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Abstract
The (relevance) weighted likelihood was introduced to formally embrace a variety of statis-
tical procedures that trade bias for precision. That likelihood unlike its classical counterpart,
combines all relevant information while inheriting many of its desirable features including good
asymptotic properties. However, to be effective, the weights involved in its construction need to
be judiciously chosen. Choosing those weights is the subject of this paper in which we demon-
strate the use of cross-validation. We prove the resulting weighted likelihood estimator (WLE)
to be weakly consistent and asymptotically normal. Results of simulation studies have shown
that WLE out-performs the traditional maximum likelihood estimator for small and moderate

samples. An application to disease mapping data is also demonstrated.

1 Introduction

The weighted likelihood (WL for short) has been developed for a variety of purposes. Moreover,
it shares its underlying purpose with other methods such as weighted least squares and kernel
smoothers. Like the WL they can reduce an estimator’s variance while increasing its bias to reduce
mean-squared- error (MSE), i.e. increase its precision. However, the achievement of those gains
depends on choosing the weights well, the subject of this paper. More specifically, we show they
may be data dependent (i. e. “adaptive”) and chosen by cross-validation. However, the idea of data
dependent weights goes back at least to the celebrated James-Stein estimator, a WL estimator with
adaptive weights that does successfully trades bias for variance (Hu and Zidek 2002).

To describe the WL, suppose we observe independent random response vectors Xj, ..., X, with
probability density functions fi(.;61),..., fm(:;0m), where X; = (X1, ..., Xin,)?. Further suppose
that only population 1, in particular #;, an unknown vector of parameters, is of inferential interest.
Given data, X = x, the classical likelihood would be

Li(x1,61) = H f($1j9‘91)-
7j=1
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An alternative, the WL, obtains when the remaining parameters, 65, ..., 8,,, are thought to resemble
61 )

m T

WL(x;61) = [[ [] f1(@is; 00,

i=1j=1
where A = (A1, ..., \py), the “ weights vector”, must be specified. Notice that the parameters from
the remaining populations, s, ..., 8,,, unlike the data they generate, do not appear in the WL, since

inferential interest focuses on 6;. It follows that

m N

logWL(x; 61) = Z Z Ai log f1(wij;61)-
i=1 j=1
The WL extends the local likelihood method of Tibshirani and Hastie (1987) for nonparametric
regression, although the idea predates them (see Hu and Zidek 2002 for a review). Following Hu
(1997), Hu and Zidek (1995, 2001, 2002) extend the local likelihood to a more general setting.
However, the aim is the same, that of combining all relevant information in samples from populations
thought to resemble the one of concern.
The maximum WL estimator (WLE) for 6; say 6, is defined by

6, = arg sup WL(x;61).
0,€0

In many cases the WLE may be obtained by solving the estimating equation:
(8/601) lOg WL(X; 01) =0.

Note that uniqueness of the WLE is not assumed.

Like the MLE, the WLE has a number of desirable properties (Hu and Zidek 2002), in particular
consistency and asymptotic normality under reasonably regularity conditions (Hu 1997; Wang, van
Eeden and Zidek 2002). However, those asymptotic properties have only been shown with fixed
weights and hence need to be extended in this paper to cover the estimators we obtain using cross
- validation.

In its most primitive but nevertheless useful form, cross validation consists of controlled and
uncontrolled division of the data sample into two subsets. For example, the subsets can be derived
by deleting one or more observations or it can be a random sample from the dataset. Stone (1974)
began the systematic study of cross-validatory choice and assessment in statistical prediction. Both
Stone (1974) and Geisser (1975) discuss its application to the K-group problem and use a linear com-
bination of the sample means from the different groups to estimate a common mean. Breiman and
Friedman (1997) also demonstrate the benefit of using cross-validation to obtain linear combinations
of predictors that perform well in multivariate regression.

The paper is organized as follows. The adaptive weights are derived in Section 2. The asymptotic
properties of the resulting WLE are presented in Section 3. Results of simulations studies are

discussed in Section 4. In Section 5, an application to disease mapping data demonstrates the



benefits of using the proposed method in conjunction with the WLE when compared with traditional

estimators.

2 Choosing Adaptive Weights

For cross-validation, there are many ways of dividing the entire sample into subsets such as a random
selection technique. However, we use the simplest leave-one-out approach in this section since the
analytic forms of the optimum weights are then completely tractable for the linear WLE.

Suppose that we have m populations which might be related to each other. The probability
density functions or probability mass functions are of the form f;(x; ;) with 6; as the parameter for
population i. Assume that

X, X2, Xz, ..., Xip, S fi(z;01)
Xo1, Xo2, Xoz, ..., Xop, e 2(x;602)
Xml; XmZ; Xm3; LR anm Z’?Vd fm(myem)

where, for fixed i, the {X;;} are observations obtained from population ¢ and so on. Assume that
observations obtained within each population are independent and identically distributed. Further
assume that observations from one population are independent of those from other populations
except that Corr(X;;, Xy;) = p. That is, observations obtained at the same time point or having
the same second sub-scripts are not necessarily independent even though they are obtained from
different populations. This would allow a spatial correlation structure but not a temporal one. We
also assume that E(X;;) = ¢(6;) = ¢; say for j = 1,2,...,n;. The population parameter of the first
population, 61, is of inferential interest.

We denote the vector of parameters and the weight vector by 8 = (6y,62,...,6,,) and XA =
(M1, A2, ...y A ) respectively. Let A% and A% denote optimum weight vectors determined in the
sequel for samples with equal and unequal sizes, respectively. We require that in: A; = 1 in this
paper. =t

Our cross-validatory approach to estimating the weights for the WLE flows from taking predic-
tion as our inferential objective. In other words we seek an estimator, 91, of #; that enables us to
predict accurately, in some sense, a randomly drawn element, X}, from the first population. But
how should the precision of él be assessed?

