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ABSTRACT

The paper introduces a weighted likelihood concept for the estimation of parameters in natural

exponential families with quadratic variance functions. The results are applied to both simulated and

real data.
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1 Introduction.

The likelihood has undoubtedly been one of the greatest contributions to statistics. Its associated

estimators, tests and their large sample theory have helped to make it one of the most powerful tools

in the practitioner’s tool box. Moreover, the sample average as the MLE for estimating a normal

mean, became the premier descriptive statistic in common use.

However, an increasing knowledge base and improvements in technology led to ever-expanding

scales for experimentation. Consequently, the likelihood encountered hurdles that necessitated the

development of new forms such as the profile- and partial-likelihood.

In spite of all adaptations and extensions that had shored up the likelihood, the issue of combining

sample information from diverse sources seems to have remained outside the framework of its theory

until the emergence of the weighted likelihood (WL). Hu and Zidek (2002) describe the origins of the

WL that was popularized by Tibshirani and Hastie (1987) as the “local likelihood”. The local likelihood

contended with that problem, at least for “neighboring” samples in non-parametric regression when

estimating the regression function. The local likelihood came to be very well-studied within the domain

of that theory (e.g. Fan and Gijbels, 1996).

In Hu’s thesis (Hu, 1994) the local likelihood is taken outside the domain of non-parametric

regression and called “relevance weighted likelihood”(REWL). Moreover, Hu and Zidek (2000, 2002)

show how Stein’s famous estimator can be derived as a REWL estimator provided the weights are

estimated from the sample. This work shows therefore that the likelihood framework can in fact be

extended to address the issue of combining the information in samples from diverse populations.

The main objective of this article is to apply the technique of Hu and Zidek (2000, 2002) to gener-

ate simultaneous estimators of the means of several distributions each belonging to the one-parameter

natural exponential family with quadratic variance function (NEF-QVF). Morris (1982, 1983) charac-

terized the NEF-QVF distributions. The six basic distributions belonging to this family are: (i) the

binomial; (ii) the Poisson; (iii) the negative binomial; (iv) the normal with known variance; (v) the

gamma; (vi) the generalized hyperbolic secant. Morris (1982) considered probabilistic properties of

these distributions, while Morris (1983) proposed frequentist and Bayesian inference for parameters

of these distribution. We propose instead the WL methodology for inference about the parameters of

these distributions and examine the advantages that accrue from using this alternative approach.
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Sarkar and Ghosh (1998) obtained EB estimators simultaneously for several means assuming NEF-

QVF populations. The EB approach requires modeling the parameters involved in the likelihood

function. Instead, the present WL approach avoids modeling the parameters but nevertheless allows

strength to be borrowed.

The WL differs from the classical likelihood. The usual assumption associated with the latter is

that all the observations come from the same study population. Instead, the WL arises in parametric

inference when in addition to the sample from the study population, relevant but independent samples

from other populations are also available. This is clearly desirable in a compound decision setting. By

down weighting these other samples according to their degree of relevance, the WL incorporates their

information while downplaying their bias. In the process, strength is borrowed from all the samples.

The outline of the remaining sections is as follows. In Section 2, we first introduce the WL and then

find the maximum WL estimators (the MWLE’s) of the population means of NEF-QVF populations.

We propose a data-based method of selecting the relevance weights. In particular, in Section 3, we

derive these weights for an exchangeable model. We provide also an asymptotic expansion of the mean

squared error of the vector of estimators in this section. In Section 4, we find these weights for slightly

more general models. The most general version of these weights is derived in Section 5. A simulation

study is undertaken in Section 6 to compare the three types of weighted likelihood estimators derived

in Sections 3-5. Section 7 contains an illustrative application. Finally, some concluding remarks are

made in Section 8. The proof of a technical result is deferred to in the Appendix.

2 The WL for the Exponential Family.

This section introduces the WL for the one-parameter exponential family without necessarily imposing

the quadratic variance structure. Also, expressions for the MWLE’s of the population means are found

under the same general structure.

For the m populations, the independent sample vectors are denoted by yi = (yi1, . . . , yini)
T , i =

1, . . . ,m with ni ≥ 0. In practice, there is always, the possibility of no observations from a stratum.

It is assumed that the yil (l = 1, · · · , ni) are generated from a one-parameter exponential family with

pdf

fi(y) = exp{θiy − ψ(θi) + h(y)}.
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For future reference we record that E(yi|θi) = ψ′(θi) = φi (say), and V (yi|θi) = ψ′′(θi). The regular

likelihood is then given by
∏m
i=1

∏ni
l=1 fi(yil). In contrast, following Hu and Zidek (2000, 2002), the

WL denoted by WL(θ) ≡WL(θ1, · · · , θm) is given by
∏m
i=1

∏m
j=1

∏ni
l=1[fi(yjl)]

ω∗ijn
−1

j , where the ωij are

the weights. Writing ȳj = n−1j
∑nj

l=1 yjl, j = 1, · · · ,m, the above simplifies to

WL(θ) = exp[
m
∑

i=1

{θi

m
∑

j=1

ω∗ij ȳi − ψ(θi)
m
∑

j=1

ω∗ij +
m
∑

j=1

ω∗ijn
−1
j

nj
∑

l=1

h(yjl)}]. (1)

It is clear that the WL differs from the usual likelihood in that any inference for the θj ’s based on

the latter involves only the direct estimates in contrast to (1) which allows “borrowing strength” from

other populations as well.

