariances between responses and between the sites, covariances that are unrealistically
assumed to be known and later estimated from the data usually without adequately accounting
for the additional uncertainty thereby introduced. In contrast to the first, the second relies on
a regression model precisely of the form given above y(x) = g7 (z)8 +&;(z) where the €’s are as-
sumed to have a covariance structure of known form. However, unlike the regression-modelling
approach above, there the goal is prediction of the random response (possibly a vector) at a
point where it has not been measured. Moreover, g (which can be a matrix in the multivariate
case) can represent an observable covariate process. Optimization again relies on selecting coeffi-
cients by minimizing mean squared prediction error subject to the requirement of unbiasedness.
Designs are commonly found iteratively one future site at a time, by choosing the site z¢ where
the prediction error of the optimum predictor proves to be greatest.

Other approaches to model based designs have been proposed. For example, Bueso, Angulo,
Quian and Alonso (1999a), offer one based on “stochastic complexity.”

That completes our survey of approaches save for the last, the maximum entropy approach
described in the next section.

3 Entropy-based Design

As noted in Section 1, entropy can be an appealing design criterion because it sidesteps the
problem of specifying a particular design criteria. Moreover, that criterion fits well into the
Bayesian framework we adopt for the spatial - temporal stochastic models of interest here.

To describe the approach more precisely, we associate a k dimensional random vector with
every site in a spatial random field. The vectors corresponding to the sites in the discrete random
field may be “stacked” to obtain a random vector which represents the discrete random field.
For simplicity of exposition, we may then assume & = 1 in this section. The random vector field
is observed at g discrete, “gauged” sites at sampling times, j = 1,---,n, to yield g x 1 data
vectors, X](-2) = (X](-m), ce ,Xj(-Qg))'. Of interest is a u x 1 vector, X,(llll = (X&H, .- ,Xélfl))', of
unmeasured future values at u “ungauged” sites at time n+ 1. The spatial field is over the u+g¢
discrete sites.

Suppose X; has the joint probability density function, f;, for all j. The total uncertainty
about X; may be expressed by the entropy of its distribution, i.e. H;(X;) = E[-logf;(X;)/h(X;)],
where h(-) is a not necessarily integrable reference density (see Jaynes 1963). The inclusion of
h(-) in H;(-) ensures the latter is invariant under one-to-one transformations of the scale of X;.



Note that the distributions involved in H; may be conditional on certain covariate vectors, {z;},
regarded as fixed.

Given the network’s mission to monitor the environment, we regard the next value, X,, 1, as
being of primary interest. However, X, 1’s probability density function, fu,11)(-) = fri1)(- |
#), depends on a vector of unspecified model parameters, say 6, so cannot be used directly in
computing its uncertainty, Hy11(Xp+1). Uncertainty about € could be absorbed by averaging
fint1) (- | ) with respect to 6’s distribution to obtain X 11’s marginal distribution and hence
H, 1. However, 0 is of interest in its own right; in our theory 6 includes the (spatial) covariance
matrix of X, 41, ¥, which has potential use in Kriging. Therefore we, like Caselton, Kan and
Zidek (1992), include among the network’s objectives, that of reducing the uncertainty about 6.

The total entropy is then H,1(X,0) conditional on the data, D defn {X](-Q),j =1,---,n}.

The two broad design objectives of extending or reducing a given network are well described
in Bueso et al (1998). Earlier, CKZ considered the problem of reducing the number of sites in a
network which has been providing data for some time. They address the problem of optimally
partitioning X so that after appropriately relabeling the coordinates of X, it can be written as
X' = (X(I)I,X(Q)') where X(1) and X® are u and g dimensional vectors respectively, u+ g = p,
of the coordinates of X corresponding to the sites which will be ungauged and gauged in the
future. Wu and Zidek (1992) implement this approach in an analysis of 81 selected sites from the
NADP/NTN network, an existing network of wet deposition monitoring stations in the USA,
using 48 months of available data.

The objective addressed here is that of augmenting the network by gauging a specified num-
ber, us, of sites corresponding to coordinates of X(1). That is, we seek an optimal partitioning
of X() which, after reordering its coordinates, yields X(1) = (X (rem)’ x(add)'y where X(rem)' jg
a u1-dimensional vector representing the future ungauged sites and X (add)’ ig 4 yy-dimensional
vector representing the future gauged sites. The resulting network will consist of the sites
corresponding to the coordinates of (X (244" X(2)') = @, which is of dimension (g + uz).

The total a priori uncertainty conditional on D may, for certain purposes, be usefully de-

composed as
H(X,0)=H(X |0)+ H(6)

where, assuming the reference density to be h(X,8) = hy(X)hy(6),
H(X|0) = E[-log(f(X |0,D)/hi(X)) | D]
and
H(0) = E[-log(f(0|D)/h2(9)) | DI.

But for our immediate purposes of optimizing design, we need a different decomposition that
reflects the partitioning of future observations into ungauged and gauged sites, X' = (U, G)



where U = X("¢™)’  We express the total uncertainty H(X | 0) as
TOT = PRED + MODEL + MEAS
where, assuming h1(X) = h11(U)h12(G),

PRED = E[-log(f(U|G,9,D)/hu(U)) | DI,
MODEL = E[-log(f(8| G,D)/hy(9)) | D],

and
MEBAS = B[-log(f(G | D)/hio(G)) | D).

If we assume that measurement error is negligible, eliminating all uncertainty about G by ob-
serving it will lead to an expected reduction in uncertainty given by M EAS. Thus, it will be
optimal to augment the present network with sites represented in X (add)’ g6 as to maximize
MEFEAS. Since TOT is fixed, it follows that the same selection of additional sites will meet
another design objective, that of minimizing PRED + MODEL. This latter entropy represents
the residual uncertainty about the model parameters and the values of the random field at the
ungauged sites, after observing G.

