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Abstract

The paper explores the use of a joint log Gaussian measurement dis-
tribution to represent a field of extreme values. A hierarchical Bayes
prior distribution with estimated hyperparameters models uncertainty
in that distribution’s unknown parameters. The resulting multivari-
ate - t distribution is fitted to the random maximum annual rainfall
field simulated from a Canadian Climate model with 319 grid cells. To
assess its performance in that application, we find its predictive cred-
ibility ellipsoids and confirm that their coverage fractions are close to
their nominal credibility levels, using cross validation. Return values
are estimated for cell marginal distributions and their overall accuracy
is assessed by an index of discrepancy.

1 Introduction

This paper presents a joint distribution for random extreme values over
a discrete geographical field. We apply the method to simulated annual
maximum precipitation generated by the first generation Canadian Global
Coupled Model (CGCM1) (Kharin and Zwiers, 2000) for the 319 grid cells
into which it partitions Canada.

That application stems from the pervasive interest in extreme weather
and its associated risks. For designers, those risks can translate into return
values for the annual maximum precipitation. More precisely, if X denotes
the annual maximum precipitation in a specific geographical region (or cell in
the simulation), X’s T year return value, XT , would be the value X exceeds
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once every T years on average. That is,

P (X > XT ) =
1
T

. (1)

In this paper, “extreme value” or “extreme” for short, refers to the max-
imum (or minimum) of a possibly autocorrelated series of random responses
(although we recognize that terminology sometimes refers to values in the
tails of a distribution above some threshold). It addresses questions about
the return values of those extremes, here the annual maximum hourly pre-
cipitation at each of a number of locations (cells). Because of spatial corre-
lation in this context, we cannot calculate the probability of simultaneously
exceeding such marginal return values as the product of their marginal ex-
ceedance probabilities, thereby limiting their usefulness. That observation,
leads to the study of extremes within the domain of spatial statistics and
of the joint distribution of a field of random responses, X, representing ge-
ographical subdomains (grid cells). In general, we need the joint extreme
value distribution for a variety of purposes, for example, to characterize un-
certainty about aggregate events such as the number of locations at which
exceedances occur on any given future year.

In Section 2, we describe current approaches to modelling the joint dis-
tribution of extremes. Section 3 presents our new theory based on the mul-
tivariate Gaussian distribution. Section 4 applies that theory and, in par-
ticular, assesses its multivariate as distinct from marginal validity. Finally,
Section 5 presents our conclusions.

2 Survey of Current Approaches.

Multivariate extreme value distributions, the subject of much current re-
search, are described in this section. Of specific concern are environmental
time series such as autocorrelated hourly precipitation levels at given lo-
cations that possess temporal patterns such as seasonality. Generally, the
autocorrelations are not important in modelling the distribution of extreme
values (Coles and Tawn 1996). Moreover, trends can be handled by re-
moving them from the original record, calculating such things as the return
values for the joint residual distribution, and then reinstalling that trend.
Sun et al (2000), for example, use that idea although in a slightly different
context.

Single-Site Models. The distribution of the annual maximal precip-
itation at a single site can be modelled using amongst other things, the
generalized extreme value (GEV) distribution (Kharin and Zwiers, 2000),
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the generalized Pareto distribution (GPD; Smith, 2001), and the Poisson
process model for the precipitation (Coles and Tawn, 1996, Ledford and
Tawn, 1997). Smith (2001) provides a good description of these distribution
models.

If X1, X2, · · · , Xn are iid random variables (for example, hourly precip-
itation levels) with distribution F, the distribution of the maximum Mn =
max{X1, X2, · · · , Xn} can be found explicitly in terms of n-th powers of F
from which the limit distribution can be found. More precisely,

P (
Mn − bn

an
≤ x) → H(x), as n →∞

where an and bn are normalizing constants that keep H(x) from being de-
generate. A celebrated result of extreme value theory tells us that H must
be one of three types:

1. Gumbel type:

H(x) = exp{− exp(−x)}, −∞ < x < ∞,

2. Fréchet type:

H(x) =
{

0 if x < 0
exp(−x−α) if 0 < x < ∞,

3. Weibull type:

H(x) =
{

exp{−(−x)α} if −∞ < x < 0,
1 if x > 0.

In the above, α > 0 is a constant.
The GPD models exceedances over some threshold, treating the maxima

or minima as a special case. Point process theory combines the GEV and
the GPD distributions, taking time into account. That theory takes the
exceedances or annual maxima to be a heterogeneous stochastic process. It
models the number of exceedances or values of annual maxima during each
time interval. Assuming the number of exceedances in each time interval
are independently and identically distributed (i.i.d.), it can be shown that
it is a GPD, the annual maxima, a GEV distribution.

Multi-Site Models. As noted above, many models for multivariate
extreme value distributions obtain from their univariate counterparts.
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In their initial analysis of precipitation data, Kharin and Zwiers (2000)
use the marginal GEV distribution and incorporate spatial correlation in
parameter estimation. First, they estimate the parameters of the marginal
GEV distributions separately. Regarding these parameter estimates as in-
dexed by their associated spatial site coordinates makes them a spatial field
in their own right. The authors then predict that field at a particular site, by
averaging all the parameter estimates in a neighborhood of it. [In another
manuscript currently in preparation, the first author and her co - investi-
gators, extend the method of Kharin and Zwiers (2000) using a variety of
smoothing methods including the weighted MLE method and the thin-plate
splines method.]