If the relevance weights, ω∗ij , were specified, noting that ∂ logWL(θ)/∂θi =
∑m

j=1 ω
∗
ij ȳj−φi

∑m
j=1 ω

∗
ij

and ∂2 logWL(θ)/∂θ2i = −ψ′′(θi)
∑m

j=1 ω
∗
ij < 0 for all i = 1, . . . ,m, the MWLE’s of the population

means φi would be given by

φ̂iWL =
m
∑

j=1

ωij ȳj , (2)

where ωij = ω∗ij/
∑m

j=1 ω
∗
ij . However, in practice, the weights ω∗ij (and hence ωij) will not usually

be easy to specify, and therefore may need to be estimated from the data. This is the subject of

the next few sections where the estimators of the ωij are obtained under increasingly general model

assumptions. Also, in this section the QVF structure of the exponential family distribution was not

needed. However, this will become necessary in the subsequent sections once we start estimating the

ωij .

3 The Exchangeable Model.

In this section we assume that ωii ≡ ω, i = 1, . . . ,m while ωij = ω∗ , j 6= i = 1, . . . ,m. This assumption

embraces the belief that the samples from populations, different from i, are interchangeable with

respect to the information they contain about i itself. It is precisely this assumption that leads to the

James-Stein estimator in the normal case once the weight has been appropriately estimated using all

the data.

Under this assumption, the WLE’s of φi reduce to φ̂iWL = ωyi + ω∗
∑

j 6=i ȳj . Since we require

∑ni
j=1 ωij = 1 for each i, we must have ω + (m− 1)ω∗ = 1. Thus,

φ̂iWL = ωȳi + (1− ω)(m− 1)−1
∑

j 6=i

ȳj . (3)
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To find the optimal ω, we minimize g(ω) =
∑m

i=1E(φ̂iWL − φi)
2 with respect to ω. Writing ui =

V (ȳi) = ψ′′(θi)n
−1
i , ū = m−1

∑m
i=1 ui and s

2
φ = (m− 1)−1

∑m
i=1(φi − φ̄)

2, after simplification

g(ω) = m[ω2ū+ (1− ω)2(m− 1)−1ū+m(1− ω)2(m− 1)−1s2φ]. (4)

Hence, g(ω) is minimized at ω = ωopt, where

ωopt = (ū+ms2φ)[m(ū+ s2φ)]
−1. (5)

With the substitution of (5) in (3), we get after some simplification,

φ̂optiWL = (1− βopt)ȳi + βoptȳ, (6)

where ȳ = m−1
∑m

i=1 ȳi and βopt = ū(ū+ s2φ)
−1.

Once again, ū and s2φ are unknown and need to be estimated. To this end, let s2y = (m −

1)−1
∑m

i=1(ȳi − ȳ)
2 and after simplification we get

E(s2y) = ū+ s2φ. (7)

So far, we have not used the QVF assumption, that is V (yjl) = ν0 + ν1φj + ν2φ
2
j = Q(φj) say for

all l = 1, . . . , nj , j = 1, . . . ,m. We now use this assumption to find an estimator of ū. First we note

that E[Q(ȳj)] = ν0 + ν1φj + ν2[V (ȳj) + φ2j ] i.e.

E[Q(ȳj)] = Q(φj) + ν2n
−1
j Q(φj)

= (nj + ν2)uj . (8)

Hence, E[m−1
∑m

j=1(nj + ν2)
−1Q(ȳj)] = ū. Let

ˆ̄u = m−1
m
∑

j=1

(nj + ν2)
−1Q(ȳj). (9)

Then we estimate βopt by β̃ defined by

β̃ = min{
ˆ̄u+m−1

s2y +m−1
, 1}. (10)

Now φi is estimated by

φ̃iWL = (1− β̃)ȳi + β̃ȳ, i = 1, . . . ,m. (11)
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Remark 1. We introduce the coefficient m−1 to avoid zero both in the numerator and denominator

in the discrete case.

Remark 2. Consider the special case when samples of equal size n are drawn independently from

the N(θi, σ
2) distributions i = 1, . . . ,m where σ2 > 0 is known. Then ν0 = σ2 and ν1 = ν2 = 0.

Accordingly, ˆ̄u = (nm)−1mσ2 = σ2n−1. Now dropping the component m−1 from both the

numerator and denominator of (10) one gets the estimator

φ̃∗iWL = (1−
σ2/n

s2y
)ȳi +

σ2/n

s2y
ȳ, i = 1, . . . ,m, (12)

which is Lindley’s modification of the James-Stein estimator.

Next we provide an asymptotic mean squared error expansion of the vector (φ̃1WL, . . . , φ̃mWL) of

estimators of (φ1WL, . . . , φmWL). This is the conditional mean squared error in the terminology of

Rivest and Belmonte (2000) since the φi’s are held fixed. Specifically, the following result is proved:

Theorem 1 Assume that lim infm→∞(ū+ s2φ) = K > 0. Then

m−1
m
∑

i=1

E(φ̃iWL − φi)
2 =

ūs2φ
ū+ s2φ

+O(m−1)

as m→∞.

Remark 3. As shown in the Appendix, g(ωopt)/m
∑m

i=1E(φ̂iWL − φ)2 =
ūs2
φ

ū+s2
φ

+ ū2

m(ū+s2
φ
)
. Hence,

the uncertainty due to estimation of βopt is not reflected in the principal term in the asymptotic

expansion of the mean squared error. The difference comes in the coefficient of O(m−1).