Incidentally, it is easily seen that had we started with H(X) instead of H(X,0), and made a
decomposition analogous to that given above, we would have arrived at the same optimization
criterion: maximization of MEAS.

We now move on to more specific issues with the help of a suitable space time model.
That model has three components: (1) the measurement model; (2) the process model: (3)
the parameter model. Let, X; be the 1 x n; dimensional vector of responses observed at time
t. These measured responses are related to 1 X (u + g)g dimensional state vectors, S;, by the
measurement model:

Xt:Sth-l-&t,t:].,...,(’)’I,-l-].). (1)

We may think of this model as a composition of two others. The first is
X, = (Yi+e)Fy, t=1,..., (n+1) (2)

where Y is of dimension 1 x (u + g)r while F} is a (u + g)r x n; dimensional design vector of
1’s and zeros that determines which of the responses are measured. In fact, F} will generally be
random, designating the data missing both at random as well as by design. However, we assume
the former are missing for reasons ancillary to the process of their generation and measurement.
Thus, we can condition on them and treat them as fixed.

The design problem discussed at the beginning of this section, is that of selecting F. 41- In
other words, we need to find the optimal partition of the vector of all measurements of species



and sites that could be taken at time n + 1, into those that are actually taken and those not.
The latter therefore remain uncertain along with all the parameters and latent variables in the
process at that time. Following the earlier reasoning in this section, we minimize our residual
uncertainty about all these uncertain quantities by selecting FL 1= }zoff so as to maximize

MEAS, that is

F,7{ = arg min H(Xp41|X") (3)
F;-H
superscripts like n denoting here and in the sequel, all items up to and including those up to
that specified time. The resulting design will change dynamically as n increases since we are
ignoring practical considerations including cost in this section.
The second model needed to reach (5) is

Y;=S;Fi4e, t=1,...,n (4)

F? relating responses, measured and unmeasured, to the state space vectors, S;. Generally, the
F?, unlike the design matrices, will involve unknowns. Finally, the so - called ((u + g)g x ny)
output matriz, Hy is just the composition of the ((u+ g)q x (u+ g)r) state transition matrix, F2
with the ((u + g)r X n;) measured response output matrix F{. The measurement error vectors,
er = (2 + €} )F}, resulting from the combination of these two models are assumed to have zero
mean, to have covariance matrix, F}'SF; (assumed known for the purposes of this section),
and to be independent of each other as well as other uncertain elements of the process and
measurement models. Note that ¥ = 253 + Egé combines the spatial covariance of the responses
with measurement noise.
We adopt the following class of process models:

St:St_10t+Vt,t:1,...,(n+1) (5)

where the process noise variables, v;, have zero means, covariances Y, and are independent of
one another as well as of the other random process vectors. Returning to the general case, we
assume known for the purposes of this section, both 6 as well as the covariances, ¥, and X.
However, a more realistic approach like that in the next section would add a parameter model
that specifies prior distributions for these components.

Now assume all measurement and state space processes above, have a multivariate Gaussian
distribution (possibly after an appropriate transformation). With these assumptions we can
explicitly evaluate the entropy in Equation (3). To that end, let

S: = E(S:X"),
P; = Cov(S¢X")) so that,
St‘Xt ~ N(u—l—g)q(sta Pt) (6)

10



forallt=1,..., (n+1). We now find the conditional distribution, X;1|X* ~
Nyt [E(Xp41]XP), Cov(X¢41|X?)] needed to compute the entropy. As a first step we find the
conditional distribution, S;11|X* ~ Npg[E(Si4+1]X"), Cov(Sy41|X?)]. First,
E(Si+11X") = E(E[St1S/]|X")
= E(S:0X")
= S0. (7)

Similarly,

Cov(S¢41|XY) = Cov(E[Si1]S:]|X")
+ E(Cov[S¢11]S:]|X")
= Cov(E[S:0:X")
+E(%)
= 0Pi0,+3,. (8)

Then

Cov(Xi1|XY) = COU([StHF%H + 5§+1 + 5t1+1]Ft1+1|Xt)
= H,1Cov(Se11|X")Hyp1 + Fil TF;,
= H,,[0,P6, + X, JHi 1y + FLSF, 9)

by Equation (8). Finally, from standard theory for the Gaussian distribution, it follows that the
entropy to be maximized, H(X,,11|X"™) is, apart from irrelevant constants, the logarithm of the
determinant of the (conditional) covariance matrix:

H, 1001 Pabni1 + 2 JHo g + Fr  SFE | (10)

The logarithm ensures that the optimal design will remain invariant under re-scaling; multipli-
cation of the normal density by the Jacobean of the transformation simply becomes an additive
shift. Recalling that Hy 1 = F2,;FL ., we see that our optimal design matrix is found by
finding the maximal 7,41 X np4+1 sub-determinant, that is generalized sub-variance, of the co-
variance

Foi[0n 1 Prbns1 + 5JF 1 + 3. (11)

Example. The apparent simplicity of the state space model above, disguises the
difficulty of its formulation in specific cases. Consider the case of Li et al (1999)
where an autoregressive model of order three obtains at every site, j = 1,..., (u+g)
[and the number of response species is r = 1]. There,

Yij—BiZ: = [Y_1);— B Zi—11p1j+ Y (1-2); — B Zi—2)p2j + Y (1—3); — B Zi—3]p3j + €3

11



where r=1, §; : 1 X[ is a vector of response dependent trend coefficients, the Z; : [ xr
are ancillary (and hence fixed) covariates with the same value at all sites j, and
pij : 7 X1, i =1,2,3 are the autoregressive coefficient matrices. Equivalently, with
an abuse of notation,