Reiss and Thomas (1997) present a number of other univariate to multi-
variate approaches. Like univariate extreme value distributions, multivariate
extreme value distributions are introduced as limiting distributions of com-
ponentwise extreme variables. Three models will be summarized here: the
Marshall-Olkin model, the Gumbel-McFadden Model and the Hüsler-Reiss
model. These models share a notable feature, a parameter, λ, that indexes
dependence. Although that parameter has different ranges for the differ-
ent models, dependence increases with λ. (Bivariate versions of the three
models are given with higher dimensional extensions indicated.)

1. The Marshall-Olkin model: The standard version, Mλ, is a bivariate
extreme value distribution with Weibull marginals. (See the previous
section for a definition of the Weibull with parameter, α = 1.) The
dependence parameter, λ, ranges from 0 to 1. It can be expressed as
follows:

• For the case of total dependence (λ = 1),

Mλ(x, y) = exp
(

(1− λ)(x + y) + λmin{x, y}
)

, x, y < 0.

• For 0 < λ < 1,

Mλ(x, y) = P

{
max

{
Z1

1− λ
,
Z0

λ

}
≤ x,max

{
Z2

1− λ
,
Z0

λ

}
≤ y

}
,

where X and Y are extreme variables, while Z0, Z1 and Z2 are
iid random variables with common Weibull distribution having
α = 1.

Falk et al (1994) extend the second case to p dimensions.

4



2. The Gumbel-McFadden model: This extreme value distribution has
Weibull marginals with α = 1. However, the dependence parameter λ
ranges from 1 (independence) to ∞ (total dependence). The distribu-
tion has the form

Lλ(x, y) = exp
(
− ((−x)λ + (−y)λ)1/λ

)
, x, y < 0.

The p-dimensional extension can be found in McFadden (1978).

3. The Hüsler-Reiss model: This model represents the limiting distri-
bution of the maxima of standard normal random vectors, λ ranging
between 0 (independence) and infinity (total dependence). The bivari-
ate form is

Hλ(x, y) = exp
(
− Φ

(
1
λ

+
λ(x− y)

2

)
e−y − Φ

(
1
λ

+
λ(y − x)

2

)
e−x

)
,

where Φ is the univariate standard normal distribution. The p - di-
mensional form is given by Joe (1994):

HΛ(x) = exp
(
−

∑

k≤p

∫ ∞

xk

ΦP(k)

(
(λ−1

i,k + λi,k(xi − z)/2)k−1
i=1

)
e−zdz

)
,

where Λ = (λi,j) is a symmetric d × d matrix with λi,j > 0 if i 6= j
and λi,i = 0, while ΦP(k) is a (k−1)-dimensional normal distribution.

The mean of ΦP(k) is zero and
∑

(k) = 3D

(
σi,j(k)

)
is the correlation

matrix given by

σi,j(k) =
{

λi,kλj,k(λ−2
i,k + λ−2

j,k − λ−2
i,j )/2, if 1 ≤ i < j ≤ k − 1;

1, if i 6= j.

This section has reviewed what could be considered “distribution mod-
elling” rather than “process modelling” approaches. Such approaches have
the advantage of being well - founded on underlying assumptions that em-
brace the special nature of extremes and thereby provide some assurance
that they will have good properties particularly when dealing with extremes
so far out that little or no data will be available to validate them. Such
assurance would seem vital when dealing for example with return periods of
1000 years or more.

However, these models for multivariate extremes also have shortcomings.
For one thing, they tend to be mathematically intractable making explicit
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calculation difficult. In particular, developing inferential methods can be
challenging. That makes an approach like that of Kharin and Zwiers (2000)
appealing. However, approaches like the latter can also be criticized for
the ad hoc way in which spatial dependence is superimposed through the
smoothing of the parameter estimates from univariate site - marginals. For
example, we see no compelling basis for selecting one smoothing method
over another. Moreover, the resulting joint distributions need not yield
tractable expressions for the conditional and marginal distributions needed
for simulating the distributions of complex metrics calculated from these
extremes. That leads us to the approach in the next section.

3 A Process Modelling Approach.

This section proposes a hierarchical Bayesian approach based on a condi-
tional multivariate log Gaussian response distribution. A richness of exist-
ing theory makes inference for our model relatively easy. Moreover, we can
readily estimate return values.

However, our method does depend on successfully transforming the re-
sponses to make their assumed joint distribution valid, something that may
not be feasible for extremes of high order. In any case, assessing the validity
of that approximation is necessary and we develop a operational method for
making that assessment in this section. Our theory is applied in Section 4
and shown to work reasonably well.

3.1 Bayesian Framework

We follow Le and Zidek (1992) in our construction of a hierarchical Bayesian
model. Let Yj : p × 1 denote the vector of annual precipitation maxima
over p cells in year j = 1, . . . , n. Suppose that conditional on µ and Σ, the
spatial mean vector and covariance matrix, respectively, the log-transformed
maxima Xj = log Yj are independent and identically distributed with a
multinormal distribution

Xj ∼ MV Np(µ,Σ).

Note that the discussion in Section 2 justifies our ignoring temporal patterns
and correlation here.