One answer is the expected log score. Denoting by ‘E’, expectation with respect to the condi-
tional distribution of X; given 6y, that score is E[log f1 (X1|91)], an index of ;s performance.

However, the complexity of that index makes its use impractical in applications such as that in
Section 5. We therefore adopt an approximation as a compromise. To obtain that approximation,
we assume a 1 - to - 1 mapping of 6; into (¢1, 1) where the range of ¢; contains that of X;. In fact,

with an abuse of notion we represent 8; by 6; = (¢1,71) and 91 in a similar way.



The approximation obtains under the assumptions,

dlog E[f1(X1]61)]
Dy

|é1=91 = 07

82 log E[f1(X1161)] .
82¢, =01

for all 4, all derivatives above along with the associated 3rd order derivative being assumed to exist.

<0

These assumptions obtain for the normal distribution, for example, and more importantly for our
application in Section 5, the Poisson distribution. Under these assumptions, the first order term in a
3 term Taylor expansion of the expected log score vanishes. Therefore, ignoring irrelevant terms and
factors, we obtain for any proposed estimator 6; as an approximation to its negative expected log
score, (q31 — ¢1)%, as a measure of <131’s precision. Finally, for its empirical assessment, we estimate
the unknown ¢; in this measure by X;. Moreover, we adopt that empirical measure in obtaining
adaptive weights by cross-validation. To that end, we use (—j) to indicate that the j-th item has
been dropped from the sample, in a sense to be made more precise below.

Taking the usual path, we predict X;; by ¢(9~§_j )), the WLE of its mean without using the Xj ;.
Note that ¢(0~§7j )) is a function of the weight vector A by the construction of the WLE. A natural
measure for the discrepancy of the WLE becomes:

ni 2

D) =3 (X - 60 ))

j=1

(1)

The optimum weights are derived such that the minimum of D(A) is achieved for fixed sample sizes

m
N1, M2,y ey Ny, and Y, A; = 1.
i=1
In the rest of this section, we will concentrate on linear WLE, i.e., linear combinations of
maximum likelihood estimates. We remark that WLE takes the linear form for normal, Poisson and

other members of the exponential family as shown by Wang (2001).

2.1 Linear WLEs for Equal Sample Sizes

Stone (1974) and Geisser (1975) discuss the application of the cross-validation approach to the so-
called K-group problem. Suppose that the data set S consists of n observations in each of K groups.
The mean predictor for the ¢th group is:

i =1 —-a)X; +aX .

where X; =1 3 X;; and X = £ Y X;.. If our interest focuses on group 1, the relevant predictor
j=1 =1
is m
. K-—-1 — o —
fn = (1— = a)X1 +D %Ki



We remark that the above formula is just a particular linear combination of the sample means.
Stone (1974) uses cross-validation to derive an optimal value of a.

We consider more general linear combinations and throughout this subsection assume n; =
Ny = ... = Ny, = n. Let 6756) denote the WLE obtained through cross-validation. If ¢(d) = 6, the
linear WLE for #; is then defined as

ége) = Z /\iyi.
i=1

m
where >~ \; = 1.

Inzallis subsection, we will use cross-validation by simultaneously deleting X1;, Xaj, ..., Xn; for
each fixed j. That is, we delete one data point from each sample at each step. This might be
appropriate if these data points are obtained at the same time point and strong associations exist
among these observations. By simultaneously deleting X ;, Xs;, ..., X;n; for each fixed j, we might
achieve numerical stability of the cross-validation procedure. An alternative approach is to delete
a data point from only the first sample at each step. That approach will be studied in the next
subsection.

Let 75__1') be the sample mean of the ith sample with jth element in that sample excluded. A

natural measure for the discrepancy of 6, might be:

n 2
D = Z(le SAX ”)

i=1

= (X)) - 2AB.(X) + X' AL (X)A

where ¢(X) = z X3, (be(X)); = ,Zl X1, X7 and (4,(X)),, =
1,2, ...

An optimum weight vector obtained by using the cross-validation rule is defined to be a weight
vector which minimizes the objective function, ng) and satisfies f: A; = 1. For expository sim-

i=1
plicity, let b = b.(X) and A, = A.(X) in this paper.

2.1.1 Two Population Case

For simplicity, first consider the simple case of just two populations, i.e.

zzd

X1, Xi2, Xz, ..., ~ fi(z;61)
Xo1, Xo2, Xoz, ..., zz“d fa(z;62)

with E(X1;) = 61 and E(X2;) = 0. Let 07 and 03 denote the variances of X1, and X,; respectively.
Let p = cor(X1j,X2;). Thus observations obtained at the same time point are not necessarily
independent of each other. Let 8° = (69,69) where 69 and 69 are the true values for 8; and 6

respectively.