Yo = Y 1)1 + Y202 + Y 3)ip3; + B5Z + eij (12)

where Z; now stands for Z; — Z;_1p1j — Z¢_2p2; — Zy_3p3;. A standard reformu-
lation of this model would have Yi; = SyF}; + ef; where Sy : 1 x (I +3r) =
(Bi» Y (t-1)> Y(t—2);> Y (t—3);] and
Zy
F2:(+3r)xr=| P9 |. (13)

p2j
P3j

However, this dynamic state - space model fails since space and time are “insepara-
ble” in Le et al (1999) and the residual independence assumption in Equation (5)
proves to invalid. That problem is observed by Zidek et al (2002) who adopt a differ-
ent approach, one that does not model fine - scale auto - covariance structures (and,
as a bonus, avoids the risk of mispecifying them). Instead, they adopt the 24 hour
site response vector as a basic building block. Since r species are responding each
hour at each site (r =1 in the specific case under consideration here), that response
vector is 247 x 1 dimensional. The resulting vector series at each site turns out to be
quite well - modelled by a multivariate AR model of order 1 [MAR(1)] (used below
in Section 4). Moreover, in the case of Li et al (1999), the 24r x 24r dimensional
autoregression coefficient matrices depend little on j so that p;; = p; for all j proves
a tenable assumption. This suggests the MAR model,

Yy = Y(-n)p1 ++BZ + €. (14)

With an appropriate change in dimensions, we can combine Equations (13-17) to
get:

Stzlx(u+g)(l+24r) = [Stl,...,Stp]; (15)
F%l o --- 0
0 F2, ... 0

F2 = P L (16)
0 0 F?,

12



For the autoregressive model in Equation (14) we then obtain,

Stj = S-1);0t +vi5, 5=1,...,(u+g) (17)
where
I, Z,, 0 O
01 = . 18
Y (0 p1 oy 0) (18)
We may combine the matrices in Equation (18) to get
6, 0 --- 0
0 6 -+ 0
Or: (u+g)(l +24r) X (u+g)(l +24r) = o .- (19)
0 0 0,

Remarks.

3.1 A generalized sub-variance obtained from Equation (11) will tend to be small when either
its columns or rows are nearly collinear, i.e. the associated responses are highly associated.
That can occur because of strong spatial association between sites, as expressed through
the “intrinsic” component of variation, 3, in that equation. Or it may derive from strong
temporal association as expressed through the remaining terms, i.e. “extrinsic” compo-
nent. In any case, sites will tend to be omitted from the network, either because the are
predictable from other sites in the present, or from measurements made in the past.

3.2 Typically in applications, data to time n will derive from a permanent set of monitoring
sites and the design goal will be judicious augmentation of that network. To address this
situation, let us represent the symmetric matrix in Equation (11) more simply as

_ ( ;uu ;ug ) : (20)
Sgu =gy

u meaning “ungauged”, g, “gauged” while =4, represents covariance at the permanent

sites. Then using a familiar identity for matrix determinants, the design optimization

problem associated with Equation (11) becomes that of adding a fixed number of sites

to the network with maximal generalized sub - variances of Z,. = Ey, — EugE;glEgu of

appropriate dimension.

(1]

3.3 Our formulation of the design problem through F}! allows us to dynamically expand or
contract the monitoring network at each successive time, the optimal basis for making
alterations being expressed in Remark 3.1. One can conceive of hypothetical cases where
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dynamically changing networks might be desirable, for example, in radiation monitoring
with mobile monitors following the failure of a nuclear power generator or in military
operations following the release of hazardous agents in the battlefield. However, such
designs would generally be highly unrealistic for practical reasons involving things like
cost and administration.

Through f’n, the extrinsic component of the design criterion above is a function of past
data. Moreover, that component rather than the intrinsic component may point to the
deletion of sites at time t = n+1 whose responses are well predicted from past data
including that which they produced. Their deletion will eliminate the very source of
information that justified their removable in the first place. Thus in time, the quality of
the network in so far as it provides information about non-monitored sites (including some
of those that were removed from the network) could degrade.

This suggests a need for a practical compromise and acceptance of a suboptimal permanent
design after time t = n. That compromise might be achieved through filtering the data
and relying primarily on the intrinsic component of covariance.

Example (Continued). To arrive at an appropriate compromise design cri-
terion we can transform the responses as Yj; = Y — Y_1);01 = BjZs + 6%]-.
Then our design at time t = n+1 will not depend on past measurements as pre-
dictors of current responses. These transforms having an added benefit in that
it eliminates the autoregression matrices from the design criterion, simplifying
technical analysis when they are unknown as in the next section. However, in
practice this would require that they be well - estimated to enable approximate
transformation of the data.

3.4 Another issue we must confront arises from our uncertainty about parameters like the 6’s
and the covariances that we assumed known. The result of incorporating that additional
uncertainty makes the conditional distribution of X, 11|X" non-Gaussian, In fact, that
distribution will typically not have a tractable form, making a convenient analytical repre-
sentation of the entropy impossible. Evaluating that entropy numerically is not a practical
option since the combinatorial design optimization problem proves computationally inten-
sive (in fact NP-hard) and finding it, difficult for realistically large values of u+g. Adding
the additional burden of numerically evaluating the entropy at each iteration would make
the overall burden prohibitively large. Thus, while we allow some of the parameters in the
above model to be uncertain (that is, random) in the next section, we eliminate others (as
just noted above), to retain the advantage of an explicit design objective function while
reducing reliance on extrinsic components of covariance.