The proof of the theorem is technical, and is deferred to the Appendix. Much of the proof depends

on a special case of the following general result which may be of independent interest.

Proposition 1. Let X1, · · · , Xm be mutually independent random variables. Consider a U-statistic

with kernel h and degree k(≤ m), that is Um = (k!(m − k)!/m!)
∑

1≤i1<i2···<ik≤m
h(Xi1 , · · · , Xik). If

supm≥1max1≤i1<i2···<ik≤mE|h(Xi1 , · · · , Xik)|
r <∞, for some r ≥ 2, then E|Um−E(Um)|

r = O(m−r/2)

as m→∞.

Proof. Following 5.1.6 (page 180) of Serfling (1980), we express

Um − E(Um) = (m!)−1
∑

P

W̃ (Xi1 , · · · , Xim),
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where each W̃ (Xi1 , · · · , Xim) is the average of q = [m/k], independent random variables with zero

means. Here q denotes the largest integer less than or equal to m/k. The summation extends over all

permutations (i1, · · · , im0 of the first m positive integers. Then by the cr inequality,

E|Um − E(Um)|
r ≤ (m!)−r(m!)r−1

∑

P

E|W̃ (Xi1 , · · · , Xim)|
r

≤ (m!)−r(m!)r−1m!O(q−r) = O(m−r),

where the penultimate step, due to the moment assumption, follows from a standard result for the

means.

Remark 4. For the iid case, the result is proved in Serfling (1980) and Sen and Ghosh (1981).

In the next section, the global exchangeability assumed in this section is replaced by local ex-

changeability.

4 Estimation for a Locally Exchangeable Model.

Suppose now ωii ≡ ωi, ωij = ωi∗, j 6= i = 1, . . . ,m. That is, suppose we drop the assumption of global

exchangeability but retain that assumption within each local area. Then φ̂iWL = ωiȳi + ωi∗
∑

j 6=i ȳj .

Since we require 1 = ωi + (m− 1)ωi∗, we get

φ̂iWL = ωiȳi + (1− ωi)(m− 1)−1
∑

j 6=i

ȳj . (13)

To find optimal ωi’s, we now minimize g(ωi) = E(φ̂iWL − φi)
2 with respect to ωi for each i =

1, . . . ,m. On simplification,

g(ωi) = ω2
i ui + (1− ωi)

2(m− 1)−2(mū− ui) +m2(m− 1)−2(1− ωi)
2(φi − φ̄)

2. (14)

Noting that g′(ωi) = 2ωiui − 2(1 − ωi)(m − 1)−2(mū − ui) − 2m2(m − 1)−2(1 − ωi)(φi − φ̄)2 and

g′′(ωi) > 0, the optimal ωi is found by solving g′(ωi) = 0. This gives

ωi,opt =
mū− ui +m2(φi − φ̄)

2

(m− 1)2ui +mū− ui +m2(φi − φ̄)2
. (15)

Accordingly, after some algebra,

φ̂optiWL = (1− βi,opt)ȳi + βi,optȳ, (16)
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where

βi,opt =
(m− 1)ui

(m− 2)ui + ū+m(φi − φ̄)2
. (17)

Remark 5. It can happen that βi,opt > 1 when ui − ū > m(φi − φ̄)
2. Thus, the expression given in

(17) is not necessarily a convex combination of ȳi and ȳ.

However, in practice the βi’s are unknown and need to be estimated. To this end we see that

E(ȳi − ȳ)
2 = V (ȳi − ȳ) + (φi − φ̄)

2

= m−1[(m− 2)ui + ū+m(φi − φ̄)
2] (18)

Also E[Q(ȳi)] = ν0 + ν1φi + ν2(ui + φ2i ) = (ni + ν2)ui. Thus E[Q(ȳi)]/(ni + ν2) = ui. Hence, βi,opt is

estimated by

β̂i = min

[

m− 1

m

Q(ȳi)(ni + ν2)
−1 +m−1

(ȳi − ȳ)2 +m−1
, 1

]

. (19)

Correspondingly,

φ̂iWL = (1− β̂i)ȳi + β̂iȳ. (20)

5 Estimation Without Any Exchangeability Assumptions.

The most general situation allows the weights to be unit specific within each local area. In particular,

if φi is estimated by
∑m

j=1 ωij ȳj then the optimal ωij are found by minimizing E(
∑m

j=1 ωij ȳj − φi)
2

with respect to ωij subject to the condition
∑m

j=1 ωij = 1.

To this end, write Ωi = (ωi1, . . . , ωim)
T and let g(Ωi) = E(

∑m
j′=1 ωij′ ȳj′−φi)

2−2λi(
∑m

j′=1 ωij′−1),

where the λi’s are the Lagrangian multipliers. Then on simplification,

g(Ωi) =
m
∑

j′=1

ω2
ij′uj′ + (

m
∑

j′=1

ωij′φj′ − φi)
2 − 2λi(

m
∑

j′=1

ωij′ − 1). (21)

Thus

∂g

∂ωij
= 2ωijuj + 2(

m
∑

j′=1

ωij′φj′ − φi)φj − 2λi; (22)

∂2g

∂ω2
ij

= 2uj + 2φ2j > 0; (23)

∂2g

∂ωijωkl
= 0, j 6= l. (24)
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Hence the Hessian matrix for g is positive definite and the optimal ωij may be found by solving