We seek the optimum weights , A, A2 with A; + Ay = 1 that minimize the objective function
defined as follows:

n . N2
D@ =3 (X =A%y =0 ) =y + A - 1),

i=1

Differentiating Dgz) with respect to A\; and Az, we have

aDgQ) no . y L
o Z—ZX; & (le—)\ng.J)—)oX;. ]))—720,
7j=1

an(f) no . T )
L 5% A C TR () B
j=1

It follows that

& S (=3) _5(=3)\ ((=3) _ )
APHX) = 1— (R xT) (R %)

X
j=1
0 i o et (2)
oot 3 (X=X (X0 -x)
AT (X) =

= (F-x0)
Lemma 2.1 The following identity holds:

APE=1-XP" and NP = S5/S¢,

where
. nn—2) — = \2 1 - _ 2
S= e T e 2 (=)
R g
SE = 1) (67 —cov)

where 712 = 1 30 (Xi; — X1)? and @v = 1 3° (X1, — X1.) (Xoj — Xo.).
j=1 j=1

The value of the A" serves as the measure of relevance between the two samples. If that measure
is almost zero, it implies that there is no need to combine the samples from the two populations.
From the above formula, it can be see that small value of A\5¥ * would happen if the difference between
the two sample means is relatively large or the correlation between the two samples is close to 1.
The weights chosen by the cross-validation rule will then guard against the undesirable scenario in
which too much bias might be introduced into the estimation procedure. On the other hand, if the
second sample does contain valuable information about the parameter of interest, the cross-validation
procedure will recognize that by assigning a non-zero value to A\5¥ *. Note that the knowledge of the

variances and the correlation are not used to construct the adaptive weights.



Proposition 2.1 If p < 7L, then
P
Po(AP > 0) 51

We remark that the condition p < o1/02 is satisfied if 62 < o1 or p < 0. If the condition
p < o1/0, is not satisfied, then ,\g”t might have negative sign for small n. However, the value of

. . ..
A5PY will converge to zero as shown in the next Proposition.

Proposition 2.2 If 60 # 69, then, for any given € > 0,
Pp(IAP' — 1| <€) — 1 and Pp (AP <€) — 1.

The asymptotic limit of the weights will not exist if 9 equals . This is because the cross-
validation procedure will not be able to detect the difference of the population means since there is

none. This can be rectified by defining A3¥* = ¢ where ¢ > 0. An alternative solution is to put a

= Se+
threshold on Aq, say % where M is some positive constant. We remark that the knowledge of the

variances and covariance is not assumed.

2.1.2 Alternative Matrix Representation of the Optimum Weights

To study the case of more than two populations, it is necessary to derive an alternative matrix
representation of A°Pt. Define e,, = ~+. Tt can be verified that

=D _ (= 1 - 1
7w = (enTi = i) (enTh = —— k)
— en n
=TTk — ——TiTh ki Ti + ( 1) TijThj
Thus, we have
(i) _ (2 en \ 4.4 e o2
lecz Ng ) = (en(n -2)+ n_"1> 0:0, + n—nl Covyy, (3)
=
where
6, = =, i=12,..m;
1 n
C/O\'Uik = E Z Tij — :L.z wk] - fk)
Recall that, for 1 <i<m and 1 <k <m,
Agiry = Zm( N ( J)_
By equation (?7?), it follows that
e - € Ant
A = n ) 2 -9 n 4
LR CUBERF N (@)



where ¥;;, = cov;, and 6 = (fl.; ...,fm.).
We also have

€n _
be(i) (X) = Ay — _ (.’L’lj - xl,)xij. (5)
1

1

J

n =
It then follows that
be(X) = A1 - eiil. (6)

where A; is the first column of 4, and f]l is the first column of the sample covariance matrix 5.
We are now in a position to derive the optimum weights in the general case when sample sizes are
equal.

Proposition 2.3 The optimum weight vector which minimizes ng) takes the following form

0 1 ].tA_lil _
Aept = (1,0,0, ...,O)t - ei (Ae 121 - ﬁfle 11) .

We remark that A, is invertible since ¥ is invertible. Note that the expression of the weight
vector in the two population case can also be derived by using the matrix representation given as
above. The detailed calculation is quite similar to that given in the previous subsection.

2.2 Linear WLE for Unequal Sample Sizes

In the previous subsection, we discussed choosing the optimum weights when the samples sizes are
equal. In this section, we propose cross-validation methods for choosing adaptive weights for unequal
sample sizes. If the sample sizes are not equal, it is not clear whether the delete-one-column approach
is a reasonable one.

For example, suppose that there are 10 observations in the first sample and there are 5 obser-
vations in the second. Then there is no observation to delete for the second sample for half of the
cross-validation steps. Furthermore, we might lose accuracy in prediction by deleting one column
for small sample sizes. Therefore we propose an alternative method that deletes only one data point
from the first sample and keeps all the data points from the rest of samples if the sample sizes are
not equal.

2.2.1 Two Population Case

Let us again consider the two population case. The optimum weights A% are obtained by minimizing
the following objective function:

DA () = i (X1 = MXT 7 - ,\272_)2 :
j=1

m (i
where >~ A; =1land X ﬁ - n1171 >~ Xik. We remark that the major difference between D and
i=1 kZj

fo) is that only the jth data point of the first sample is left out for the jth term in fo).



Under the condition that A; + Ay = 1, we can rewrite fo) as a function of \;:

D = 35 (- ATL - (- AT
j=1

S (G~ Xa) + M (T - X))
j=1

By differentiating Dq(f) with respect to A\; and using the fact that A\; + A2 = 1, we then have

nl(yl. —72 )2 - _g

ni—1

~2
1 .
ni (X1, — X2)2 + o 1)2&f

\PE — Ao =1\ (7)

The adaptive optimum weights still converge to (1,0) when the sample sizes are not equal.
Pr0p051t10n 2.4 If 00 #£ 63, then

/\“”t %1 and ,\"Pt 0.

2.2.2 Optimum Weights By Cross-Validation

We now derive the general formula for the optimum weights by cross-validation when the sample
sizes are not all equal.