3.5 The measurement noise represented by Ef? could conceivably vary in magnitude from re-
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sponse to response and in extreme cases, could dominate the selection of an optimum
design. For this and other reasons, it might be argued that the optimum design should
not be selected like that above to include its capacity to reduce uncertainty about mea-
surements that could have been but have not been taken. Instead the goal would be to
maximally reduce uncertainty about Y, rather than X, given measurements to time
n. These objects would be essentially equal [as assumed in the next section] when mea-
surement noise is negligible. The design objective criterion in that case would obtain from
that in Equation (11) after subtracting the measurement noise covariance.

4 Predictive Distribution

In this section, we make some simplifying assumptions while relaxing others imposed in the last
section to achieve a more practical design theory. Specifically, we assume that: (1) ef = 0 so that
the measurements, X;; = Yy, for all t and j at which measurements are made; (2) after filtering
out any autoregressive effects, S;; = 3; for all t while F%]- = Z; for all j. (We are investigating
the possibility of relaxing these assumptions in current work. For convenience, we interchange
the order of the 3’s and Z’s in the models below.) Thus, 14 = 0 and 6;; = 1. However, we will
add parameter models below. We then derive the predictive distribution for the unmeasured
multivariate responses conditional on the observed data where stations have been added to a
monitoring network progressively over time .

Rather than define the data design matrices introduced in Section 3, F}, explicitly, we
describe the structure of the data matrix obtained. Specifically, after appropriately reordering
the sites, it has a monotone structure. That is, when the data are put together in an increasing
order of the stations’ operational periods, the data matrix has the appearance of a “staircase”.
Combining active networks with different starting times will yield such a structure.

4.1 Notation

Throughout the rest of the paper we let etr (-) = expltr(-)]; vec(X) will denote a vector obtained
by transposing and then stacking as columns the row vectors of a matrix X successively to form
one column vector; and ® represents the Kronecker product between matrices. In addition, we
let

= number of time points (e.g. number of days);

dimension of the multivariate response at each station;

number of locations with no monitors - called ungauged sites;

Q@ 8" 3
I

= number of locations with monitors - called gauged sites.

15



The g gauged sites are organized into k blocks such that the jth block consists of g; stations
having the same number, m;, of missing responses and hence g = g1 + --- + gx. These blocks
are numbered so that the observed measurements correspond to a monotone data pattern or a
staircase structure, that is,

my > mg > -+ > my > 0.

If the response values prior to the first monitor in operation are of interest, then my is set to be
bigger than 0.
The following notation are used to facilitate our presentation. Denote the

e response variables at the gauged and ungauged sites by
[97"] y o]
= |y [V
Y_[Yu’<y[gi’])’ ’(Y[gz] )]’

— Y[ n x up matrix, denotes the responses at ungauged sites;

where:

— yl" ], m; X gjp matrix, denotes the missing responses at the gauged sites in the G
block;

— vl ], (n —m;) x gjp matrix, denotes the observed responses at the gauged sites in
the 5t block.

e observed measurements at the gauged sites by D where
D= {Y[gi’]’...’y[yz]}.
e unobserved responses by

Yonoh = {y[u], Yl ... ’y[g}?]} _

e unobserved responses in blocks j to k by

y o7 sgit] — {y[gj’-"]’ N ,y[g?]}‘

e responses from blocks j to k, including both observed and unobserved stacks by
y'9559x] — Y[gjo] Y[g’f)]
Y[gj] ? ? Y[gk] :
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e responses from all gauged sites by

vl — ylgisgr]
We postulate | time-varying covariates responses Z; = (Zy,...,2Zy)’, at each time point ¢
being constant across all sites, and
Z
z=| :
Zy,

The I X (u+ g)p coefficient matrix 8 corresponding to the [ covariates and covariance matrix %
of dimension (u + g)p X (u + g)p over gauged and ungauged sites are partitioned conformably:

o wlul  lug]
ﬂzwﬂdm,2=<zm12M

The coefficient matrix 8 [9] and covariance matrix £ on the gauged sites are further partitioned
by blocks as

Bl = (glotl ... gl and gloir-9xl = (gloil ... glorl),
Correspondingly

vl .. wlgngkl wloil ... »l9i9k]
wlgl — , Slgigk] =
wlokol ... ikl wlorgil ... wlokl

The following 1-1 transformation (Barlett, 1933) of the matrix ¥ is used:

Y = Skl
F] = 2[9]] — 2[gj5(9j+15'"7gk)](E[gj-i-l""791{:])_12[(gj+11"',gk)5gj]’

T = (Bl95+15--9k]) =1 53[(G5 4159k ):95]

where
[95+1,95]

S (gj+15-098):95] —
32[9k,95]

for j =1,...,k —1. The matrix 2 can then be obtained from ek, Tr-1,T6-1), -+, (T1,71)}
by means of this transformation.

17



4.2 The Model

The response matrix, Y, is assumed to follow a Gaussian-Generalized Inverted Wishart model.
Specifically, using the notation described above,

B|Z,B0,F~N(Bo, F ' @); (21)

S ~ GIW (T, 6),

where N(-,-) denotes the Gaussian distribution, 8, is the | x (g + u)p hyperparameter mean
matrix of B, F~! is an [ x [ positive definite matrix representing the variance component of
B between its [ rows, and Z is the matrix of covariates. GIW denotes a generalized inverted
Wishart distribution of ¥ with 6 = (do, d1,. .., dx)" representing degrees of freedom, and ¥ being
a collection of hyperparameters defined below. The GIW distribution is defined by

sl ~ qIw (wld glel);
Tl ~ TW(Ay ® Q, 6); (22)

il | Tl o N (TOu, Hy® I‘[“])

where T4 = zlvdl = glu _ plwl(sld)-tplsul, ] = (glo)~1xlsel 1TW denotes the Inverted
Wishart with hyperparameters (Ag, (2, dg); the matrix 7y, is the hyperparameter of rluls and the
matrix Hy is the variance component of 7, between its rows.

