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1 Introduction

Origins of this paper can be found in Stein (1956) who showed that bias could be traded for pre-

cision. Moreover he showed that “strength” could be “borrowed” from data drawn independently

from populations other than that about which inferences were to be made. Specifically, under cer-

tain reasonable conditions, if normal population means are to be estimated simultaneously from

independent samples, then the sample averages can be outperformed in terms of expected combined

squared-errors of estimation. Moreover, each of the improved mean estimators relies on the data

from all other populations.

Stein’s result had dramatic impact, in as much as it challenged conventional paradigms that

supported use of the sample averages. Moreover, since the likelihood method had produced the
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sample averages in the first place, while failing to produce Stein’s superior alternative, it cast some

doubt on the method itself. Can the likelihood be extended to yield Stein’s result, more specifically

the estimator of James and Stein (1961). That is the subject of this paper.

An answer to this question might seem unnecessary as it has long been known that a hierarchical

empirical Bayes approach using the conventional likelihood explicates the James-Stein estimator.

However, not all practitioners embrace the Bayesian approach. Moreover, its use may be impractical

or even infeasible in applications where, not uncommonly, ten’s of thousands of parameters may be

encountered, making impossible, the problems of eliciting genuine (as opposed to ad-hoc or non-

Bayesian e.g. improper) priors and carrying out the necessary computations, the speed of modern

computers notwithstanding. Thus, deriving a likelihood based alternative seems worthwhile.

To derive an appropriate likelihood in Section 2, we take an approach suggested by Hu and

Zidek (2002) based on the maximum entropy approach of Akaike (1977). More precisely, we seek a

predictive distribution that minimizes the relative entropy subject to certain constraints. The latter

are meant to capture the supposed “resemblance” of the population of inferential interest and others

from which independent samples are available. Estimating the unknown population distributions in

the spirit of Akaike leads us to the weighted likelihood.

The legitimacy of Akaike’s approach has been amply demonstrated through such things as the

derivation of the much-used AIC criterion and of Bayes rule, a rule that interestingly enough does

not obtain from the classical rationality axioms for subjective probability itself. Most importantly

for us, Akaike uses his approach to derive the classical likelihood function. Since that method points

ineluctably to the version of the likelihood described next, we are confident that it is the correct

choice among many for the role we wish it to play. Discovering the right choice (that is much

discussed and applied elsewhere) is the central contribution of this paper.

To describe the likelihood we obtain, suppose from each population i = 1, . . . , m we in-

dependently observe identical, identically distributed random responses, Xi1, . . . , Xini . Each of

these responses may be a vector, all having the same dimension (1 in the univariate case). Each

Xij , j = 1, . . . , ni is assumed to have a density function fi(.; θi), i = 1, . . . , m. Moreover, we

assume the samples from the different populations are independent of each other. Finally, let

Xi = (Xi1, ..., Xini)
t.

Suppose that only θ1, an unknown vector of population 1 parameters, is of inferential interest.
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Then for fixed X = x, the weighted likelihood (WL) turns out to be of the form,

WL(x; θ1) =
m∏

i=1

ni∏

j=1

f1(xij ; θ1)λi , (1)

where λ = (λ1, ..., λm) is the “weight vector” whose values are not implied by our implementation

of Akaike’s approach and must be specified in the context of specific applications.

A “maximum weighted likelihood estimator (WLE)”, θ̃1, for θ1 may be characterized as

θ̃1 = arg sup
θ1∈Θ

WL(x; θ1).

To find the WLE, we may compute

logWL(x; θ1) =
m∑

i=1

ni∑

j=1

λi log f1(xij ; θ1).

In turn, we may solve the weighted likelihood equations:

(∂/∂θ1) log WL(x; θ1) = 0.

(Note that the uniqueness of the WLE is not assumed.) So we see that weighted likelihood theory

closely resembles (and formally includes) classical likelihood theory.

Although we derive the weighted likelihood in this paper, it has appeared elsewhere and we

briefly summarize its history. It has been developed for a variety of purposes. Moreover, simple

examples are easily constructed where it arises naturally. The multinomial likelihood is one such

example, where the (adaptive or sample-based) weights arise naturally. One can also find examples

in a Bayesian framework where it is a (classical) integrated likelihood. In spite of the WL’s long

history, it seems to have been suggested on an ad hoc basis. We are not aware of a “normative”

argument like that given here (and in a special case by Hu and Zidek 2001, 2002), assuring that it

is the correct choice.