The objective function is defined as follows:

n1 . m 2

j=1 i=2

e(X) = 26(X) Ay + AL AX) A,

where
= 1 2 n
_ Y Y. _ ) _ Y o_ 1 22,
by = j:ZIle (X1,+n1_1(X1. X13)> _anl. nl_l(fl,
b = anl.Yi.: 1=2,...,m;
and
L 1 2 2 nq
= X X1 - X)) =X, + ————62
aii ]z:; ( 1.+ — 1( 1. 1;)) mX, + (1 —1)° 01
ai; = mXiXj, i#£1 or j#1.

It then follows that .
A=mny (él,é2, ...,ém) (0},0}, ...,ém) +D



where
ni ~2
dy = — 52
11 (nl — 1)2 0-17
dz'j = 0, 175107']751

By the elementary rank inequality, it follows
rank (A) < rank(8'4) + rank(D) = 2.

Therefore, we have
rank(A) <m if m>2.

It then follows that A is not invertible for m > 2. Therefore, the g-inverse of the matrix A
should be considered in order to find the optimum weight vector.

3 Asymptotic Properties of the Adaptive Weights

In this section, we derive the asymptotic properties of the cross-validated weights. Let HAY”) be the
MLE based on the first sample of size n;. Let éﬁ' ) and éf" ) respectively be the MLE and WLE
based on m samples without the jth data point from the first sample. This generalizes the two cases
where either only the jth data point is deleted from the first sample or jth data point from each
sample is deleted. Note that 0~§7j ) is a function of the weight function A. Let "%Dn1 be the average

discrepancy in the cross-validation which is defined as

ni

1 1 Y )
A Dn =3 (X35 - 085 ))

2

Let A“?) be the optimum weights chosen by cross-validation. Let 6° = (69,6a, ...,60,,), where 69 is
the true values of 6;.
Theorem 3.1 Assume that

(1) 7=Dy, has a unique minimum for any fized n,;
(2) & 3 (8077) ~ 9(69) 75 0 as my = oo;
j=1

ni

N2
(3) Pyo (7% ) (le - ¢(€§77))) < K) By for some constant 0 < K < oco;
1

(4) Poo (|06 - 0(67)

> M) = o(n%) for some constant 0 < M < oo;

then
Alew oo o0 — (1,0,0, .., 0)1 (8)

10



To check the assumptions of the above theorem, let us consider the linear WLE for two samples
with equal sample sizes. Assumption (1) is satisfied since H%Dnl (A) is a quadratic form in A and
its minimum is indeed unique for each fixed n;. To check Assumption (2), consider

L5 (o1 aon) %i(ysﬂ—e?)

Il

1
= = T Xy ) -9
nlz(nl—l ’ n1—1 1]> 01

= X; -6 P 0 as ny — 0.

Next we consider

ni

Y (e ) = 3 (xny-xY

Jj=1 Jj=1

ni n 1 2
- X, —— X,
nlz( ( —17 -1 13>)

2 ni
m 1 — \2 Py
X X LY X )
(m — 1) ny le( L= 1~) var(X11) < oo as my — 00

For the last assumption of the previous theorem, consider

60" = 0@ = [Fr - OFFr + 2T

‘/\gcv)

X1 — X2 |.

It then follows from Lemma 77 that

i o 1 52 _ aop)2(Ky — X, )2
Py (| — 66| > €) = P | 1| Lm0 T =) > e
[(Xl _X2) ;(le _X2J) ]
1 I (61 — cov)*(Xy. — X,.)?
(n—2)2e2"? (X1 — Xo)*
1 62 —cov | 1
< — — =o(—
~ (n-2)2e X - X, 0(n2)

since X;, — Xo. =5 09 — 69 # 0 and 67 — cov =% 07 — cov(X11, Xo1). Thus the assumptions of the
theorem are all satisfied. We then have

Pyo

‘)\gc”) 0.

E) 1; ‘)\(Cv)

11



This is consistent with the result of Proposition ?7.
Wang, van Eeden and Zidek (2002) establish the asymptotic normality of the WLE for fixed
weights. Under certain regularity conditions and by Theorem ??, we then have the following asymp-

totic results for using adaptive weights.

Theorem 3.2 For each 69, the true value of 0;, and each 6, # 69,

m  n; m n;
. (ev) (ew)
Jim P | JTTT 7 o090 > TT T f(Xso™ 0 | =1,
i=1j5=1 i=1j=1

for any 05,05, ...,0,,,0; € ©,i=2,3,...,m.

Theorem 3.3 For any sequence of mazimum weighted likelihood estimates ég"l) of 61 constructed
with adaptive weights )\gn)(X), and for all € >0,

lim Pgo (”égnl) - 0?” > 6) = 0,

ny—roo
for any 05,05, ...,0,,,0; € ©,1=23,....m.

Theorem 3.4 For any sequence of mazimum weighted likelihood estimates 9§"1) of 61 constructed
with adaptive weights \;(X), and for all € >0

lim Pyo (|(65™) = 6| > €) =0,

n1—roo
for any 05,05, ...,0,,,0; € ©,i =2,3,...,m.
We assume that the parameter space is an open subset of RP. The asymptotic normality of the
WLE constructed by cross-validated weights follows.

Theorem 3.5 (Multi-dimensional) Then there exists a sequence of roots of the weighted likelihood
function based on adaptive weights ég’“’ that is weakly consistent and

N (5§n1) - 0(1)) 2y N (0,1(69)), as n1 — oo.

4 Simulation Studies

To demonstrate the benefit of using cross-validation procedure described in previous sections, we
perform simulations for normal and Poisson distributions based on delete-one-column approach.
The algorithm is given as follows.