Moreover, the above GIW distribution is defined in a stepwise fashion through 19 with
olal = (6y,... ,0g) and Tl9l being another collection of hyperparameters. The distribution of
{Zkk, Cx—1,76-1),---,(C'1,71)} is defined as follows:

Bk ~ IW (Mg ® Q,6g);
Tj|PjNN(TOj,Hj®Pj), jzl,...,k—l; (23)
PjNIW(Aj@)Q,(Sj), j=1,...,k—1.
The hyperparameters involved in our Gaussian-GIW model can be written as
H={B,, F,¥,d} (24)
where

v = {\P[g]aA()aQaTOuaHO}a and \P[g] = {Ak,Q, (Aja-HjaTOj)aJ = ]-7' .. ak - 1}7
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and
§ = (0o, 61y, and 89 = (6y,...,4,).

The dimensions of the parameters in ¥ are as follows
Ap:uxu, Tou:gXxXu, Ho:gxg, Ag:gpxgr, Q:pXxp,

and for j=1,...,k—1

?

Aj:gjxgj, Tj:(gjg1+-+gk) xg;, Hj:(gj+1+ -+ gk) X (gjg1 4+ + k)

In our work, we adopt

1 -1
Toj = \Ij(j+1,j+1)\11(j+1),j and Hj = \IJ( (25)

J+Li+1)"

Furthermore, we assume that the degrees of freedom, 61, ..., d, follow a gamma prior distribu-
tion (Le, Sun and Zidek, 1998) where

7(8) o< (81 -+ 0)* Lexp{—r(dy + --- 4+ &)},

with « and r specified.
Remarks:

4.1 The GIW distribution, introduced by Brown, Le and Zidek (1994b), generalizes the IW
distribution by allowing different degrees of freedom for a random positive definite matrix.
A p x p positive definite matrix S has an IW distribution, denoted by IW (B, J), with §
degrees of freedom if its density function is proportional to

Elilanlt™ {—%SlB} i

4.2 The GIW distribution is a conjugate prior for a Gaussian distribution. This prior is
very flexible and quite natural to deal with the staircase structure of the observed data.
For example, different degrees of freedom for the k blocks can be expressed through the
hyperparameter vector §.

4.3 The GIW modeling method also gives us considerable latitude in selecting the numbers of
blocks in the GIW structure. For example, we could group all sites that started operation
at the same time in one block. Or we could select each site as a block in the stair-case
structure.
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4.3 The Predictive Distributions

This section presents the joint predictive distributions of all unobserved responses. Their means
offer point predictors of those responses while the distribution as a whole allows us to assess the
uncertainty of those predictors. Furthermore they allow us to convolve the unknown function
with impact distributions so as to incorporate that uncertainty fully in a hierarchical model.
The results are the multivariate extension of those derived by Le et al (2001).

To facilitate the presentation of the main results, we introduce the following notation. Let

(5]
/’I’E‘?L]) . m] X g]p — ZIB%‘]J] + g[gj+1,...,gk]7_0j;
e (n —mj) X g;p

(A[fl] A[lj]>:< mj X m; mj X (n —m;) )

A[2J1] A[QJQ] (n—mj) xm; (n—mj)x(n—mj)

= I + ZF 17" 4 &oi+1r-98] T (El9i 419811

where
Yloisimmn] - zglitto 9t gor g1 k-1
glgi+1smgi] —
0, for j = k.
Moreover, for j =1,...,k,
,U%jl]p) = #Ejl]) + A?Q] (Agg)_lé[g;]S
. S — gl . . Y
(I)Ejl]ﬂ) - ijgjpf]npjmjﬁ [A[ljl} - A[1J2](A[2]2]) 1A[2]1]] ;
\IIPI]D) - Jj*gljp+1 [Aj ®N+ (é[g?])’(Agg)ilé[g;]] ;
5?1']‘2) =0 —gjp+n—mj+1;
where .
glosl — ylog] _ MEJ;);
and

plull = zgl 4 ez, .

oluldl = 1, + ZF~17" + 9l Hy(el9)y,
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el = ylol — zplol.

A matrix valued random variable X, «,, is said to have a matric t-distribution, i.e.

XNt'rLXm(X(O)a A® B, 5)5

where A is n X n and B is m x m, if its density function has the form

_b64+ntm—1
2

F(X) o< |A|721B| 2|1, + 67 ATHX — XO)[(X — X@) B~ :
and the normalizing constant of the density is given by

_soymm Tam[@+n+m—1)/2)
K = (on%) T (06 +; —1)/2Tp[(6 +m —1)/2]

where
p(p—=1) P .
r,(t) = o5 [[ Tt - 6 - 1)/2]
=1

denotes the multivariate Gamma function.

(27)

Theorem 1. The predictive distribution of the unobserved responses conditional on the observed

data D and the hyperparameter set H is given by

(Yunos | D, H) ~ (Y[U] | Y[gi’%---,gkm]’D’H) kl:f (y[g}n] | Y[gﬁu---,gk"]’D,H) % (Y[gkm] | D,?—l) :
j=1

where the three components of the conditional distributions are specified as following.