∂g/∂ωij = 0, i, j = 1, . . . ,m. In matrix notations these equations can be written as

MΩi = λi1m + φiΦ, (25)

where M = D+ΦΦT , D = Diag(u1, . . . , um), Φ = (φ1, . . . , φm)
T and 1m is the m-component column

vector with each element equal to 1. Thus the optimal Ωi is given by

Ωopt
i = M−1(λi1m + φiΦ). (26)

Since 1 = 1TmΩi,opt = λi1
T
mM−11m + φi1

T
mM−1Φ, one gets

λi =
1− φi1

T
mM−1Φ

1TmM−11m
. (27)

Now from (26) and (27),

Ωi,opt =
1− φi1

T
mM−1Φ

1TmM−11m
(M−11m) + φiM

−1Φ. (28)

The expression for M−1 can be somewhat simplified by the standard matrix inversion formula (Rao,

1973. p33, Exercise 2.8) as

M−1 = D−1 −
D−1ΦΦTD−1

1 + ΦTD−1Φ
.

Now since E(ȳi) = φj and E[(nj + ν2)
−1Q(ȳj)] = uj , where Q(ȳj) = ν0 + ν1ȳj + ν2ȳ

2
j , writing

ûj = (nj + ν2)Q(ȳj), one gets

Ω̂i,opt =
1− ȳi1

T
mM̂−1z

1TmM̂−11m
(M̂−11m) + ȳiM̂

−1z, (29)

where z = (ȳ1, . . . , ȳm)
T and M̂ = (D̂ + zzT )−1, where D̂ = Diag(û1, . . . , ûm).

Remark 6. Note that the coefficients Ωi,opt can themselves be negative which suggests that the

present procedure is general enough to accommodate negative relevance (if any). The need to allow

negative weights stems from the work of van Eeden and Zidek (2000, 2002) who exhibit classical

estimators that successfully trade bias for precision and are MWLE’s provided that such weights are

allowed.

6 Simulation Study.

In this section,we do a simulation study involving a number of populations to compare the performance

of the three types of weighted likelihood estimators derived in this paper. In particular, we compare
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them against the respective maximum likelihood estimators for the individual populations. The latter,

which are based on just the single sample drawn from that population, are unbiased and have many

optimality properties among estimators based on just that sample. However, they are pitted against

estimators that combine information from all the samples.

The response variable, a random count, is assumed to have a negative binomial distribution in

each population. We chose that distribution for its convenience and, in part, to get away from the

well-studied normal distribution. Moreover, unlike the Poisson distribution, this one can have differing

means as well as variances and it can have quite heavy tails.

With potential applications such as small area estimation and disease mapping in mind, we chose

a seemingly realistic number of 100 populations for our study. A total of 8 cases were considered as

described in Table 1.

Except for Case 1 the where all population means were different from one population to another,

the populations were clustered into somewhat homogeneous groups. There were 10 such groups in

Cases 2-5, 3 in Case 6 (of sizes 30, 40 and 30) and just 2 in Case 7 (of sizes 50 each) and 1 in Case

8. Thus we were able to study the effect of the sort of clustering one might expect to see in a real

application. Of primary interest was the effect of unequal population means. Would our estimators

provide any gain in precise in this case?

Of secondary interest was the effect of unequal variances. By introducing heteorscedasticity, we

were able to observe the effects of varying data-quality. Incorporating poor measurements (counts)

with a high variance seems unlikely to produce much of a gain in precision as measured by normalized

MSE, our primary performance criterion, when some of the data come from high variance populations.

In the same vein, we wondered about the effect of varying sample sizes so in some cases, we allowed

that to happen as well. In the following figures we present our results based on running 5000 replicate

sampling experiments for each of the 8 cases in Table 1. However, because of similarities noted below,

figures and not provided for all cases.

As a performance criterion, we used a normalized mean squared error (MSE) criterion to insure

the inter-comparability of precision between populations. Furthermore, it meant that we could mean-

ingfully aggregate those MSEs across populations.

Thus, for each population i = 1, c . . . , 100, we assessed the performance of any given estimator
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Table 1: The Eight Cases Treated in Our Simulation Study. In each case, samples of the specified size

were randomly drawn from a population of counts having a negative binomial population distribution

with the given means and variances.

Case # Clusters Sample Sizes Population Means Population Variances

1 100 20 All different from 20

a skewed distribution

2 10 20 10 110,60,14.4,35,30

30,8.7,3.4,22.5,3.5,20

3 10 20 4, 5.4,6.4,7.2,7.8 20

8.4,8.8,9.3,9.7,1

4 10 10,15,20,25,30 10 110,60,14.4,35,30

for each of two populations 30,8.7,22.5,3.5,20

in each cluster.

5 10 10,15,20,25,3 4,5.4,6.4,7.2,7.8 10

for each of two populations 8.4,8.8,9.3,9.7,10

in each cluster.

6 3 20 4,12.4,19.6 20

7 2 20 4,19.6 20

8 100 20 10 All different from

a skewed distribution
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µ̄i =WLE1,WLE2,WLE3,MLE of that population’s mean by

E

[

(µ̂i − µi)
2

σ2i /ni

]

. (30)

where σ2i and ni denote the population and sample size respectively. This normalized MSE could

readily be estimated using 5000 replicated sampling experiments for that population for any given

case in Table 1.

Note that for µ̂ =MLE, the ratio in Equation (30) is 1. However, we also estimated and plotted

our estimates of that ratio alongside those for the other estimators. This provides some indication

of the range of natural variability across populations induced by the sampling alone apart from that

resulting from differences in performance.