Since all precipitation maxima are positive, they can be log-transformed
to make their joint distribution more nearly multinormal. Assessing the
quality of that approximation is another matter and we develop below a
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procedure based on calibrating the credibility ellipsoids generated by that
joint distribution.

To construct our hierarchical distribution, we adopt the conjugate dis-
tribution that has been shown to work well in modelling environmental
processes (see, for example, Sun et al 2000). More precisely,

µ|Σ ∼ MV N

(
ν, F−1Σ

)
;

Σ ∼ W−1

(
Σ|Ψ,m

)
.

where ν is the hypermean vector while Ψ and m are respectively, the scale
matrix and degrees of freedom in the inverted Wishart distribution. We use
F−1, to rescale Σ from the level of response uncertainty to that of the mean
while retaining the simplicity of conjugacy in the prior model.

Le and Zidek (1992) show that the resulting posterior joint distribution
(here of the extremes) to be a multivariate t distribution:

Xp×1|D ∼ t

(
x̃, Σ̃, l

)
, (2)

where

x̃ = ν + (x̄− ν)Ê (3)

Σ̃ =
1 + nF−1 − nÊF−1

l
Ψ̂ (4)

Ê = F−1(n−1 + F−1)−1

l = m + n− p + 1
Ψ̂ = Ψ + (n− 1)S + (x̄− ν)(n−1 + F−1)−1(x̄− ν)′.

In the equations following (2), x̃ is the “posterior” mean, a linear combina-
tion of the sample averages and the hypermean. At the same time, Σ̃ is the
“posterior” covariance matrix, Ψ̂, a linear combination of the sample and
hypercovariance matrix. Finally, l represents the degrees of freedom in the
t distribution, F−1, the variability between samples.

3.2 Hyperparameter Specification

We use an empirical Bayes method and avoid the need to fully specify the
hierarchical prior distribution. Nevertheless, the sample information will
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update the prior estimates, even though it does not fully reflect their uncer-
tainty.

Estimating ν. Recall, that over a one dimensional domain, the spline,
f, obtains from minimizing the objective function,

f = arg min
g

1
n

n∑

i=1

(yi − g(ti))2 + λ

∫ 1

0
(g(m)(u))2du, (5)

where the {yi}’s are the measured responses (data), g(m) is the m-th deriva-
tive of g, and λ is the smoothing parameter. Over the two dimensional
domains addressed in this paper, the objective function becomes

1
n

n∑

i=1

(yi − g(x1(i), x2(i)))2 + λ
m∑

v=0

∫ ∞

−∞

∫ ∞

−∞

(
m
v

)(
∂mf

∂xv
1∂xm−v

2

)2

dx1dx2,

where x1(i) and x2(i) are the coordinate-pair that identify the site where yi

was measured, for all i.
We estimate the smoothness parameter, λ, by “generalized cross vali-

dation”, that simplicity suggests we explain for one dimension rather than
two, the latter being just a formalistic extension. Ordinary cross validation
leaves out one data point in each successive iteration. With the k-th point
removed, define f

|k|
λ to be the minimizer of the objective function in Equa-

tion (5). Whereas the ordinary cross validation estimator of λ minimizes

V0(λ) =
1
n

n∑

k=1

(
yk − f

|k|
λ (xk)

)2

,

its generalized counterpart minimizes a weighted version of V0(λ):

V (λ) =
1
n

n∑

k=1

(
yk − f

|k|
λ (xk)

)2

wkk(λ),

where

wkk(λ) =
(1− akk(λ))2

1− ā(λ))2

and

ā(λ) =
1
n

n∑

i=1

aii(λ).
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The {aii} are the diagonal terms of the influence matrix A(λ), that satisfy



fλ(x1)
...

fλ(xn)


 = A(λ)y.

Here, fλ(xk) is a linear combination of the components of y = (y1, · · · , yn)′

for fixed λ and each xk. More details can be found in Wahba (2000).
Estimating Ψ and m. We estimate the inverted Wishart’s scalar ma-

trix, Ψ, by exploiting the spatial dependence in the data. The fact that Ψ’s
estimate plays the role of the “sum-of-squares” matrix in Σ’s estimate [see
Equation (4)], suggests the representation

Ψ = c× Φ,

Φ being a covariance matrix that is estimated using a semivariogram tech-
nique from geostatistics. More precisely, we represent elements of Φ as

Cov(Xi, Xj) = σ2 − γ(hij), (6)

where σ2 is a common sample variance, hij is the Euclidean distance between
the two sites Xi and Xj , and γ(h) is an isotropic semivariogram model fitted
from the data. Our analysis is not unduly sensitive to this assumption, since
the Bayes estimate of the covariance matrix, a linear combination of prior
and sample estimates, will account for anisotropy in the data.

We modified the EM algorithm developed by Sun (1994) to estimate the
coefficient c and the degrees of freedom m. When F−1 is assumed known,
the likelihood function of the extremes is proportional to

f(X,µ, Σ|Ψ,m) ∝ c−1
0 |Ψ|m2 |Σ|m+p+1

2 exp
[
− 1

2
tr(ΨΣ−1)

]
,

where

c0 = 2pm/2π(p−1)p/4
p∏

i=1

Γ
(

m− i + 1
2

)
.