2 Basics Elements

In this section, we introduce the framework from which the weighted likelihood will derive. Before

doing so, we recall that for any density functions, g1(x) and g2(x), with respect to a sigma finite

measure ν, define the relative entropy (in other words, the Kullback-Leibler divergence) as:

K(g1, g2) = E1

(
log

g1(X)
g2(X)

)
=

∫
log

g1(x)
g2(x)

g1(x)dν(x).
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In this expression, log(g1(X)/g2(X)) is defined as +∞ if g1(x) > 0 and g2(x) = 0, so the expectation

could be +∞. Although log(g1(x)/g2(x)) is defined as −∞ when g1(x) = 0 and g2(x) > 0, the

integrand, log(g1(x)/g2(x))g1(x) is defined as zero in this case. The properties of the entropy can

be found in Csiszar(1975). In particular, the relative entropy is not symmetric and therefore not a

distance.

To implement the Akaike approach, we assume the existence of the m population density func-

tions introduced in Section 1 that are unknown and unknowable, playing purely conceptual roles.

More specifically, assume σ-finite probability spaces (X ,F , µi), i = 1, 2, ..., m, with probability mea-

sures {µi} that are absolutely continuous with respect to one another. The existence of a σ-finite

measure ν that dominates the µi follows. We take the fi to be the Radon-Nikodym derivatives of

{µi} with respect to ν.

The density functions f1, . . . , fm ∈ V are all assumed to be continuous where V is a reflexive

Banach space. Although V can be quite arbitrary, we take V = Lp = Lp(X , ν). It is known that

the Lp spaces (1 < p < ∞) are reflexive but that L1 is not (cf. Royden 1988).

For i = 1, 2, ..., m, define

Ei = {g ∈ Lp : ||g − fi||p < Ci,

∫
fi(x)log

fi(x)
g(x)

dν(x) ≤ ai,

∫
g(x)dν(x) = 1, g(x) > 0.} (2)

where ai ≥ 0 and Ci are constants. Furthermore, let

E = ∩m−1
i=1 Ei. (3)

We remark that the set E will be bounded with respect to the Lp norm and non-empty if the

constraints are not too restrictive. The latter is assumed throughout.

According to the maximum entropy principle of Akaike (1977), the goodness of a particular

model, q, as the predictive distribution of a random response, X, with true density p, is measured

by the relative entropy,

B(p; q) = −I(p, q) = −
∫

p(x)log
p(x)
q(x)

dν(x).

We shall not be concerned with the information theoretic significance of the relative entropy; rather,

we simply view it as a measure of the discrepancy between the two distributions.

We apply this measure by taking f = f1, the population density of inferential interest. Were it

known, we would take p = f1, the best possible choice available. However, it is not known and this

measure of performance has only a conceptual device to play.
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The other population densities, {fi , i = 2, . . . , m}, are also unknown. Yet we believe them to

“resemble” f1 and that knowledge needs to be incorporated in selecting a predictive density. We

interpret this to mean that any proposed model, g, must not diverge excessively from each of these

other densities even as we pursue the ideal of minimizing that between g and f1. More specifically,

to fit into our relative entropy framework, we ask that I(g, fi) ≤ ai for constants ai, i = 1, 2, 3...,m.

The {ai} need not be in fact be known. Their role like that of the {fi} is purely conceptual and the

assumption of their existence alone is enough to lead us to a form for the appropriate likelihood.

Thus, for a given set of density functions, f1(x) being primary, we seek a probability density

function g ∈ E which minimizes I(f1, g) =
∫

f1(x)log f1(x)
g(x) dν(x) over all probability densities, g,

satisfying

I(fi, g) ≤ ai, i = 1, 2, ...,m, (4)

where ai, i = 2, 3, ...,m, are non-negative constants.

3 Derivation of the Mixture Distribution and the Weighted

Likelihood Function

To prove the existence of the optimal solution to the problem posed in the last section, we use the

following result. Let D be a non-empty closed convex subset of Lp, 1 < p < ∞. Let g ∈ Lp. We

define I(g) : Lp →R. We are concerned with the minimization problem:

inf
g∈D

I(g). (5)

To avoid trivial cases, we assume that the function I(g) is proper, i.e. it does not take the value

−∞ and is not identically equal to +∞. We then have the following known result.

Theorem 3.1 Assume that I(g) is convex, lower semi-continuous and proper with respect to g. In

addition, assume that the set D is bounded,

so that there exist a constant M , say, such that

sup
g∈D

I(g) < M. (6)

Then the minimization problem (??) has at least one solution in D. The solution is unique if the

function I(g) is strictly convex on D.