For Case 1, Figure 1 depicts the results from the 5000 replicate sampling experiments. Here

we see notched boxplots of the estimates of the normalized MSE in Equation (30), for each of the

estimators under consideration. There, WLE1 represents the weighted likelihood based on the fully

“exchangeable” weights model. Its estimated normalized MSE tends to be smaller than those for

the other estimators, say WLE2, WLE3 and MLE, where WLE2 and WLE3 represent the weighted

likelihoods for the locally and not exchangeable weights models, respectively.

However, notice that 9 of the 100 are “outliers” in that their normalized MSE estimates tend to

be rather large. These correspond to the populations with very small true means obtained from their

left-skewed distribution. WLE1, which tends to shrink toward the center of that distribution does not

cope very well with these outlying populations.

In contrast, WLE3 tracks these populations well, as well in fact, as the MLE; their difference is

imperceptible. In general WLE3 seems very robust but it seems to offer at best only small gains over

the MLE.

WLE2’s performance differs from both of its cousins. It does very well for the 25% of the popula-

tions corresponding to the lower whisker in its notched boxplot. However, overall, it does not do as

well as any of the other 3 estimators for Case 1.

A different view of the performance of these estimators in Case 1 can be seen in Figure 2. The

relationship between that performance and the population means can be seen more clearly. Note in

particular, that only WLE1 proves to be susceptible to extreme bias for the populations with the

smallest means.
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Table 2: Simulation Experiment for Case 6 of Table 1. Each entry divided by 1000 represents the

average over all replications and populations.

Type MSE *1000 Variance*1000 Bias Squared*1000

Fully Exchangeable 972 947 25

Partially Exchangeable 830 805 25

Local 997 997 0

MLE 998 997 0

Notice also that WLE2 performs extremely well near the mean of the population means (14.33).

We have no explanation for this phenomenon.

We omit Cases 2 and 3 from discussion since their notched boxplots are very similar to those for

Cases 4 and 5 respectively to which we now turn.

In Cases 2 and 4, we see WLE1 at its best; the population means are identical. The variations

in sample sizes as well as variances seen in Case 4 seem to have no deleterious effect on performance

seen in Case 2 (but not depicted here). WLE1 proves robust against such variation.

Notice that both WLE1 and WLE2 do much better in these cases than WLE3 and MLE. Moreover,

for all the estimators we see very little variation across populations in the performance assessment

estimates. WLE3 does perform somewhat better than the MLE.

As an aside, we have observed empirically that the weights for population j in WLE2 (that must

sum to 1) when we are estimating the mean of population i are approximately proportional to:

(k − 1)

k

nj
σ2j

+ δij
1

k

∑ n′j
σ2j′

,

where δij represents Dirac’s delta function. However, we do not a rigorous justification for this

observation.

In Cases 3 and 5, where the population means vary, estimator performance mirrors that in Case

1, although there are only 10 rather than the 100 mean-clusters seen in Case 1. Curiously, the boxes

in the plot tend to be somewhat more elongated in the latter case than in the former.

Cases 6 and 7 are somewhat similar in that they involve a small number of clusters with different

means. Thus we illustrate our results for the former only.
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Figure 2: Case 1. Lineplot of the Estimated Normalized MSE’s for All 100 Populations and Each

of the Estimators, Based on 5000 Simulated Sampling Experiments. Here the Estimated MSE’s Are

Plotted Against Population Means that are Depicted in the Rugplot On the Horizontal Axis.
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Figure 3: Case 4. Notched Boxplots of the Estimated Normalized MSE’s for All 100 Populations and

Each of the Estimators, Based on 5000 Simulated Sampling Experiments.
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Figure 4: Case 5. Notched Boxplots of the Estimated Normalized MSE’s for All 100 Populations and

Each of the Estimators, Based on 5000 Simulated Sampling Experiments.
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Figure 5: Case 6. Notched Boxplots of the Estimated Normalized MSE’s for All 100 Populations and

Each of the Estimators, Based on 5000 Simulated Sampling Experiments.
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Center ni p̂i WL1 WL2 WL3 se(p̂i) se(WL1) se(WL2) se(WL3)

1 79 .316 .246 .253 .300 5.44 1.54 2.20 5.39

2 76 .329 .246 .256 .312 5.36 1.52 2.21 5.33

3 75 .240 .245 .244 .229 4.90 1.45 1.59 4.72

4 91 .209 .244 .241 .200 4.38 1.42 1.52 4.17

5 91 .209 .244 .241 .200 4.05 1.42 1.53 3.84

6 106 .198 .244 .240 .190 4.02 1.43 1.60 3.80

7 134 .269 .245 .246 .256 3.67 1.53 1.44 3.59

8 73 .137 .243 .225 .132 3.67 1.41 1.79 3.45

9 152 .263 .245 .246 .250 3.56 1.44 1.47 3.49

10 101 .277 .245 .248 .263 4.63 1.47 1.66 4.56

Table 3: This table presents the fraction (p̂) of organ transplant complications that resulted in organ

rejection during the period October 1, 1987 to December 31, 1989 at 121 US transplant centers. These

fractions constitute the maximum likelihood estimators for the true probability of such complications.

Presented as well, are the results from three weighted likelihood estimators along with estimators of

their standard errors based on parametric bootstrap samples. Standard errors are multiplied by 100.