(i)
(YUY D, 1) ~ by (312y> iy ® Uiy 8l ) -
(ii)
(Y0 Y5980, D3 o e (1) @) © Wiay Ol))
(iii)

(28)

(29)

(30)

(Y[“] | Y197 98] D, H) ~ tosup (;ﬂ“'!ﬂ, (o —up+1)"10 9 @ (Ag ® ), 60 — up + 1) . (31)

Proof. Following similar arguments as in Le, Sun, Zidek (2001)
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5 Entropy Criterion

Following the arguments in Le and Zidek (1994), the entropy of the above predictive distribution
can be presented as, conditional on the hyperparameter set #,

k—1
H [Yunoy | D) = H [y | YII'90) D] £ 57 [y 7] | y 9] D) 4 mr [v1RT | D]
j=1
Here
H [Y[”] | Y[gi’%---,gz’},D] = glog [Ao| + ;log | + %E’(log |®M19))) 4 ¢
H [Y[g}n] | Y[gﬂl"“’gm,D] = % log |<I)g]|2)| + %E(log |\IJE§]‘2)\) +c2
l97"] _ M (k] 9kP (k]
H [Y Rl D] = 5 log |® 1) | + 5 E(log [¥5 ) + cs

where c1, co, and c3 are constants depending on hyperparameter estimates. Here Ay denotes the
residual hypercovariance matrix among the ungauged stations conditional on the existing sites
and () represents the covariance matrix among the elements of the multivariate response.

The results can be used to establish the entropy criterion. For augmenting a network, the
entropy criterion is to maximize MEAS as described in Section 2 with respect to an “add”
subset of ungauged sites among all possible subsets of ungauged sites. This is equivalent to
select a subset of “add” sites among the potential sites so that the above H [Y[u] | ylorgi'l D]
restricted to these add sites would be maximized. Thus, the entropy criterion for augmenting
the existing network is to select a subset of “add” sites to

max | (AL, (32)

6 Hyperparameter Estimation

The above entropy criterion can be used to revise a monitoring network with multivariate re-
sponses having monotone structure. The hyperparameter estimates required can be obtained
using the method of moment proposed by Kibria et al (2002). The approach consists of two
levels. The first would provide estimates for the hyperparameters associated with the gauged
sites. The second is then to use the estimate of spatial covariance between the gauged sites to
obtain an estimate for covariance matrix for all sites. That is, to extend the estimated covari-
ance maftrix to cover not only the gauged sites but also the ungauged sites. To avoid assuming
isotropy and stationarity of the covariance field, we use the nonparametric approach developed
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by Sampson and Guttorp (1992) for the covariance extension. More details of these approaches
can be found in these references.

7 Computation

The exact optimal design in Equation 32 cannot generally be found in reasonable time since
finding it is NP-hard, making suboptimal designs an attractive alternative (Ko et al 1995).
Among the alternatives are the “exchange algorithms”, in particular, the (DETMAX) procedure
of Mitchell (1974a, b) cited by Ko et al (1995). They also cite the “greedy algorithm” of Guttorp
et al (1993). At each step, the latter adds (or subtracts if the network is being reduced in size)
the station that maximally improves the design objective criterion. Ko et al (1995) introduce a
greedy plus exchange algorithm. The former starts with the complete set of all sites, K, and first
reduces it to the required number by the greedy algorithm. It then applies an exchange algorithm
to the resulting greedy network, S. Specifically, while possible, it successively exchanges site
pairs, i € S and j € K\S so that the objective function at (S\7) U {j} exceeds its values at S.
Finally, Wu and Zidek (1992) propose the idea of clustering the prospective sites into suitably
small subgroups before applying an exact or inexact algorithm so as to suboptimal designs that
are good at least within clusters.

Exact algorithms for moderate sized problems are available. The obvious one, complete
enumeration, is used in the present paper and in Guttorp et al (1993) in cases when K is not
too large. Ko et al (1995) offer a more sophisticated branch and bound approach that we now
describe. Using their notation, we let F denote a sub - collection of sites that must be added to
the network, K being the collection of all sites. They seek to extend F to some S D F of sites
that are to be added. Finally, if certain sites, K'\(E U F'), are ineligible, their goal would entail
finding

v(Ao, F,E,s) := max |Ag[S,S 33

(Ao ) Fsg:ﬁ‘c_%g 0[S, S]| (33)
and the associated S = S%P!mal where “#(S)” stands for the number of sites in S and in general,
Ao[E', F'] refers to the submatrix of Ag with rows E’ and columns F'. The algorithm requires a
good initial design, S*, obtained by the greedy algorithm, for example. This design yields as a
target to beat, the initial lower bound, LB := |A¢[S*, S*]|. As well, it provides an initial “active
subproblems” set £ = {L} consisting of just one element L := (Ao, F, E, s) as well as a global
upper bound UB := b(Ay, F, E, s). For b, Ko et al (1995) find

b(L) = |Ao[F, FIITLZ{ Ni(Aog.ry) (34)
where Agig.r) = Ao[E]—Ao[E, F]Ao[F, F|7'A¢[F, E] and the {\;} denote the ordered eigenvalues

of its matrix argument in decreasing order, A; > --- A\;_; with f = #(F).
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At a general step in the execution of the algorithm, the LB would correspond to the best
design S* obtained to that step. At the same time, £ would have a multiplicity of elements
and the required global upper bound would be UB := maxpez b(L). UB > LB suggests that
gortimal hag not been reached and new branches need to be explored in search of the optimum,
i.e. new active subproblems need to be added to the £. We do this by first deleting an
active subprogram (Ao, F', F',s) from £ and then selecting a “branching index”, i € E'. Four
(non-distinct) cases obtain and determine which subproblems to add. First, one of Cases, (i)]
#(F')+#(E')—1> sor (ii) #(F')+#(E') — 1 = s obtains. If (i),add (Ao, F', E'\i,s) to L and
compute b(Ag, F', E'\i, s) (needed to find the new UB). If (ii) S := F'U E'\i is the only feasible
solution. If Ag[S,S] < LB , S supplants the current S* and LB moves up to LB := Ay[S, S].
Next, one of Cases, (iii) F'+1 < s or (iv) F'+1 = s prevails. If (iii) add (Ao, F'U{i}, E'\i, s) to
L and compute b((Ag, C(Ag, F'U{i}, E'\i,s),s). If (iv), S = F' U{i}, the only available feasible
solution can supplant the current S* and move LB (computed as above) even higher. Finally,
recompute the UB and determine whether or not the program has terminated with UB < LB.
If not, we would delete another active subproblem, create new branches and carry on as long as
possible.