Proof: (See, for example, Ekeland and Temam 1976, p 35. ) ¦
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Let I(g) = I(f1, g) =
∫

f1(x)log f1(x)
g(x) dν(x) for some given density f . We minimize I(g) on E

which is defined by (??). It can be seen that I(g) is a bounded non-negative strictly convex function

with respect to g. It follows that I(g) is continuous with respect to g (c.f. Lemma 2.1, Ekeland

and Temam 1976). In fact, I(g) is weakly lower semicontinous over Lp, 1 < p < ∞ (cf. Theorem

1.2, Chapter 3, Dacorogna 1989). Finally, we may conclude from Theorem ?? that I attains its

minimum value at a unique point in E . We state this formally in the next Corollary.

Corollary 3.1 For a given set of density functions f1, f2, ..., fm, the minimization problem (??) has

a unique solution.

We now establish a necessary property of the optimal solution to the minimization problem.

Theorem 3.2 For g∗ to be the optimal solution to the minimization problem (??), it is necessary

that it be a mixture distribution, i.e., that there exist non-negative constants t∗1, t
∗
2, . . . , t

∗
m such that

m∑
i=1

t∗i = 1, and

g∗(x) =
m∑

k=1

t∗kfk(x) ≥ 0. (7)

The previous theorem implies, in particular, that l0 must have the same sign as every one of the

multipliers lj as well as 1 implying that all these multipliers are nonnegative, a fact that will play a

role in ensuing developments. As well, note that the celebrated Shannon-Kolmogorov Information

Inequality is a special case of this last result. To see this consider the minimization problem without

any constraints, where we seek the optimal density function g∗ that minimizes I(f1, g) for any given

f1(x). According to Theorem ??, the necessary condition for g∗ to be the optimal solution is that

g∗(x) = t∗1f1(x).

Since t∗i = 0, i = 2, 3, ..,m, t∗1 = 1. It then follows that g∗(x) = f1(x), a.e..

By the proof of Theorem ?? and the Lagrange theorem, we may find the optimal density

function, g∗, by minimizing

∫
f1(x)log

f1(x)
g(x)

dν(x) + l0(
∫

g(x)dν(x)− 1) +
m∑

i=2

li(
∫

fi(x)log
fi(x)
g(x)

dν(x)− ai)

= −
(∫

f1(x) log g(x)dν(x) +
m∑

i=2

li

∫
fi(x) log g(x)dν(x)

)
+ l0

∫
g(x)dν(x)

+

(∫
f1(x) log f1(x)dν(x) +

m∑

i=2

li

(∫
fi(x) log fi(x)dν(x)− ai

)
− l0

)
.
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The last term in previous equation does not depend on the choice of g. Thus, the minimization

problem considered is equivalent to maximizing over E
∫

f1(x) log g(x)dν(x) +
m∑

i=2

li

∫
fi(x) log g(x)dν(x)

− l0

∫
g(x)dν(x)

=
m∑

i=1

di

∫
fi(x) log g(x)dν(x)− l0

∫
g(x)dν(x)

where d1 = 1, di = li, i = 2, 3, ...,m.. Since the {di} are non-negative, it follows by reasoning as in

the proofs of Theorems ?? and ?? that the optimum may be found by maximizing

m∑

i=1

di

∫
fi(x) log g(x)dν(x)

over E .

However, fi’s are unknown and we obtain the WL in the non-parametric case, by heuristic

reasoning like Akaike has employed.

To that end, observe that any terms in the objective function that involve them must be

estimated, the obvious estimator being

m∑

i=1

di

∫
log g(x)dF̂i(x),

where F̂i denotes the empirical distribution function for population i=1,. . . ,m. Now we may argue

as in the classical case of i .i .d observables where the non-parametric MLE is shown to be the sample

empirical distribution. Thus, we see that the optimum is degenerate and puts all of its unit mass

on the sample points themselves. In other words the optimum is obtained by maximizing over

gij , i = 1, . . . , m, j = 1, . . . , ni with
∑∑

gij = 1 and gij ≥ 0 the quantity,

m∏

i=1

ni∏

j=1

g
di/ni

ij .