Since (Σ, log |Σ|) is a sufficient statistic for the family indexed by (Ψ,m),
with Ψ = c×Φ, the algorithm will increase the likelihood at each iteration,
that algorithm being:
E-step Given the current value of m and c,

E(Σ−1|D) = (m + n− 1)Ψ̂−1,
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where
Ψ̂ = cΦ + (n− 1)S + (X̄− ν)′(n−1 + F−1)−1(X̄− ν)

and

E(log |Σ||D, m, c) = −p log 2−
p∑

i=1

Ψ(
m + n− i

2
) + log |Ψ̂|.

Here Φ is the covariance matrix obtained from the semivariogram model,
and S is the sample covariance matrix. So Ψ̂ is the Bayes estimator of the
scalar matrix Ψ at each step. Ψ(·) is the digamma function.
M-step Given the current values of Σ−1 and log |Σ|, the log-likelihood func-
tion is proportional to

m log |cΨ| − tr(cΨΣ−1).

When m is fixed, c can be found by maximizing the first derivative of the
above equation,

c =
mp

tr(ΨΣ−1)
.

When c is fixed, we may take the first derivative with respect to m so that
m is the solution to the following equation

p∑

i=1

[
Ψ(

m + n− i

2
)−Ψ(

m− i + 1
2

)
]

= log |Ψ̂| − log |cΦ|.

Estimation of F−1. Here we propose an estimator like that of Le et al
(1997). Recall that conditional on µ and Σ, Xj : p × 1 ∼ MV Np(µ,Σ) for
all j = 1, . . . , n. The independence of these responses implies

∑n
j=1(Xij −

X̄i·)2 ∼ Σiiχn−1. Thus, conditional on Σ, E[Σ̂−1
ii ] = Σ−1

ii where Σ̂ii =∑n
j=1(Xij − X̄i·)2(n− 3)−1.

At the same time, conditional on υ and Σ, X̄ : p×1 ∼ MV Np(υ, (F−1 +
n−1)Σ). Hence, E[(X̄i· − υi)2]Σ−1

ii = (F−1 + n−1) for all i = 1, . . . , p. How-
ever, by standard Gaussian linear model theory, Σ̂ii and (X̄i· − υi)2 are
independent. It therefore follows that E[(X̄i· − υi)2Σ̂−1

ii ] = (F−1 + n−1) for
all i conditional on Σ, and the result does not depend on Σ, conditional only
the hyperparameters including υ. This result suggests an unbiased estimator
for F−1:

F̂−1 = p−1
p∑

i=1

(X̄i· − υi)2Σ̂−1
ii − n−1. (7)
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In practice, υ will also need to be specified. As one possibility, we might
suppose υi ≡ υo for all i and then plug-in an estimator for υo, say

υ̂o =
∑p

i=1 X̄i·Σ̂−1
ii∑p

i=1 Σ̂−1
ii

,

an estimate of the BLUE estimator. The estimator obtained from Equation
(7) might nevertheless be approximately unbiased if n were reasonably large.
Finally, Fu (2002) shows that if Σii ≡ Σo} for all, taking υ̂o to be the grand
sample average yields an unbiased estimator.

3.3 Semivariogram

We used SAS’s PROC VARIOGRAM to calculate the “sample semivari-
ogram”. To be precise, we label site i as Pi and assume the quantity being
measured has a value there of Vi. SAS’s method partitions the sites, {Pi},
into “angle/distance classes” {N(θk, L)}, according to their geographical
distribution. For every pair, (Pi, Pj), within each such (so-called lag) class,
it then calculates (Vi−Vj)2, |PiPj |2 (their squared Euclidean distance), and
the total number of such distinct pairs in that class, say P (θk, L). Finally,
it computes:

γ(hk) =
1

|P (θk, L)|
∑

Pi 6=Pj∈N(θk,L)

(Vi − Vj)2,

where hk is calculated by:

hk =
1

|N(θk, L)|
∑

Pi,Pj∈N(θk,L)

|PiPj |.

The result is SAS’s sample semivariogram to which we can fit a para-
metric semivariogram model from any one of a number of classes such as the
exponential, Gaussian, wave, spherical, and linear (see Cressie, 1993). An
understanding of the physical processes involved can help select that class.
However, the estimated covariance matrix Ψ must be positive definite ma-
trix

We take the semivariogram to be 0 when the distance between any two
sites is 0, that is we assume no “nugget” effect, in agreement with several
semivariogram models proposed by Cressie (1993). One is the exponential
semivariogram model defined as

γ(h) =





c0 + cW

(
1− exp

(
−h2

a2
W

))
, if h > 0

0, if h = 0
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where c0, cW and aW are parameters of nugget, sill, and shape, respectively.
The nugget effect, c0, (or discontinuity in the semivariogram at h = 0) de-
rives from a combination of microscale- and measurement-error (see Cressie
(1993):

c0 = cMS + cME .

When using Equation (6) in conjunction with

Cov(Xi, Xj) = σ2 − γ(hij)

to calculate the variance at each site, σ2 accounts only for the measurement
error. Using c0 as the value at h = 0 may result in a negative variance and
thus a non-positive definite Ψ.

Note that we obtain the parametric semivariogram model from the sam-
ple semivariogram that is estimated by the method of moments. We can
also use that method to estimate the diagonal terms in Φ, and thus base
our estimate of that common variance on all samples and sites under our
assumption of a common variance.