Step 1: Draw a random sample of size n from fi(x;60) and fo(x;69);

Step 2: Calculate the cross-validated optimum weights;

Step 3. Calculate (MLE- 69)? and (WLE- 69)2;

Step 4: Repeat Step 1 - 3, 1000 times. Calculate the averages and standard deviations of the squared
estimation error for both the MLE and WLE. Calculate the averages and standard deviations of the

optimum weights.

12



n  MSE(MLE) SD of (MLE-69)2 MSE(WLE) SD of (WLE-0)2 MSE(WLE)

MSE(MLE)
10 0.100 0.145 0.079 0.122 0.798
20 0.047 0.062 0.040 0.054 0.849
30 0.032 0.044 0.028 0.039 0.872
40 0.026 0.036 0.023 0.033 0.906
50 0.018 0.025 0.016 0.024 0.923
60 0.016 0.022 0.015 0.021 0.935

Table 1: Averages and standard deviations of the MSE for the MLE and the WLE samples of equal
size from N(0,1) and N(0.3,1).

We generate random samples from N (u1,0%) and N (p2,03), setting o1 = o2 = 1 for simplicity.
For the purpose of the demonstration, we set 3 = 0 and pu, = 0.3. Table 1 shows the simulation

results for this case.

n AVE.of Ay AVE.of A SD of A\; and Ay

10 0.8630 0.1369 0.0060
20 0.9331 0.0668 0.0013
30 0.9555 0.0444 0.0005
40 0.9656 0.0343 0.0003
50 0.9741 0.0258 0.0002
60 0.9792 0.0207 0.0001

Table 2: Optimum weights and their standard deviations for samples of equal size from N(0,1) and
N(0.3,1).

It can be seen from Table 1 that the MSE of WLE is much smaller than that of the MLE for
small and moderate sample sizes. The standard deviations of the squared differences for the WLE
are uniformly smaller than those of the MLE. This suggests that not only does WLE achieve smaller
MSE but also its MSE has less variation than that of MLE. Intuitively, as the sample size increases,
the importance of the second sample diminishes. As indicated by Table 1, the cross-validation
procedure assigns smaller values to A2, as the sample size increases. The optimum adaptive weights
do converge towards the asymptotic limit (1,0) as shown by Table 2.

We repeat the algorithm for Poisson distribution with 4 = 2 and p = 2.5. Simulation results
are shown in Table 3 and Table 4. The results for the Poisson case demonstrate similar patterns
for the ratio of the MSEs for WLE and MLE. This statement also applies to the behavior of the
optimal adaptive weights as the sample size increases.

Other values for py and py were tried for the normal and Poisson distributions. In general, the
larger the difference between the two means, the less improvement in the MSE. For the normal case,
if we set 07 = 02 = 1 and ps — p1 = 1, the ratio of the MSE for MLE and WLE will be almost 1.

13



This implies that the WLE will be almost identical to the MLE. This further implies that the weight
for the second sample is almost zero. We also report that the reduction in MSE will disappear if we
set ps — up = 1.5 for the Poisson case. Thus, the cross-validation procedure will not combine the

two samples if the second sample does not help for prediction.

n  MSE(mle) SD of (MLE-§)> MSE(wle) SD of (WLE-0)2 MSblule)

MSE(mle)
10 0.192 0.081 0.155 0.056 0.808
20 0.108 0.022 0.093 0.017 0.862
30 0.068 0.010 0.061 0.008 0.899
40 0.051 0.005 0.047 0.005 0.932
50 0.040 0.003 0.038 0.003 0.943
60 0.036 0.002 0.034 0.002 0.947

Table 3: MSE of the MLE and the WLE and their standard deviations for samples with equal sizes
from P(2) and P(2.5).

n AVE.of \; AVE.of Ay SD of \; and \s

10 0.8667 0.1332 0.0064
20 0.9371 0.0628 0.0010
30 0.9588 0.0411 0.0004
40 0.9713 0.0286 0.0002
50 0.9771 0.0228 0.0001
60 0.9812 0.0187 0.0001

Table 4: Optimum weights and their standard deviations for samples with equal sizes from P(2)
and P(2.5)

We emphasize that the knowledge of the actual difference between the two populations and
the values of the variance for the normal case is not used in any of these two simulations. We also

remark that simulations of using the delete-one-point approach give very similar results.

5 Application to Disease Mapping

In this section, we address the problem of disease mapping. In particular, we demonstrate a weighted
likelihood alternative to the hierarchical Bayes approach that has been used in references cited below.
Our approach allows the data themselves to select the weights through cross- validation. We thereby
avoid the need in prior modeling, to guess the latent patterns of environmental hazards that may
lead to the adverse health effects being mapped. Such hazards include air pollution that have been
associated with respiratory morbidity (see, for example, Burnett 1994 and Zidek et al. 1998).
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Our demonstration involves parallel time series of weekly hospital admissions for respiratory
disease in residents of 733 Census Sub-Divisions (CSD) in southern Ontario. The data derive from
the May-to-August periods of the years, 1983 to 1988. For this demonstration, we confine attention

to certain densely populated areas.

15

10

Hospital Admissions

Jdo

0 20 40 60 80 100 120
Days in the summer of 1983

Figure 1: Daily hospital admissions for CSD No 380 in the summer of 1983.

Let us consider the problem of estimating the rate of weekly hospital admissions of CSD 380, the
one with the largest annual hospital admissions total among all CSD’s from 1983 to 1988. The daily
data contain many 0’s, representing no hospital admissions. For example, although CSD 380 has
the largest number of hospital admissions overall among all the CSD’s, no patients were admitted
during 112 out of the 123 days in the summer of 1983. On certain of those days, however, quite a
number of people sought treatment for acute respiratory disease, possibly due to high levels of air
pollution in their region. Again referring to CSD 380, 17 patients were admitted on day 51.