Ko et al (1995) show their algorithm to be much quicker than complete enumeration. Jon Lee
suggests (personal communication) that problems with site totals of about 80 can be routinely
tackled. No doubt, by improving UB’s and methods of selecting the active problems for deletion,
further increases in the algorithm’s domain are possible. Nevertheless, for realistic continent
wide redesign problems having 100’s or even 1000’s of prospective sites, exact optimization
seems out of the question. Therefore, we are encouraged by the finding of Ko et al (1995) that
the greedy/swap algorithm described above often produced the exact optimum, where the latter
is computable.

The branch and bound algorithm can be extended in various ways. Bueso et al (1998) extend
it to the case where observations are made with error and the goal is the prediction not only
of responses at ungauged sites but those at the gauges sites as well. Lee (1998) extends it to
incorporate linear constraints (e.g. limiting cost. His approach defers from the approach of
Zidek et al (2000) where cost is also incorporated.

8 Illustrative Example

This section demonstrates use of the above design theory, by redesigning Greater Vancouver’s
PM1y network. When our analysis was done, that network had 10 stations measuring hourly
PMjp levels with different start dates, resulting in a staircase data pattern. Each step of the
staircase consists of stations having the same starting time. Figure 1 shows the names of the
stations along with their start dates and the boxplots of the hourly PM;y, measurements.
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Figure 1: Boxplot of hourly PMq levels (ug/m3) at 10 monitor sites in Greater Vancouver and
their start-up times.

In this example, the objective is to augment the existing network with an optimal subset of
6 stations among 20 potential sites. Locations of the existing stations and potential sites are
displayed in Figure 2.

The trend for the log-transformed hourly PMi levels is modelled with seasonal components,
hourly and daily effects, and meteorological covariates. The seasonal components are captured
by the sine and cosine functions for monthly, semi-annual, and annual cycles. The meteorological
data used include visibility index, sea level pressure, dew point temperature, wind speed, rain
and relative humidity.

The 24-dimensional vectors of hourly PM1y measurements for each day obtain from the de-
trended series. The day-to-day autocorrelation are filtered out by fitting a multivariate AR(1)
model. The resulting residuals form the multivariate responses used in Model (1) of Section 3.2.

The hyperparameters are estimated using the method moment proposed by Kibria et al
(2002). Table 1 shows the estimated hypercovariance matrix between gauged stations, A4 is
displayed.
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Figure 2: PM;y Monitor Stations and Potential Sites.

Chilliwack airport 75 46 38 40 34 38 27 40 36 29
Abbotford downtown | 46 79 36 46 33 41 29 40 38 31
Kensington Park 38 36 70 55 47 42 38 38 46 34
Burnaby South 40 41 55 Tr 48 49 43 43 55 43
Rocky Point Park 34 33 47 48 64 39 36 34 41 33
Surrey East 38 41 42 49 39 64 34 45 47 36
Kitsilano 27 29 38 43 36 34 59 30 37 41
Langley 40 40 38 43 34 45 30 64 41 31
North Delta 36 38 46 55 41 47 37 41 72 39
Richmond South 29 31 34 43 33 36 41 31 39 65

Table 1: Estimated hypercovariance matrix at existing stations after multiplying
entries by 100.

The residual hypercovariance matrix between potential (ungauged) sites conditional on the
existing sites, Ay, is estimated using the Sampson and Guttorp (SG) method (Sampson &
Guttorp 1992) and based on the estimated Ay. That method bypasses the usual requirement
of covariance spatial isotropy by smoothly mapping location coordinates in “geographic space”
(G - space) into coordinates of another called “dispersion space” (D-space). The mapping is
constructed so that the covariance field is isotropic over D - space even if not over G - space.
Construction of the mapping starts with the observed spatial covariance matrix for existing
monitoring sites. A fitted variogram, or equivalently covariance function, in D-space combined
with the smooth mapping can then be used to obtain spatial covariances between all sites in G
- space, including those at which no measurements were previously made.

Figure 3 demonstrates the actions of the SG method in this application. The right panel
shows the corresponding D-space coordinates, resulting from applying the mapping function to
a biorthogonal grid in G-space. The left panel shows the fitted variogram in D-space. The figure
shows a good fit for the variogram model using this mapping function with spline smoothing
parameter of 2. Users specify this built-in map smoothing parameter that controls the distortion
between the G-space and the D-space. This feature ensures that the grid is not folded in the D-
space and hence maintains the spatial interpretability of the correlations; that is, correlations are
reflected in inter-site distances in dispersion space. The deformation on the right panel indicates
the non-stationarity of the field. Failure to capture non-stationarity results in a suboptimal
design as illustrated in the analysis below.
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415 2 1 36 2 5 2 1

5| 5 8 6 37 6 212 -1 -1 2 10 -1 -1

61 2 5 27 4 6 1 1

712 3 2 2 6 6 0 -1 -1 9 1 -1 -1 3 1 1 1

8| 5 7 4 21 0 40 -1 -1 3 16 -1 -1 3 1 1

9 -1 -1 4 -1 -1 38 17 -1 9 10 -1 -1
10 -1 -1 6 -1 -1 17 52 -1 7 13 -1 -1 -1
111 1 1 5 2 9 3 32 5 2 2 1 1 2
12 2 3 2 10 1 16 -1 -1 5 42 -1 -1 9 1 3 1 3
13 -1 -11 -1 -1 9 7 -1 35 13 -1 -1
14 -1 -1 1 -1 -1 10 13 -1 13 4 -1 -1 -1
15 2 3 3 -1 -1 2 9 -1 3 2 8 2 6
16 2 1 2 1 2 471 3 17 9
17 1 1 -1 -1 1 3 -1 -1 8 3 4 3 14
18 1 1 1 2 17 3 60 13
19 1 1 -1 2 31 -1 6 9 14 13 60 13
20 1 -1 3 2 13 3 13

Table 2: The estimated residual hypercovariance between ungauged sites conditional on existing
stations. Entries have been multiplied by 100 and rounded to integers and 0’s are replaced by
blanks.