We see that in this case that none of the weighted likelihood estimators is able to gain substantially

over the MLE overall. However the results for WLE2 vary widely and in nearly 50% of the cases it

does seem to achieve a normalized MSE below the remaining cases. Moreover, this the only case in

our study where we found that the overall, non-normalized MSE for WLE2 was actually lower than

everyone of the remaining estimators. This performance can be seen in Table 2. This suggests that

WLE2 may have some value in selected cases.

7 An Illustrative Application.

This section presents an illustrative example and demonstrates the weighted likelihood methodology.

Our data come from the United Network for Organ Sharing (UNOS) Public-Use database. That

database records the results of 3,688 transplant operations at 131 transplant centers during the period
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Figure 6: Notched boxplots portray for Center 10, of the relative bias (top panel) and

RMSE (bottom panel) based on 300 bootstrap estimates of the “true” fraction of organ

transplant rejections for all estimators considered in this paper.

October 1, 1987 to December 31, 1989. To avoid complexity that diverts more than it informs, we

confine our demonstration to the 10 centers with the largest number of heart transplants. Outcomes

are classified as ‘1’ or ‘0’ according as the patient developed short term problems leading to rejection of

organ death or not. (Dey, Gelfand, Swartz and Vlachos (1998) present those data.) Here our objective

is to estimate the proportion of patients who develop short term problems leading to rejection-of-

organ-death for all the 10 centers. The estimators are presented in Table 3 along with their bootstrap

standard error estimates.

To estimate those standard errors, simultaneous samples from all 10 centers were generated by

the parametric bootstrap to yield 10 dimensional rejection proportion vectors, p̂(k), k = 1, . . . , 300.

(We found 300 to be the largest feasible number given available computer memory.) In other words,

rejection counts were independently generated for Center i = 1, . . . , 10 from the binomial(ni, p̂i)

distribution where ni and p̂i obtain from Table 3. Estimates were then computed for each of these 300
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vectors and the sample standard deviations of these estimates yields the estimated standard errors.

Are these estimators accurate? To help answer this question, we used the “two-deep” parametric

bootstrap. More precisely, for each k, we generated a further 300 vectors of fractions, p̂kh, h =

1, . . . , 300 from binomial distributions, binomial(ni, p̂
k
i ) for all i = 1, . . . , 10 and k = 1, . . . , 300. Then

∑300
h=1 p̂

kh/300 − p̂k estimates the bias for all k. Similarly, bootstrap standard error estimates obtain

from taking the standard deviation of the {p̂khi }. The distribution over k of these quantities provide

some idea of how well the bootstrap estimates the corresponding quantities based on a one-deep

analysis as indicated below.

However, bootstrap estimates of both estimator bias and root mean square errors (RMSE) of

estimation are of interest. For bias, comparative performances of the estimators can be found by

computing for all k, 100∗ (biasbootki − biasi)/biasi where biasboot
k
i =

∑300
h=1(θ̂

kh
i − p̂ki )/300 and biasi =

∑300
k=1(θ̂

k
i − p̂i)]/300. These indices expressed as relative error percentages, indicate how well the

bootstrap estimator of bias works for the various estimators, θ̂, calculated with one-deep and two-

deep bootstrap samples. Similar ratios can be computed for the RMSE. For Center 10, the results for

both bias and RMSE appear in Figure 6.

Remark 7. The tables and figures, including a number not included here for brevity, show WLE1

and WLE2 on the one hand and MLE and WLE3 on the other, to be very similar in performance.

For simplicity, we will refer to them as Pairs 1 and 2, respectively.

Remark 8. For Center 10 (that was arbitrarily chosen to be the example), Pair 1 varies little from

one bootstrap sample to another unlike Pair 2 that varies a lot and produces extreme values

in some cases. Figure 2 echoes these findings. Figure 1 suggests that Pair 1 is stochastically

smaller than Pair 2, but Figure 3, a “group portrait” reveals that finding to be premature. In

fact, there is quite a lot of variability in the level of bootstrap fraction estimates over the 10

centers in contrast to their standard errors that are almost identical over centers (see Figure 4).

Remark 9. Of more interest are figures that show the accuracy of bootstrap bias and RMSE

estimates. For brevity, only Figure 6 is included here. These figures together show the bootstrap

performance indicators for Pair 2 to be substantially more accurate than those for Pair 2. In

particular, they indicate that the (rather large) standard errors seen in Table 3 accurately reflect

their relatively poor performance. They show the members of Pair 1 performance about equally
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well. In fact, Figure 6 suggests that WLE1 outperforms WLE2. More precisely, the error in

the bias estimate for WLE2 can be as large as 50% in contrast to WLE1’s 30%. Similarly,

inaccuracies are plausible for their RMSE’s at Center 10. Nevertheless, even allowing for these

inaccuracies, the results in Table 3 suggest that both WLE1 and WLE2 will give more precise

estimates of the true center fractions than MLE and WLE3.

Remark 10. The greater simplicity (and similar performance) of MLE compared to WLE3 and of

WLE1 compared to WLE2, suggest the contest is really between MLE and WLE1. Our empirical

results point to WLE1 as the overall winner, therefore.

8 Concluding Remarks

The paper has introduced the weighted likelihood approach for estimation of parameters in natural

exponential family of distributions with quadratic variance functions. This class of distributions has

been characterized by Morris (1982, 1983), and includes the binomial, Poisson and normal distributions

as special cases.