We thus obtain the WL estimator of F1 as a generalization of what Hu and Zidek (2001) called the

relevance weighted empirical distribution, namely

F̂1 =
m∑

1=1

wiF̂i

where F̂i denotes the empirical distribution of the i-th sample and wi ∝ di, i = 1, . . . ,m are

non-negative weights that sum to 1. Thus, by this heuristic reasoning we obtain not only the non-
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parametric WL but the WL estimator as well in explicit form. Although this estimate is rather

“rough”, it is the best that can be obtained without further restrictions.

A natural such restriction brings us to the parametric case where g(·) = f1(·|θ1), and we regard

θ1 ∈ Θ represents a vector of population 1 parameters. Following the lines of the conventional

Lagrangian argument given by Hu and Zidek (2002), we may express the optimization problem in

Equation (4) differently, at least subject to the regularity conditions. To that end we make the

following assumptions.

Assumptions.

1. Subject to the constraints imposed on the optimization problem in Equation (4), θ1 → I(g, f1)

has a unique maximum, θ∗1 in Θ.

2. For each i = 2, . . . ,m the gradient of g(·) = log f1(·|θ1) with respect to |θ1 exists a.e. [ν] and

can be taken under the integral sign in I(g, fi).

Applying a the Lagrange argument (c.f. Beavis and Dobbs 1990) we obtain the following result.

Theorem 3.3 Assume the {∂ log g/∂θ1i} do not all lie in the hyperplane of functions orthogonal

to some non-null element of the space spanned by the {fi, i = 2, . . . , m} with respect to the inner

product (f, h) =
∫

fhdν. Then

θ∗1 = arg max
θ1∈Θ

m∑

i=1

di

∫
log g(x; θ)dFi(x),

where the {di} represent Lagrange multipliers.

However, as in Akaike’s theory, the population distributions for the m populations are unknown

and merely play a conceptual role. Thus, the previous theorem’s value may primarily be qualitative,

yielding some conceptual basis for the choice of the the family of acceptable parametric functions if

the Lagrange result is to hold. Furthermore, to obtain a usable form of the objective function in the

previous theorem, we need to proceed as in the nonparametric case above and estimate the unknown

population distribution. This then gives us the parametric version of the likelihood obtained earlier.

The estimate of the parameter of the optimal distribution would be found as

argmax
θ∈Θ

m∏

i=1

ni∏

j=1

f1(Xij ; θ)di/ni .

This implies that the estimate of parameter of the optimal density is equivalent to finding the WLE

derived from the weighted likelihood function if the functional form of the optimal density function

is known.
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The next theorem describes the relationships

between ti and ai, for any mixture density function
m∑

i=1

tifi(x) which satisfies the constraints

(??) .

Theorem 3.4 Suppose there exists a0 = (a0
1, a

0
2, ..., a

0
m)t and δ0 = (δ1, δ2, ..., δm)t such that there

exists g0(x) =
m∑

i=1

tifi(x) with ti chosen as a function of a so that g0 achieves equalities in the

constraints (??) and
m∑

i=1

ti = 1 for any a such that |ai − a0
i | < δ0

i . Then the {ti} are monotone

functions of ai, more precisely,

∂ti
∂ai

≤ 0, i = 2, ...,m,

∂

∂ai

∑

k 6=i

tk ≥ 0, i = 2, ..., m.

Moreover, the weights ti are all between 0 and 1.

4 Related Works

In this section we describe some earlier works that although not directly related to the central topic

of this paper, is nonetheless quite relevant.

The Kullback-Leibler divergence is also known as the entropy loss. James and Stein (1961)in-

troduce it as a performance criterion in estimating the multinormal variance-covariance matrix.

Brown (1968) and Haff (1980) used it to index the losses incurred in estimating both the multi-

nomial variance-covariance matrix and its inverse. Ghosh and Yang (1982) introduced that loss

when simultaneously estimating p-independent Binomial and multinomial proportions. Parsian and

Nematollahi (1996) consider the estimation of scale parameter under entropy loss function. Trottini

and Spezzaferri (2002) show that the criterion based on by logarithmic utility function for estimating

the density function by San-Martitni and Spezzaferri (1984) is equivalent to the generalized predic-

tive criterion using the relative entropy. It should also be noted that Bernardo (1979) shows the

entropy is a loss function in a Bayesian framework.

The idea of finding a optimal solution with respect to relative entropy under constraints is

related to the hypothesis testing for divergence outlined in Kullback (1959, Chapter 3). For any

given true density f , the practitioner seeks a probability distribution that is “nearest to the true

density with respect to the relative entropy or divergence. The true density, however, is unknown.