3.4 Model Assessment.

Before adopting multivariate t obtained in Subsection 3.1 as the joint poste-
rior extreme response distribution , we need to see if agrees with the data in
any given application. This subsection offers a variant of cross-validation for
making that assessment. For any given year, the method removes data from
selected sites and uses that from the remaining sites, in conjunction with
the predictive t-distribution model, to “predict” the missing values using

x̂u = νu + (x̂g − νg)′Ψ−1
gg Ψgu,

u denoting “ungauged” and g, “gauged”. Here, νu and νg partition the
“prior mean” according to whether the site is ungauged or gauged respec-
tively, and Ψ−1

gg and Ψgu come from conformably partitioning Ψ.
Given the data at the remaining sites, a (1−α)-level credibility ellipsoid

can readily be found and it is provided in the next theorem. Appendix A
offers a proof.

Theorem 3.1 The (1− α)th credibility ellipsoid is

{Xu : (Xu − x̂u)′Ψ−1
u|g(Xu − x̂u) < b}

where
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b = (u× Pu|g × F1−α,u,m−u+1)× (m− u + 1)−1,

Ψu|g = Ψuu −ΨugΨ−1
gg Ψgu, and

Pu|g = 1 + F−1 + (xg − νg)′Ψ−1
gg (xg − νg).

Note that in Theorem 3.1, Pu|g denotes the posterior mean of the conditional
multivariate-t posterior distribution.

Repeatedly removing at random, site subsets of fixed size as above, and
determining whether or not the missing data vector lies in the ellipsoid each
time, enables us to estimation their coverage probabilities. An estimate
of about (1 − α) ∗ 100 would assure, in operational form, the quality of
the multivariate - t approximation. The analysis, also enables “outlier”
detection, that is, the identification of sites with undue influence on coverage
probability. We can even explore the ‘coverage probability’ - ‘number of sites
removed’ relationship.

3.5 Return Values

As noted in Section 1, the return value XT is defined for a marginal extreme
response distribution by

P (X > XT ) =
1
T

. (8)

Here, T is a return period, for example, 10, 50, 100, or even 1000 years,
depending on the context. If the logarithmic response transformation is
used, the return values transform in the obvious way. In any case, the
probabilities in Equation (8) would be computed a posteriori, that is condi-
tionally on available data.

Return values at each site can readily be estimated from the posterior
multivariate t distribution by repeatedly sampling from it. The (1-1/T)-th
percentile of the simulated data for the given marginal response, estimates
that value. However, we can also simplify this task by approximating the
log multivariate t with the multinormal distribution giving a T-year return
value for site or region i, of

x1−T,j = x̃i + Φ(1− T )× σ̃i.

If a log transform has been used, this percentile needs to be transformed
back to the original scale to get the return value estimate of

y1−T,i = ex1−T,i .
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3.6 Assessment of Return Value Estimates

When the return values are defined marginally, we use the following Measure-
of-Discrepancy (MOD) to index the proximity of the estimated and true
return values:

Measure of Discrepancy =
1
p

p∑

i=1

∣∣∣∣
1
T
−

∑n
j=1 I(Xij > Xi,T )

n

∣∣∣∣. (9)

Here p is the number of sites (cells in the application addressed in this
paper); Xij is the annual maximum precipitation for year j and region i; 1/T
is the true exceedance probability; the second (empirical) fraction estimates
fraction of exceedances of estimated return values, {Xi,T }.

While the MOD has intuitive appeal, other discrepancy summaries may
be more appropriate. In any case, it measures performance only crudely and
finer analyses would generally be needed. For example, the distribution of
discrepancies can point to locations that deviate markedly from the rest.

4 Application.

We now apply the theory developed above to model Canada’s daily precip-
itation data as described in Kharin and Zwiers (2000).

4.1 Daily Precipitation Simulated by CGCM1

The data derive from the first generation Canadian Global Coupled Model
(CGCM1) (Kharin and Zwiers, 2000). Three independent simulations were
run. These simulated hourly precipitation (mm/day) in three 21-year win-
dows (1975-1995, 2040-2060, 2080-2100) for all cells in a grid that geograph-
ically partitions the whole of Canada. That 26 × 12 grid is uniform along
lines of longitude, with a cell size of 3.75◦, and nearly uniform for lati-
tude (approx. 3.75◦). The 26 lines of longitude are ordered eastwards from
146.25◦W to 52.50◦W while the 12 lines of latitude are ordered from south
(42.68◦N) to north (83.48◦N). We computed annual precipitation maxima
to get 21× 3 = 63 values in each grid cell in each time window.

4.2 Preliminary Data Analysis

To apply the theory developed above, we need to assess the applicability of
the assumed underlying distributions.
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Preliminary data analysis began with examination of the empirical marginal
distributions. Normal Q-Q plots of annual maximum precipitation levels for
many selected regions among the 319 were drawn, two examples being shown
in Figure 1. The top left plot shows a long right tail, that is quite success-
fully removed by log-transformation. In contrast, log transforming the data
displayed in the top right plot overcorrects, leading to the expectation that
return values would be underestimated. (Note that for the data analysis, we
simplified the geographical coordinates by replacing the exact longitude and
longitude with sequences of consecutive integers starting from 1 and going
up to 26 and 12, respectively.)

Autocorrelations plots (not shown here) for the simulated 1975-1995 data
period suggest we can treat the series as auto-uncorrelated.