Our simulation study shows that when the means of negative binomial populations are similar,

and the weighted likelihood estimator takes advantage of this fact (WLE1), spectacular gains in

performance over the MLE are achievable. At the same time, in more non-homogeneous cases WLE1’s

performance can be similar to that of the MLE and even worse in populations with means quite far

away from the center of the mean values. However, even in these cases little seems to be lost from

using WLE1’s.

In contrast, the weighted likelihood based on local exchangeability can have highly variable per-

formance across a group of negative binomial populations. The performance for some populations can

be extremely good, while poor in others. In short, the results seem much less predictable than those

for either of it to cousins. Still in one case (6), WLE2 does prove to be better overall than the others.

Finally, the third weighted likelihood estimator considered in our simulation study, WLE3, is

highly robust but never seems to achieve much over the MLE. It could be worthy of consideration as a

safe alternative to the MLE when small gains matter. For example, small improvements in estimating

census under-counts, an application we have not yet studied, could have major implications for society.

However, in general, the MLE would be much preferred to WLE3 because of its simplicity.
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The illustrative example in Section 7 demonstrates a practical application of the theory presented

in this paper. Moreover, it shows that the bootstrap can be used to estimate bias and root mean

squared error of estimation and it even allows us to estimate the plausible range of errors in measures

of those types of performance. Overall, WLE1 comes out the winner in this application, no doubt

because of the similarity of their fractions and counts. However, it will not be the winner in every

such application. An analysis like that above will be needed to find an the appropriate choice.
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9 Appendix

Proof of Theorem 1.

The following two lemmas are used repeatedly in proving the theorem, Lemma 1 being essentially

an immediate application of Proposition 1.

Lemma 1. For every r ≥ 2, E|s2y − E(s2y)|
r = O(m−r/2) as m→∞.

Proof. First we express s2y as a U-statistic, namely s2y = [2/(m(m − 1))]
∑

1≤i1<i2≤m(ȳi1 − ȳi2)
2/2.

Next, by the cr inequality,

E|ȳi1 − ȳi2 |
2r ≤ E(ȳ2ri1 + ȳ2ri2 ) ≤ 2max1≤i≤mE(ȳ2ri ).

For the NEF-QVF family of distributions, supr≥1E|ȳi|
r < ∞. The result follows now immediately

from Proposition 1.

Lemma 2. E(s2y +m−1)−p = O(1) as m→∞. for every p ≥ 2 as m→∞.

Proof. We write

E(s2y +m−1)−p = E[(s2y +m−1)−pI[s2y≥c] + (s2y +m−1)−pI[s2y<c]

≤ (c+m−1)−p +mpP (s2y < c)]. (31)
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Here I is the usual indicator function and c(> 0) will be chosen appropriately. Recalling that K =

lim infm→∞E(s2y), choosing c = K/2, by Markov’s inequalty and Lemma 1, one gets

P (s2y < c) ≤ P (s2y − E(s2y) < −K/2)

≤ P (|s2y − E(s2y)| > K/2)

≤ (K/2)−rE|s2y − E(s2y)|
r = O(m−r/2). (32)

Choosing r ≥ 2p, the lemma follows from (31) and (32).

Back to the proof of Theorem 1, first we observe that

m−1
m
∑

i=1

E(φ̃iWL − φi)
2 = m−1

m
∑

i=1

E(φ̂optiWL − φi + φ̃iWL − φ̂
opt
iWL)

2

= m−1
m
∑

i=1

E[(φ̂optiWL − φi)
2 + (φ̃iWL − φ̂

opt
iWL)

2

+ 2(φ̂optiWL − φi)(φ̃iWL − φ̂
opt
iWL)]. (33)

Now after some simplification,

m−1
m
∑

i=1

E(φ̂optiWL − φi)
2 = m−1

m
∑

i=1

E[(1− βopt)ȳi + βoptȳ − φi]
2

=
ūs2φ
ū+ s2φ

+m−1
ū2

ū+ s2φ
= O(m−1) (34)

as m→∞, where the last step follows by Assumption 1 and the fact that supi≥1E|ȳi|
r <∞ for every

r > 0. Next letting
˜̃
β = (ˆ̄u+m−1)/(s2y +m−1), one gets

m−1
m
∑

i=1

E(φ̃iWL − φ̂
opt
i )2 = (m− 1)m−1E[(β̃ − βopt)

2s2y]

= (m− 1)m−1E[(
˜̃
β − βopt + β̃ −

˜̃
β)2s2y]

≤ 2(m− 1)m−1E[{(
˜̃
β − βopt)

2 + (β̃ −
˜̃
β)2.}s2y] (35)

But

E[(
˜̃
β − βopt)

2s2y] = E





(

ˆ̄u+m−1

s2y +m−1
−

ū

E(s2y)

)2

s2y





= E





(

ˆ̄u+m−1

s2y +m−1
−

ū

s2y +m−1
+

ū

s2y +m−1
−

ū

E(s2y)

)2

s2y





≤ 2E

[

(ˆ̄u+m−1 − u)2

(s2y +m−1)2
s2y

]
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+ 2E

[

ū2
(s2y − Es

2
y +m−1)2

(s2y +m−1)2(E(s2y))
2
s2y

]

≤ 2E

[

(ˆ̄u+m−1 − u)2

s2y +m−1

]

+ 2E

[

ū2
(s2y − Es

2
y +m−1)2

(s2y +m−1)(E(s2y))
2

]

. (36)

Next by the Cauchy-Schwarz inequality,

E

[

(ˆ̄u+m−1 − ū)2

s2y +m−1

]

≤ E1/2(ˆ̄u+m−1 − ū)4E1/2(s2y +m−1)−2. (37)

By the cr-inequality for the NEF-QVF family,

E(ˆ̄u+m−1 − ū)4 ≤ 23E[(ˆ̄u− ū)4 +m−4]

= 8[O(m−2) +m−4]. (38)

Also, by Lemma 2, E(s2y +m−1)−2 = O(1).