A more graphical depiction of these irregularities in admission counts for this CSD are seen in
Figure 1.

There daily counts are shown and the problem of data sparseness and high level of variation are
extreme. In fact, in this demonstration we have chosen to avoid the complexities of modeling these
daily count series and we turn instead to weekly counts. While the problems remain, they are not
nearly so acute.

In total, each of the summers in the years covered by our study has 17 weeks. For simplicity,
the data obtained in the last few days of each summer are dropped from the analysis since they do

not constitute a whole week.

5.1 Weighted Likelihood Estimation

We assume the weekly number of hospital admissions for any given CSD follows a Poisson distribu-

tion, i.e., for year ¢, CSD 7 and week j,

ind. . .
VAR P(0Y),i=1,2,..,17i=1,2,..,733;g = 1,2, ..., 6.
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Figure 2: Hospital Admissions for CSD 380, 362, 366 and 367 in 1983.

The raw estimate of 7 is highly unreliable, the effective sample size in this case

q
> J
being but 1. Moreover, each CSD may contain only a small group of susceptible. These consid-

namely Y

erations point to the need to “borrow strength, a standard feature of disease mapping techniques
(Lawson and Williams, 2001). That is, the information in neighboring CSD’s is combined to produce
more reliable estimates of a regions underlying propensity to generate adverse health outcomes while
introducing only a small amount of bias.

For any given CSD, the “neighboring CSD’s are defined to be CSD’s in close proximity to that of
interest, CSD 380 in our analysis. To estimate the rate of weekly hospital admissions in a particular
CSD, we would expect that neighboring subdivisions to contain relevant information which might
help us to derive a better estimate than the traditional sample average. Thus, the Euclidean distance
between the target CSD and any other CSD in the dataset is calculated by using the longitudes
and latitudes. We choose somewhat arbitrarily to count as neighbours, any CSD’s whose Euclidean
distances are less than 0.2 from the target CSD. For CSD 380, neighboring CSD’s turn out to be
CSD’s 362, 366 and 367.

The time series plots of weekly hospital admissions for those CSD’s in 1983 are shown in Figure
2. Hospital admissions of these CSD’s indeed seem to be related since the major peaks in the time
series plot occurred at roughly the same time points. However, as noted earlier the data from other
CSD’s may introduce bias. Thus the WLE’s weights are needed to combine information effectively
and control the bias at the same time.

To find cross-validatory choices for these weights we consider purely as a working assumption,
that ng =07 for j = 1,2,...,17. In fact, that assumption does not seem tenable since every year, week
8 always has the markedly larger numbers of hospital admissions for CSD 380 than the remaining
weeks. For example, in 1983, there are 21 admissions in week 8 while the second largest weekly
count is only 7 in week 15. Thus, we are forced to drop week 8 from our working assumption and
instead, assume 6], = 0 for j = 1,2,..7,9,..17. In fact the sample means and variances of the
weekly hospital admissions for those 16 weeks of CSD 380 are quite close to each other in support
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of our assumption.

One alternative to assuming the constancy of weights over the whole summer that might yield
stable estimates of weights would be the use of a moving window just a few weeks in width. We
leave that option for future work.

For Poisson distributions, the MLE of 8] is the sample average of the weekly admissions of CSD
380 while the WLE is a linear combination of the sample averages for each CSD. Thus, the weighted
likelihood estimate of the population mean weekly hospital admission number for a CSD is 69, is

4
WLE'=> XNY;, ¢=1,2.,16.

i=1

where Y} denotes be CSD 4’s overall sample average for the 16 weeks of year i.

For our analysis, the weights are selected by the cross-validation procedure proposed in Section 2.2.

5.2 Results of the Analysis

We assess the performance of the MLE and the WLE by comparing their MSE’s. The MSE of the
MLE and the WLE are defined as, for ¢ = 1,2, .., 16,

—q 2
MSEL @) = By (V0 —6))

4 2
MSE}(07) = Eg (ZAg?;?_—ag) )

=1

In fact, the 67 are unknown. We then estimate the M SEj and MSEw by replacing 67 by the
MLE. Under the assumption of Poisson distributions, the estimated MSE for the MLE is given by:

—

MSE], = var(Y11)/16, ¢ =1,2,...6.

The estimated MSE for the WLE is give as following:
m 2
MSE}, = E (Z Y] — ag)
i=1

m m 2
= Var (Z A???,) + (EZ Y] — 0?)
i=1

i=1
4 4 m 2
& DD MMa(Y,,YS) + (Z MY —?§_> .
i=1 k=1 i=1

The estimated MSE for the MLE and the WLE are given in the following table. It can be seen from
the table that the MSE for the WLE is much smaller than that of the MLE. In fact, the average
reduction of the MSE by using WLE is about 25%.
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Year 7MLE 7 WLE 16 MSE,,

16 MSEy MSEy /MSEy,

1 .185 174 101 .084 0.80
2 .328 .282 .241 131 0.87
3 .227 257 .286 143 0.54
4 151 224 159 .084 0.96
5 303 .322 .298 130 0.80
6 378 412 410 .244 0.54

Table 5: Estimated MSE for the MLE and the WLE.

Combining information across these CSD’s might also help us in the prediction since the patterns
exhibited in one neighboring location in a particular year might manifest itself at the location of
interest the next year. To assess the performance of the WLE, we also use the WLE derived from
one particular year to predict the overall weekly average of the next year. The overall prediction
error is defined as the average of those prediction errors. To be more specific, the overall prediction
errors for the WLE and the traditional sample average are defined as follows:

1~ /g —gt1)\2

PREDy = gq;(y‘{_—yf“) ;
PREDw = |1 3 wrg: - v’
R P UC

The average prediction error for the MLE, Predy,, is 0.065 while the Predy , the average prediction
error for the WLE, is 0.047 which is about 72% of that of the MLE.