We did similar preliminary marginal analysis for the periods, 2040-2060
and 2080-2100. Although extreme levels generally shift upwards over time,
the shapes of the Q-Q and autocorrelation plots are generally similar.

To make computation feasible, our analyses are restricted to data from
1975-1995 since that will meet our objective of illustrating our approach. In
the sequel, “data”, we mean log-transformed data, unless stated otherwise.
Also note that, since three independent simulations have been run for each
time period, there are 21×3=63 samples in each time window.

4.3 Estimating Hyperparameters

To estimate the hyperparameter ν, the “prior mean vector” of 312 dimen-
sions, we smooth the sample mean vector X̄ using thin-plate splines as
described in the previous section. The sample mean vector is calculated by
taking the average of the 63 samples. The smoothing parameter in that
method is given by generalized cross-validation (GCV) that makes use of
the information provided by data and therefore takes the spatial correlation
into account. The smoothing parameter chosen this way proves to be rather
small. So the surface of the averages after smoothing remains fairly rough.

To estimate the hyperparameter Ψ, the 312× 312 “prior sum of squares
matrix”, we follow the procedure in Section 2.2.2 to estimate the covariance
Φ and the coefficient c separately.

To estimate Φ, we start with Equation 6:

Cov(Xi, Xj) = σ2 − γ(hij),

γ(h) being fitted to the sample semivariogram. The initial estimates of the
three parameters, nugget, sill, and shape, in the semivariogram function are
modified by the Gauss-Newton algorithm, to minimize the residual sum of
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Figure 1: Q-Q plots of annual maximum precipitation data at selected sites,
(i=5, j=1) on the left corresponding to(131.25◦W, 42.68◦N) and (i=18, j=8)
on the right corresponding to (82.50◦W, 68.64◦N). The upper two plots are
for raw data while the bottom two, for log-transformed data. Letters i and
j code longitude and latitude, respectively.
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squares and achieve positive definiteness of Ψ. (See Section 2.3 for further
details.)

The SAS procedure described in Section 3.3 estimated the sample var-
iogram for 1975-1995 . It indicated a significant nugget effect, had a wavy
shape and therefore pointed to the wave model that we fitted. To ensure
the estimated Ψ’s positive definiteness, we successively tried various val-
ues of the three parameters based on the initial estimates until success was
realized. The best model obtained by this procedure is

γ(h) =





0.09 + 0.15
(

1− 3
(

sin(h/3)
h

))
, if h > 0

0, if h = 0.
(10)

In Formula (6), σ2 is estimated by calculating the overall variance across
all 312 grid points and 63 samples. The result, 0.23, is significantly larger
than any covariance of any two grid points, that may result in a larger esti-
mated covariance matrix. Consequently, the constructed credibility region
may be inflated along with the resulting estimated coverage probability.

We used the estimate of the hyperparameter F−1 proposed in Subsection
3.2. In our hierarchical Bayes model, the “true mean” is the unknown
hypermean and we estimated it with that obtained by smoothing the sample
mean using a thin-plate spline, to get an approximately unbiased estimator
of F−1. The is -0.016, that is essentially zero. Incidentally, we are not
justified in using the estimator of F−1 suggested in that subsection for the
case of a constant mean. That assumption is not tenable in this application.

Using the EM algorithm, we estimated the degrees of freedom in the
inverted Wishart distribution m to be 355 and the coefficient c in the Ψ
matrix to be 49. The degrees of freedom m, being large, yields avoids tails
of moderate weight in the estimated distribution, as demonstrated by using
an equation from Le et al (1997)

var(Xu|Xg = xg) = (m− u− 3)Pu|gΨu|g,

where

Pu|g = 1 + F−1 + (xg − νg)′Ψ−1
gg (xg − νg)

Ψu|g = Ψgg −ΨugΨ−1
gg Ψgu

Ψ =
(

Ψuu Ψug

Ψgu Ψgg

)
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When all the sites are gauged, u in the above equations becomes 0. The
variance relies heavily on m and increases as m increases.

Meanwhile, c=49 makes the estimated matrix Ψ̂ comparable to the sam-
ple sum-of-squares matrix which is the product of 62 and the sample co-
variance matrix. Therefore, the approach does not put too much weight on
either the prior knowledge expressed through the inverted Wishart distribu-
tion or the sample covariance matrix.

4.4 Assessing the Multivariate t Distribution

Following the approach described in Section 3.4, we assess the suitability
of the joint multivariate t posterior derived above using a variant of cross -
validation:

1. Select a credibility level, 30%).

2. Randomly remove 30 sites (without replacement).

3. Use Sample 1 for the remaining 282 (=312-30) sites to obtain the
credibility region for those 30 using Theorem 3.1.

4. See if that region includes the 30 dimensional vector of removed site
values.

5. Repeat Steps 2 and 3 above for each of the remaining 62 sample records
and find the fraction of times those vectors are included. This com-
pletes one run.

6. Replace the 30 sites and repeat Steps 2 - 4.

7. Repeat Steps 2 - 5 100 times.

8. Repeat Step 1 - 5 for levels 95% and 99.9%.

We can now compare the nominal and empirical credibility levels ob-
tained above. (The intended purpose of our predictive distribution suggests
putting more emphasis on the largest 2 of the 3 levels used above.) Figure
2 and Table 1 display the results and show reasonable agreement.