Kullback (1956) proposes to find the optimal density function which achieved minimum relative
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entropy subject to
∫

T (x)g(x)dx = C, where C is usually a multidimensional parameter. The

constraint is employed to force f1(x) to satisfy some other desired characteristics. Although the

true density function f(x) is in fact unknown, we suppose in the spirit of configural polysmaplnig

by Tukey (1987), Morgenthaler and Tukey (1991) and Easton (1991) that a set of density functions,

f1, f2, ..., fm “span” a reasonable range of possible true densities for the observables. They are

introduced in the context of robustness in order to find inferential procedures that can work well in

the face of a wide variety of stochastic behaviors. Thus it is reasonable to impose the constraints

as Ti(x) = log (fi(x)/g(x)) so that the degree of resemblance of the optimal density to each of the

density in the candidate set is reflected by relative entropy. Therefore in order to find the optimal

predictive distribution, the desired density function should not only be associated with only one

density but also with other candidate densities to a varying degree. Morgenthaler and Tukey (1991)

have argued that this kind of approach is more realistic than the usual method of choosing one

distribution, say normal, and then estimating the parameters. We also remark that the optimal

solution in our analysis differs from the maximum entropy distribution, otherwise known as the

Maxwell-Boltzmann distribution. The goal of using maximum entropy is the construction of a

density function so that it possesses some desired properties. These two questions might seem to be

identical on the surface. But they are quite different in nature. The proof and detailed discussions

of the maximum entropy distribution can be found in Cover and Thomas (1991).

The WL extends the local likelihood of Tibshirani and Hastie (1987) since the restriction of

the weights to indicators or more generally kernel functions in the local likelihood is relaxed in the

WL setting. A detailed discussion of the local likelihood and associated properties can be found in

Eguchi and Copas (1998). Versions of the weighted likelihood can be seen in a variety of contexts

(c.f. Brillinger (1977), Rao (1991), Field and Smith (1994), Newton and Raftery (1994), Markatou,

Basu and Lindsay (1998) and Hu and Rosenberger (2000)).

Following Hu (1997), Hu and Zidek (1995, 2001, 2002) extend the local likelihood to a more

general setting but with the same aim, that of combining relevant information in samples from other

populations thought to resemble that whose parameters are of interest. They call their WL the

relevance weighted likelihood estimator (REWL). In other words, referring to the definition above,

f2(·; θ2), ..., fm(·; θm) are thought to be “similar to” f1(.; θ1). We should add that in their extension

of the REWL, Hu and Zidek (1995) also consider simultaneous inference for all the θ’s.

The classical maximum likelihood estimator (MLE) has asymptotic properties that have not

only pointed to good performance but as well, provided useful items for the statistical toolbox, for
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example, approximate confidence intervals. Such features carry over to the WLE although these are

proved elsewhere. Hu (1997) provides asymptotic theory under a paradigm resembling that of non-

parametric regression and function estimation. There, information about θ1 builds up because the

number of populations grows with increasingly many in close proximity to that of θ1. However, this

paradigm does not seem natural in many contexts. So in contrast to Hu, Wang, van Eeden and Zidek

(2001) suppose a fixed number of populations with an increasingly large number of observations from

each. Under this paradigm, they derive an alternative large sample theory for the WLE. In practice,

the weights in the WLE may need to estimated using the data. The asymptotic properties for this

case are given in Wang (2001).

Applications of the WLE readily found elsewhere (Hu and Rosenberger 2000; Hu, Rosenberger

and Zidek 2000). Hu and Zidek (2001) show how the WLE can be used to predict the number of

goals scored in ice hockey when Vancouver’s NHL team plays Calgary’s. In fact, the outcomes of

sports competitions provide a particularly apt domain of application for the WLE, since typically

a particular pair of teams will meet only seldom during a single season. However, much “relevant”

information comes from their encounters with other teams and that is the

sort of information that makes the WLE work so well in the Hu-Zidek application. Of course,

other methods may well be available, but the simplicity of the WLE makes it very attractive. To

demonstrate use of the WLE in this paper, we give, as an example in Section 4, the estimation of

the success probability of the negative binomial distribution. Concluding remarks appear in Section

5.

The empirical likelihood (Owen 2001) points to an approach intermediate between non-parametric

and parametric ones we have adopted in this paper. One such approach may be found in an undated

working paper of Kitamura, Tripath and Ahn found at the URL: www.ssc.wisc.edu/ gtripath/working-

papers/cmmel-web.pdf. This seems an interesting direction for future work.