Bayes methods are popular choices in the area of disease mapping. Manton et al. (1989) discuss
the Empirical Bayes procedures for stabilizing maps of cancer mortality rates. Hierarchical Bayes
generalized linear models are proposed for the analysis of disease mapping in Ghosh et al. (1999).
But it is not obvious how one would specify a neighborhood which needs to be defined in these
approaches. The numerical values of the weight functions can be used as a criterion to appropriately
define the neighborhood in the Bayesian analysis. We will use the following example to demonstrate
how a neighborhood can be defined by using the weight functions derived from the cross-validation
procedure for the WLE.

From Table 6, we see that there is strong linear association between CSD 380 and CSD 366.
However, the weight assigned to CSD 366 is the smallest one. It shows that CSD’s with higher
correlation contain less information for the prediction since they might have too similar a pattern
to the target CSD for a given year to be helpful in the prediction for the next year. Thus CSD 366
which has the smallest weight should not be included the analysis. Therefore, the “neighborhood”
of CSD 380 in the analysis should only include CSD 362 and CSD 367.
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CSD 380 CSD 362 CSD 366 CSD 367 | Weights
CSD 380 1.000 0.421 0.906 0.572 0.455
CSD 362 0.421 1.000 0.400 0.634 0.202
CSD 366 0.906 0.400 1.000 0.553 0.128
CSD 367 0.572 0.634 0.553 1.000 0.215

Table 6: Correlation matrix and the weight function for 1984.

In general, we might examine those CSD which are in close proximity to the target CSD. We
can calculate the weight for each CSD selected by using the cross-validation procedure. The CSD
with small weights should be dropped from the analysis since they are not deemed to be helpful or

relevant to our analysis according to the cross-validation procedure.

Year Cly Clwy

1983 [0,3] [0, 3]
1984 [0, 5] [0, 4]
1985 [0, 4] [0, 4]
1986 [0, 3] [0, 4]
1987 [0, 4] [0, 5]
1988 [0, 5] [0, 6]

Table 7: MSE of the MLE and the WLE for CSD 380.

We remark that the weight function can also be helpful in selecting an appropriate distribution
that takes into account the spatial structure. Ghosh et al. (1999) propose a very general hierarchical
Bayes spatial generalized model that is considered broad enough to cover a large number of situations
where a spatial structure needs to be incorporated. In particular, they propose the following:

0; = qi =xtb+u; +v;,i=1,2,...,m

where the ¢; are known constants, x; are covariates, u; and v; are mutually independent with
ii.d.
~y

v; N(0,0?) and the u; have joint pdf

m
F(u) o< (02)7) 7P eap [ =D (ui — uy)’wij/(207)
i=1 j#i
where w;; > 0 for all 1 < ¢ # j < m. The above distribution is designed to take into account the
spatial structure. In their paper, they propose to use w; = 1 if location ¢ and j are neighbors. They
also mention the possibility of using the inverse of the correlation matrix as the weight function.
The weights function derived from the cross-validation procedure might be a better choice since it
takes account of the spatial structure and underlying factors.
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The predictive distribution for the weekly total is Poisson for WLE. We can then derive the
95% predictive interval for the weekly average hospital admissions. This might be criticized as
failing to take into account the uncertainty of the unknown parameter. Smith (1998) argues that
the traditional plug-in method has a small MSE compared to the posterior mean under certain
circumstances. In particular, it has a smaller MSE when the true value of the parameter is not
large. Let CIy and CIps be the 95% predictive intervals of the weekly averages calculated from the
WLE and the MLE respectively. The results are shown in the following table.

We remark that this is merely a demonstration of the weighted likelihood method. Further
analysis is needed if one wants to compare the performances of the WLE, the MLE and the Bayesian

estimator in disease mapping.

Appendix

Proof of Lemma ?7 : Observe that

(=i — 1
Xz(. s enXi — mXij-
where e, = -25.
n (. (N2
Let 157 =1 %" (Xg 9 _ X; J)) . Tt then follows that
i=1
1 1 & - 1 — 1 2
Esf = E ((enXl. - lej) - (enX2. - me))
j=1
1 — e =
= E(nefb(Xl, —~X,)? - 2 (X1 —X2) ZI(XU - Xo;)
J:
1 n
(0 - X))
=1
n(n — 2) 5 1 ~ 9
= X X X X
(n_l)z( 1 2) +n(n—1)2 Z( 1j 2])
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Let 155 =1 S (X7 - x{9)& P - x4). Tt follows that

1 e 1 & - = 1 - 1
-5 = - > (en(Xl. -Xo) - m(le - ij)) ((enXl. - mXu) - le)

1 & - = 1 -

_ Z (en(XL — XQ) — —(le — XQ]')) (enXl, - enle)
nj:1 n—1

€n

D (X1j — X25)(X 1. — Xyj)

M=

1

.
I

]:1

(X1; — Xo2)(X1. — Xuj)  (since Z (71 - le) =0)

n

_n(n—l)j . =
e - - -
= _TL(TTil) X1 ) (Xuj— Xog) = Y Xi+ > X1, X,
=1 Jj=1 Jj=1
e 1¢ I8N
_ n v ~ = 2 X,
= - Xl,(Xl._XZ.)_EZXU_}_EZXUXQJ
j=1 Jj=1
n o~
= noiE (67 — cov)

This completes the proof. ¢
Proof of Proposition 7?7 : By the Weak Law of Large Numbers, it follows that

~2 _ —~~ N 2 _
07 — cov o1 — po10s.