As an ideal, coverage probabilities should remain close to their nominal
levels as the number of removed sites increases. This ideal leads us to re-
peat the cross - validation study above with 30 replaced systematically by
1, 2, . . . and a level of 95% while fixing the degrees of freedom in our model,
m, at 355 and the parameter, c, at 49. The empirical coverage fractions
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Figure 2: Histograms of credibility ellipsoid coverage probabilities for annual
maximum precipitation levels, 1975 - 1995. Clockwise from the upper left,
they correspond to credibility levels 99.9%, 95%, and 30%.
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Credibility Level Mean Median
30% 35 35
95% 96 97

99.9% 99.9 1

Table 1: Summary of credibility ellipsoid coverage probabilities for different
levels of annual maximum precipitation data based on 100 runs.

are plotted in Figure 3 against the number removed. Below about 60, the
coverage probability remains stable at about 95%. However above that, the
coverage probability trends upwards to about 98%. This finding indicates
a conservative inflation of the actual credibility level when the number of
simultaneously predicted site responses grows beyond about 20% of the to-
tal. That inflation may derive from the generally small inter-site spatial
correlations in this application. Removing a large number of sites results
in a paucity of information from the combination of the few remaining and
hence the inflation noted above.

Overall, our assessment suggests the multivariate -t models the annual
maximum precipitation data fields reasonably well.

4.5 Assessment of Return Value Estimates

We followed the procedures described in Section 2.5 to calculate approximate
return values. Figure 4 depicts the estimated 10-year return values, i.e. the
90% quantiles. That surface is shifted above that for averages as expected.
Moreover, the return value surface preserves trends in that for averages.

Formula 9 yields the Measure of Discrepancy (MOD) score for the esti-
mated 10-, 20-, 50- and 100-year return values in time window 1975-1995.
In Table 2, we see that the MOD drops dramatically as the return period
increases. (The smallest feasible level included there derives from the gran-
ularity of the relative proportions, making 0 unattainable.) However, none
of the scores based on the estimated return values (the middle column)
are close to 0 even though we see above that the multivariate -t models
the response distribution well. A possible explanation lies in our use of
multivariate normal approximation of the t and subsequent use of just the
covariance’s diagonal terms. Thus, in effect we failed to borrow strength
through spatial dependence. The first method in Section 2.5 that uses the
t directly, may give a better estimate. That will be the subject of a future
investigation.
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Figure 4: Contour and perspective plots of estimated 10-year return values
for the precipitation data. Units are in mm/day.

Return Period 100*MOD (from data) 100*Smallest MOD
10 8.35 0.48
20 4.62 0.24
50 1.96 0.41
100 1.00 0.59

Table 2: Comparison of the return value MOD for the annual maximum
precipitation data along with the smallest feasible MOD.
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5 Discussion

This paper points to a promising direction for modelling the joint response
distribution for extreme values of not unduly high order. That distribution
builds on a log multivariate normal (multi - normal). Its richness of theory
makes it an ideal foundation for hierarchical modelling. In conjunction with
the Inverted Wishart, a conjugate distribution for the multi - normal, it
yields a log multivariate - t posterior. The latter’s tractability enables,
among other things, the construction of credibility regions for the prediction
of unmeasured responses.

The log multivariate - t approximation does not depend explicitly on
the distribution of their componentwise counterparts (hourly precipitation
in our example), unlike the GEV, GPD and the point process theories that
are limiting distributions of those components. In the case of the GEV, for
example, the componentwise distributions need to meet specific criteria to
be eligible for a role in the limit even though at most one of three limiting
types obtain. Verifying those criteria poses a problem (Smith, 2001). For
example, an F whose tail has the form

1− F (x) ∼ cx−α, x →∞
for any constant c > 0 and α > 0, has a Fréchet type of limiting distribution.
Thus, this “domain of attraction” requirement may confine the generality
of the GEV. Similar problem exists for the GPD and point process theories.
In contrast, no such limitations apply to the multivariate -t.

Furthermore, the multivariate - t approximation of Le and Zidek (1992)
has been substantially extended to include covariates (e.g. location or time)
as well as multiple responses (e.g. chemical species; Sun, 1994, Le et al,
1997). Thus, for example, by including a time covariate, we could embrace
the three sampling time windows in one model rather than relying on three.
More generally, the extended theory offers a good deal of flexibility for mod-
elling extreme responses.

Finally, our multivariate distribution approximation enables the calcu-
lation of joint exceedance probabilities for several regions simultaneously,
a calculation not be possible with marginals alone. In fact, this suggests
extending the return value in Equation 1 as follows:

P (X1 > xR, X2 > xR, ..., Xp > xR) =
1
T

.

That extension may be useful in making policy and more generally, environ-
mental risk analysis although it seems unduly stringent. Such a simultaneous
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exceedance would seem an unreasonable criterion. A more plausible choice
would be:

P (the exceedance occurs at least 2 or 3 sites) =
1
T

,

However, with the advantage of a tractable joint distribution, many other
definitions are possible and the ultimate choice could be made context de-
pendent.

As the aggregation level increases, say from weekly maximum to yearly
maximum for example, the inter-site correlation commonly decreases. That
phenomenon is seen in Chang et al (2003) where correlations among sites at
different aggregation levels are calculated for de-trended hourly PM10 data
from nine stations in the Greater Vancouver Regional District during 1997
to 2001. A simulation study of Chang et al (2003) confirms that finding.