The panels in Figure 3 can be used to estimate spatial correlations between any points in
the G-space, e.g. by first identifying the points in D-space using the grid, then measuring the
distance in D-space between them, and finally applying the fitted variogram to the distance to
estimate their spatial correlations. The residual hypercovariance matrix among the ungauged
site conditional on existing stations , Ag, is estimated accordingly and displayed in Table 2.

Applying the entropy criterion given in (32) to the estimated Ay yields the optimal subset
of 6 sites, { Sites: 10, 12, 16, 18, 19, 20 } among the 20 potential sites, to augment the existing
network. The locations of the selected sites are depicted in Figure 4 along with the locations
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of existing stations and potential sites, the latter accompanied by their ranking based on their
estimated hyper-variances (ie. the diagonal element of Ag).

The optimum solution seems sensible in that five of the 6 sites, {Sites: 10, 16, 18, 19, 20}
have 5 largest variances and are generally far away from existing stations. However, note that
the sixth selected site, Site 12, has smaller estimated hyper-variance than two unselected ones
(Sites: 14 and 17). The trade-off between variance and correlation with nearby stations is
demonstrated here. Sites 14 is not selected in spite of its having a large estimated variance
because it is closer to existing stations than Site 12. Furthermore, Site 14 is located in a region
of stronger spatial correlation than that of Site 12, as indicated by the stretching in the region
containing Site 12 on Figure 3’s right panel . The non-stationarity of this field also plays an
important role in the selection of Site 12 over Site 17. The two sites are roughly the same
distance from existing stations, Site 17 having larger estimated hyper-variance; however, the
spatial correlation is weaker at Site 12 than at Site 17. This fact can be clearly seen in the
right panel of Figure 3 where the region containing Site 17 does not show any stretching, in
comparison with the region containing Site 12 showing more stretching and hence less spatial
correlation for the same distance in G-space.

9 Discussion

In this paper we have provided a hierarchical Bayesian framework for enlarging an existing
monitoring network whose current stations have been added over time, creating a staircase
data pattern. The context is that in which there is no well defined design objective. This is
done by adopting the generic objective of minimizing the entropy of the posterior probability
distribution of the quantities of interest. Roughly speaking the new network stations are those
whose response vector would be the most highly unpredictable either because it is not well
correlated with the remaining stations, or because of its high intrinsic variability. The results
seem to indicate that the proposed theory works well and is able to capture the non-stationary
feature of the spatial field.

We should emphasize that as a compromise, our entropy based approach will not yield an
optimal design for specific objectives. In fact, in a paper currently in preparation, we will show
limitations of the entropy design when we are interested in monitoring the extreme values of
the time series of responses at the spatial sites. However, it needs to be said that the latter is
a very challenging problem and we are not aware of any entirely satisfactory where “extreme
extremes” are of concern.

The proposed design methodology uses a posterior distribution with its entropy for a mul-
tivariate random field. The posterior distribution is obtained from a multivariate Gaussian
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model for the field, with a conjugate prior distribution for its parameters, including the general-
ized inverted Wishart distribution for the spatial covariance matrix, capable of coping with the
staircase data pattern. At level two, a Kronecker product is adopted as a covariance model to
capture the between station (spatial) and within station (temporal) correlations. That product
will clearly not be appropriate in certain applications, but to date, no suitable alternative has
been found.

There are a number of practical issues which need to be addressed in implementing our
method. Tt must be possible to transform the data so that the data distribution is approximately
Gaussian. Adjustment with this model must yield an approximately uncorrelated data series.
Computation is a major practical consideration. Here we have deliberately restricted the number
of potential sites involved in our analysis so that complete combinatorial optimization is feasible.
But the numerical problem of combinatorial optimization rapidly becomes overwhelming as the
size of the existing network increases in size.

This relates directly to an issue raised in Section 3. There we noted that our uncertainty
about ungauged sites can be reduced not only by borrowing information from current measure-
ments at gauged sites but to a lesser extent from previous such measurements as well, at least
when the autocorrelation in the individual series is sufficiently strongly. However, incorporating
that component of the model seems to lead to an intractable entropy calculation and in turn
to the computational problem indicated in the last paragraph. This issue is being addressed in
current work.

Another issue raised in that section concerns data missing at random. Our space time model
there allows for such data in the past. However, the design refers to future values of the response
field, and a satisfactory design approach needs to model the random data selection process that
determines which measurements will actually be obtained when the design is used.

Finally, we recognize that in practice, “good” rather than “optimal” designs are needed and
optimal designs like those in this paper must be considered as tentative proposals susceptible to
modification depending on the circumstances prevailing in the context of their implementation.
These “optimal” designs may well be valuable starting points, however, since they can be expli-
cated in terms of their axiomatic underpinnings and proposed changes to these optimal designs
can be interpreted in terms of the axioms. This can provide a degree of confidence and clarity in
the typically complex situation confronting a designer. The redesigns are founded on a coherent
theory and we believe that the resulting designs will therefore be defensible in an operational
context.
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ural Science and Engineering Research Council of Canada and partially by the National Science
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Figure 3: Transforming the geographic plane to dispersion space (right panel) and fitting a
variogram to the empirical variogram over dispersion space for Vancouver’s hourly PMq field.
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