5 Appendix

Proof Theorem ??: For the optimal density g∗ whose existence is assured, we may without loss

of generality assume that the constraints are binding, i.e that I(fi, g
∗) = ai, i = 2, 3, ..., m since

by reducing the non-binding a’s if necessary we obtain the same optimum. Thus the optimization

problem with solution g∗ can be re-formulated in the context of calculus of variations as follows

min
g∈E

I(g) = min
g

∫
f1(x) log

f1(x)
g(x)

dν(x)
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where g ∈ E means:
∫

fi(x) log
fi(x)
g(x)

dν(x) = ai, i = 2, ...,m;
∫

g(x)dν(x) = 1 and g(x) ≥ 0.

Define ψ(x, g) = f1(x)log f1(x)
g(x) + l0g(x) +

m∑
k=2

lkfk(x)log fk(x)
g(x) . Since ψ(x, g) is continuous

with respect to g, by an elementary theorem in the calculus of variations (see, for example, Giaquinta

and Hildebrandt 1996) it follows that a necessary condition for g∗ to be the optimal solution is that

it satisfies the Euler-Lagrange equation, i.e.

∇gψ − ∂

∂x
(∇g′ψ) = 0, (8)

where ∇g and ∇g′ are the derivative operators with respect to g and g
′
respectively and lk suitably

chosen constants, the so-called “Lagrange multipliers”. Notice that ψ(x, g) is not a function of g
′
.

That implies ∇g′ψ = 0. Thus Euler-Lagrange equation becomes ∇gψ = 0. It follows that

−f1

g
+ l0 −

m∑

k=2

lk
fk

g
= 0.

We then have

g∗(x) =
m∑

k=1

t∗kfk(x),

where t∗1 = 1/l0, t
∗
i = lk/l0, k = 2, ...,m.

The sum of the t∗i ’s must be 1 since g∗ ∈ E and hence 1 =
∫

g∗(x)dν(x) =
m∑

k=1

t∗k. Likewise,

g∗(x) =
m∑

k=1

t∗kfk(x) ≥ 0

since g∗ must be in E by Corollary ??.

Finally, we observe that the {t∗i } must be nonnegative for if not we could make
m∑

k=1

t∗kfk(x)

uniformly larger by truncating any negative weights to zero and renormalzing the remaining weights

so that they sum to 1. The result would satisfy the constraints while reducing the objective function.

Hence the original solution could not have been optimal, a contradiction. This completes the proof.

¦
Proof of Theorem ??:

Let φi(x) = fi(x)− f1(x), i = 2, ..., m. Then,

g0(x) = f1(x) +
m∑

k=2

tkφk(x)
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and

∫
φi(x)dν(x) = 0, i = 2, ..., m.

It follows that,

fi(x) = g0(x) + φi(x)−
m∑

k=2

tkφk(x) ≥ 0.

This implies that

−[φi(x)−
m∑

k=2

tkφk(x)] ≤ g0(x). (9)

Since g0 satisfies the constraints (??), it follows that, for 2 ≤ i ≤ m

∂ai

∂ti
=

∂

∂ti

[ ∫
fi(x) log

fi(x)
g0(x)

dν(x)
]

=
∂

∂ti

[ ∫
fi(x) log

fi(x)
m∑

k=1

tkfk(x)
dν(x)

]

= −
∫

fi(x)
φi(x)
g0(x)

dν(x)

= −
∫

[g0(x) + φi(x)−
m∑

k=2

tkφk(x)]
φi(x)
g0(x)

dν(x)

= −
∫

g0(x)
φi(x)
g0(x)

dν(x)−
∫

[φi(x)−
m∑

k=2

tkφk(x)]
φi(x)
g0(x)

dν(x)

≤ −
∫

φi(x)dν(x)−
∫

[φi(x)−
m∑

k=2

tkφk(x)]
φi(x)
g0(x)

dν(x)

≤ −
∫

φi(x)dν(x) +
∫

g0(x)
φi(x)
g0(x)

dν(x) by (??)

= 0.

Therefore, it follows that, for i = 2, ..., m,

∂ti
∂ai

=
1

∂ai

∂ti

≤ 0.

It also follows that
∂

∂ai

∑

k 6=i

tk ≥ 0

since t1 + t2 + ... + tm = 1.

Note that if we set ai = 0, then ti = 1; if ai = ∞, then ti = 0. Since ti is a monotone function of ai

for any fixed aj , i 6= j, it follows that 0 ≤ ti ≤ 1, i = 1, 2, ..., m. ¦
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