On the other hand, Chang et al (2003) find a few site pairs with corre-
lations that persistent under increasing aggregation levels and consider the
implications of their findings for network design as well as the setting of
urban air quality criteria.
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A The Credibility Ellipsoid.

Theorem A.1 Given data from the gauged sites, a (1− α)-level credibility
ellipsoid is as follows:

{Xu : (Xu − x̂u)′Ψ−1
u|g(Xu − x̂u) < b}

where,
b = (u× Pu|g × F1−α,u,m−u+1)× (m− u + 1)−1,

and
Ψu|g = Ψuu −ΨugΨ−1

gg Ψgu.

u and g denote the numbers of ungauged sites and gauged sites, respectively.
Pu|g is the mean in the a posteriori multivariate t distribution.

Pu|g = 1 + F−1 + (xg − νg)′Ψ−1
gg (xg − νg).

Proof. Le et al (1997) show that

Xu ∼ νu + (xg − νu)′Ψ−1
gg Ψgu + τ (δ + g, Pu|g, Ψu|g),

where
Pu|g = 1 + F−1 + (νg − νg)′Ψ−1

gg (xg − νg).

Here, δ is the degrees of freedom as defined in Dawid (1981) rather than
Anderson (1984). The following equation relates the two notations and
enables us to switch to m:

δ = m− p− 1 = m− g − u− 1.

Here, p is the dimension of the vector. In the example of precipitation data,
it is the sum of the numbers of gauged and ungauged sites.

The above multivariate t distribution can be written as:

Y =
(Xu − x̂u)√

Pu|g
∼ τ (δ + g, 1, Ψ),

which means
Y|V ∼ MV N(0,V),

V ∼ IW (δ + g, Ψ),

V−1 ∼ W (δ + g + u− 1, Ψ−1),

27



where
δ + g + u− 1 = m.

We seek the distribution of Y′Ψ−1Y. Since Ψ is known, we need to
introduce the random variable A to use the definition of the F distribution.
Suppose Zi, i = 1, . . . , u are independent vectors, each with a multivariate
normal distribution, MV Nm(0, I). Let Z = (Z1, · · · ,Zu). Then

Z′Z ∼ Wu(m, I).

We may transform Z to Tu×u so that

Z′Z = T′T ∼ Wu(m, I).

To see this, observe that for any orthogonal matrix Qm×m,

Z′p×mZm×p = Z′Q′QZ = (QZ)′QZ.

Select Q = Q1 so that

Q1Z1 =




0
0
...

||Z1||


 ,

where
||Z1||2 ≡ tm,1 = (Z1

1 )2 + (Z1
2 )2 + · · ·+ (Z1

m)2 ∼ χ2
m.

Also,
Q1Xi ∼ Nm(0,QImQ′) = 3DNm(0, Im).

So,

Q1Z =




0
... X2 · · · Xp

tm,1


 .

Now select Q2 to transform the above matrix into



0
... 0 X3 · · · Xp

0 tm−1,2 · · ·
tm,1 X2

m · · ·




and
t2m−1,2 = (X2

1 )2 + (X2
2 )2 + · · ·+ (X2

m−1)
2 = χ2

m−1.
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Repeating these steps, we transform Z into



0 0 · · · 0
0 0 · · · tm−p+1,p
...

...
. . .

...
0 tm−1,2 · · · Xp

m−p+2

tm,1 X2
m · · · · · ·



≡

(
0

Tp×p

)
.

Let Ψ−1 = γ ′γ, where γu×u is the decomposition of Ψ−1. Then

V−1 ≡ γ ′T′Tγ

= γ ′
m∑

i=1

ZiZ′iγ

=
m∑

i=1

(γ ′Zi)(Z′iγ)

where
Zi ∼ N(0, I),

and
γ ′Zi ∼ N(0,γ ′Iγ) = N(0, Ψ−1).

Therefore,
V−1 ≡ γ ′T′Tγ ∼ Wu(m, Ψ−1).

Now we have

Y′Ψ−1Y = Y′γ ′γY

= (Y′γ ′T′)T′−1T−1(TγY)
= U′T′−1T−1U

= (UT−1)′(UT−1)
= ||UT−1||2

Since,

U = TγY

∼ Nu(0, γ ′T′ΨTγ

∼ Nu(0, Iu),
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the distribution of U does not depend on T. On the other hand, we
have shown that T′T ∼ Wu(m, I). So from Theorem 13.6.2 in Dempster
(1969), we conclude that [(m−u+1)/u]Y′Ψ−1Y = 3DU′(T′T)−1U has the
F (u,m− u + 1) distribution. We state that theorem here for completeness.

Theorem A.2 Suppose that X and Q are independent with N(ν,Σ) and
W (n,Σ) distributions, respectively, where Σ has full rank p and n ≥ p. Then
XQ−1X′ has the G(p, n− p + 1, 1, νΣ−1ν ′) distribution.

In the above theorem, when ν = 0, the G distribution centers at 0. Fur-
thermore, according to the definition of G distribution given in Dempster
(1969, p. 281), G(r, s, θ) ≡ θR/S, where R and S follow χ2

r and χ2
s distribu-

tions respectively. Thus, G(r, s, s/r) is equivalent to the F (r, s) distribution.
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