Combining (37) and (38) we obtain

E

[

(ˆ̄u+m−1 − ū)2

s2y +m−1

]

= O(1). (39)

Similarly, by Lemmas 1 and 2,

E

[

(s2y − Es
2
y +m−1)2

s2y +m−1

]

≤ E1/2(s2y − Es
2
y +m−1)4E1/2(s2y +m−1)−2 = O(m−1). (40)

Again,

E[(
˜̃
β − β̃)2s2y] = E[(1−

˜̃
β)2s2yI{ˆ̄u > s2y})]

≤ E1/2[(1−
˜̃
β)4s4y]P

1/2(ˆ̄u > s2y). (41)

Now applying the cr-inequality once again we obtain

E[(1−
˜̃
β)4s4y] = E[(1− βopt + βopt −

˜̃
β)4s4y]

≤ 8E[{(1− βopt)
4 + (

˜̃
β − βopt)

4}s4y]

≤ 8[Es4y + E1/2(
˜̃
β − βopt)

8E1/2(s8y)]. (42)

Similar to (36),

E[(
˜̃
β − βopt)

4s4y] ≤ 8E[
ˆ̄u+m−1 − ū)4

(s2y +m−1)−2
+ 8E[ū2

(s2y − E(s2y) +m−1)4

(s2y +m−1)2(E(s2y))
4
] = O(m−2),
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by an application of Lemmas 1 and 2.

Also,

P (ˆ̄u > s2y) = P [ˆ̄u− s2y − E(ˆ̄u− s2y) > −E(ˆ̄u− s2y)]

= P [ˆ̄u− s2y − E(ˆ̄u− s2y) > s4φ]

≤ s−4rφ E[ˆ̄u− s2y − E(ˆ̄u− s2y)]
2r

≤ s−4rφ 22r−1[E(ˆ̄u− ū)2r + E(s2y − E(s2y))
2r] = O(m−r)

for any arbitrary r > 0. Hence

E[(β̃ −
˜̃
β)2s2y] = O(m−r/2) (43)

for any r > 0. Thus, from (35), (36) (39), (40) and (43)

m−1
m
∑

i=1

E(φ̃iWL − φ̂
opt
iWL)

2 = O(m−1). (44)

Finally,

m−1
m
∑

i=1

E[(φ̂optiWL − φi)(φ̃iWL − φ̂
opt
iWL)] = −m−1

m
∑

i=1

E[{(1− βopt)ȳi + βoptȳ − φi}

× (β̃ − βopt)(ȳi − ȳ)]

= −m−1
m
∑

i=1

E[(β̃ − βopt)(ȳi − φi)(ȳi − ȳ)]

+m−1βopt

m
∑

i=1

E[(β̃ − βopt)(ȳi − ȳ)
2]. (45)

The second term in the right hand side of (45) equals (m− 1)m−1βoptE[(β̃ − βopt)s
2
y]. But

E[(β̃ − βopt)s
2
y] = E[(

˜̃
β − βopt)s

2
y + (β̃ −

˜̃
β)s2y] (46)

and

E[(
˜̃
β − βopt)s

2
y] = E

[(

ˆ̄u+m−1

s2y +m−1
−

ū

E(s2y)

)

s2y

]

= E

[

ˆ̄u+m−1 −m−1E

(

ˆ̄u+m−1

s2y +m−1

)

− ū

]

= O(m−1). (47)

Also, as before, one can make E|(
˜̃
β − β̃)s2y| = O(m−r) for any arbitrary r > 0. Hence,

E(β̃ − βopt)s
2
y = O(m−1). (48)
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The first term in the right hand side of (45) equals

−m−1
m
∑

i=1

E[(β̃ − βopt){(ȳi − ȳ)− (φi − φ̄)}(ȳi − ȳ)] = −(m− 1)m−1E[(β̃ − βopt)(s
2
y + syφ)], (49)

where syφ = (m− 1)−1
∑m

i=1(ȳi − ȳ)(φi − φ̄). As shown already, E[(β̃ − βopt)s
2
y] = O(m−1). Again,

E[(β̃ − βopt)syφ] = E[β̃ − βopt]E[syφ] + E[(β̃ − βopt)(syφ − Esyφ)]. (50)

But E(syφ) = s2φ and E(β̃ − βopt) = O(m−1). Further by the Cauchy-Schwarz inequality,

E[(β̃ − βopt)(syφ − Esyφ)] ≤ E1/2(β̃ − βopt)
2V (syφ) = O(m−1)V (syφ).

Since

V (syφ) = V [(m− 1)−1
m
∑

i=1

ȳi(φi − φ̄)]

= (m− 1)−2
m
∑

i=1

ui(φi − φ̄)
2 = O(m−1), (51)

one gets from (45)-(51),

m−1
m
∑

i=1

E[(φ̂optiWL − φi)(φ̃iWL − φ̂
opt
iWL)] = O(m−1). (52)

The theorem follows now from (33), (34), (44) and (52).
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