Thus condition p < ¢1/02 implies that 6% > cov for sufficiently large n. Thus, A3¥ * eventually will
be positive. ¢
Proof of Proposition 7?: From Lemma 77, it follows that the second term of S; goes to zero in
probability as n goes to infinity while the first term converges to (69 — 69)? in probability.
Therefore we have

Sl =% (69 — 69)% as n — oo,

where (69 — 69)2 # 0 by assumption.
Moreover, we see that S5 = Op(L). By definition of A3”", it follows that

Pyo
A3 = | |—g>0 as n — oo.

This completes the proof. ¢
Proof of Proposition ?7:
By differentiating ng) — v (1*X — 1) and setting the result to zero, it follows that

D™ —y (1A -1
B}

) —2be + 24P — 11 = 0.
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It then follows that
-~ v
AP — A1 (be + 51) .

We then have

1
1= 10A = 16471 (be + %) .

Thus,
2

Vv = m (1 - ].tAglbe) .

Therefore,

_ 1t A—-1
APt = A1 (be+71 14 be1).

1tA; "1

Since ng) is a quadratic function of A and A > 0, the minimum is achieved at the point )\g”t.

Furthermore, by equation (??) and (??), we have
AT1p, = AT (A1 - eiil) = (1,0,0,...,0)! — 2 ATIS].

Denote the optimum weight vector by A°Pt. Tt follows that

o 1PA7'S
APt = (1,0,0,..,0) — €2 [ 418, - =Tl AC ).
164711

This completes the proof. ¢
Proof of Proposition ??: ;From equation (??), it follows that

2
-2
\oPt — 1 (n?il) o1
LT Y, — X, )2 1_-2°
n (X1 — X2)? + 63

ni1—1

By the Weak Law of Large Numbers, we have

N Pyo
52 I g2

It then follows that

2
~2
(n?ll) 01 Py
X Y. )2 5 0
n1 (X1, — X2.)? + 767
We then have
et Tt .

The last assertion of the theorem follows by the fact that Ay + Ao = 1. ©

22



Proof of Theorem 77?7 : Consider

o) = - (%1, - 00 ))
- = j: (15 = 9B) + (6(677) — 9(6)) )
- = : (35 - 0@) + ; (667 - 0(6™)
2 _ (%1 - 66) (5657) - 9(61))
Note that :
nig (%1, - 6657) (6657) - 665))
- ,%Z (X5~ 9(69) (40177 — 6(0))
+ni_ (269) — 907 )) (685 7) - 9(0))
=851+5
where
S = ni Z_j (31, = o8)) (4085 ) - 08 ) ,
S o= o z:j (#(6)) —0617)) ((6577) — 6(67)) -

We first show that S; @) 0.
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Consider

IN

IA

Pgo (|51| > 6)
Pyo (e< 15| and ‘qs(éﬁ')) —¢(é§*"))‘ <M for all j)

+ Pyo (e < |S1| and ‘¢(é§_”) - ¢(9~§_l))‘ > M for some l)

Po [ e<isil< 3 1%, ¢(02)|> 32 P ([0 — 06| 2 M)
j=1 =1

(i< i =) e ot -2
Po (|3 (X1 - 66D) >$) + Py (J9(6" D) - 98" V)| > M)
j=1

The first term goes to zero by the Weak Law of Large Numbers. The second term also goes to zero

by assumption (4). We then have

Ppo(|S1]| >€) — 0 as ny — oo. (9)

P
We next show that So —= 0 as n; — 0.

Consider

IN

IN

Pyo
Pyo

(52| > €)
(e <] and ‘qﬁ(éﬁ‘“) —¢(é§‘j))‘ <M for all j)

+Pyo (e < |S2| and ‘(ﬁ(éf”) - ¢(é§_1))‘ > M for some l)

Pyo

Pyo

Pyo

n1

Z 0( J)

=1

=3 @) - 46D)

Jj=1

e< |S2| <

69) ) +30 P (Jo@) - 00| > M)

Se<
Me

) + 1Py (|0(87") - 60| 2 M)

L 5™ (0679 - s(69))

n
1]1

> %) + P (|00 ) — 98| > M)

The first term goes to zero by assumption (2). The second term also goes to zero by assumption
(4). We then have

Ppo(|S2] >€) — 0 as ng — oo. (10)

It then follows that

ni

S0, = — 3 (X0 )) + =3 (967) - 60) + R, (1)

Jj=1 Jj=1
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P
where R,, = 0. Observe that the first term is independent of A. Therefore the second term must
be minimized with respect to A to obtain the minimum of nLle (A). We see that the second term

is always non-negative. It then follows that, with probability tending to 1,

1 15 j(~9)

~ DA > =S (X1 — (6 ~ Dy, (w),

RACEFDY (%1 = 00))" = D, ()
since ¢(07) = ¢85 for A = wq = (1,0,0, ...,0)! for fixed n;.
Finally, we will show that

Pyo
A 28 e, as ny — oco.

P
Suppose to the contrary that Aler) 268 wy + d where d is a non-zero vector. Then there exists nyg
such that for n; > no,

1 1
(ev)
- D,, ()\ ) > - D,, (w).

This is a contradiction because A(°?) is the vector which minimizes H%Dnl for any fixed n; and the
minimum of n%Dnl (A) is unique by assumption. ¢

The proofs of Theorem ?? - ??7 are identical to the proofs for fixed weights as given by Wang, van
Eeden and Zidek (2002) except that the fixed weights are replaced by adaptive weights and the

utilization of Theorem ??. Details can be found in Wang (2001).
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