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Abstract

This paper presents a solution to a problem in multiagent statistical decision
analysis. More precisely, a group of Bayesians are jointly required to predict an ex-
ponentially distributed random inter-event time, S. They are to base that prediction
on shared, previously observed, independent and identically distributed realizations
of S. Although their priors may be different, they have the same conjugate utility
function for prediction. That utility is shown to yield a conjugate utility for estimat-
ing the population-mean inter-event time. Thus prediction gives way to estimation.
For the case of just two agents, the Pareto efficient boundary of the set of utili-
ties generated by the class of all non-randomized linear prediction rules is explored.
Conditions are given under which those rules are G-complete within the class of non-
randomized linear predictors, meaning that optimum non-random predictors can be
found on the Pareto boundary thereby providing a basis for a meaningful consensus.
It is shown that the pre-posterior probability of such consensus is 1 under reason-
able, explicit conditions. Finally, several paradigms are considered for selecting the
compromise predictor and their implied solutions for a general G characterized.

∗The work reported in this paper was supported by a grant from the Natural Science and Engineering
Research Council of Canada
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1 Introduction

This paper concerns the prediction of a future exponentially distributed random variable
S by a group of G Bayesian agents. These agents could in fact be robots, each monitoring
a single node of a process, for example. The S in question could be an inter-event time
or a survival time. In any case, the agents share n independently observed realizations of
S. Moreover, although they may have different prior knowledge, they do have a common
conjugate utility function. The latter could be viewed as that of the organization employing
them.
This paper is more generally concerned with paradigms that can be invoked in multiagent
decision problems. Although their implications are worked out in just the special context of
the prediction problem addressed in this paper, the nature of those results are suggestive,
indicating what might obtain in other contexts as well.
The paradigms explored in this paper are:

1. The Organization is a third intelligent agent, i.e. a “supra Bayesian” (see, for exam-
ple, Genest and Zidek (1986)), capable of combining the data and prior opinions (as
data!) with his, her or its own prior and thereafter developing a conventional Bayes
predictor.

2. The Organization can “pool” the separate posterior distributions to create a single
posterior, again for use in a conventional analysis as above.

3. The problem can be treated as a multi-agent decision problem where the agents would
have an individually preferred (Bayesian) prediction strategy but would be forced to
seek a compromise in a group decision problem.

Interest focuses on the similarities as well as differences in the predictors they produce.
However, selection of the best paradigm for a particular application would depend on the
context.
With respect to Paradigm #3, the optimal joint predictor of S may well be randomized,
since members of the class of conjugate utility functions adopted in this paper are not
concave. In other words, the agents may have to select at random amongst a set of non-
randomized predictors. However, that sort of procedure would not generally be considered
practical. Therefore conditions are derived, at least in the case of G = 2 agents, that ensure
the optimal procedure is non-randomized. Since those conditions depend on the data,
their attainment is generally subject to sampling uncertainty. Yet surprisingly at least
in some situations presented below, their attainment is certain pre-posteriori. Thus, in
some situations the two agents are assured of a realistic consensual choice of a compromise
predictor. The case of G > 2 remains an open problem.
The paper begins with Section 2 which addresses the case of a single agent. There a con-
jugate utility function for predicting the random exponential variable, S, is adopted. That
leads to an equivalent problem for the estimation of λ. With a judicious approximation,
the latter also has a conjugate utility function, providing the mathematical tractability
needed to enable analytical progress. The Bayes estimator of λ is found and that in turn
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can be viewed as a predictor of S for that Bayesian. Section 3 turns to the case of G > 1
agents and a number of general results are given. However, the principal result there, a
group admissibility result, is for just G = 2. Is there a basis for a consensual choice of
a nonrandomized estimator by these two agents? Section 4 addresses that question and
develops conditions where the answer to this question is affirmative. The pre-posterior
probability of their attainment is found and shown to be 1 in certain situations. Section
5 then explores the implications of adopting the three paradigms described above, com-
paring and contrasting the results obtained. Finally, Section 6 discusses various aspects
of the problem addressed in this paper and returns to general issues presented in this
introduction.

2 A single agent

This section develops the problem of finding a predictor of an exponential random vari-
able S for a single Bayesian. A conjugate prior and utility function are assumed to gain
mathematical tractability at the expense of completeness, to better enable us to address
conceptual issues in later sections.

Suppose the decision maker observes S1, . . . , Sn
i.i.d∼ exp (λ) so that

fSi
(t|λ) =

1

λ
exp

(
− s

λ

)
, t > 0

E(Si|λ) = λ

V (Si|λ) = λ2

for all i = i, . . . , n. Then if T =
∑n

i=1 Si denotes the sufficient statistic it has conditional
density function,

fT (t|λ) =
tn−1

λnΓ(n)
exp

(
− t

λ

)
, t > 0.

Moreover,

E(T |λ) ≡ µ(T |λ)

= nλ and

V (T |λ) ≡ σ2(T |λ)

= nλ2.

Further assume the Agent has a (conjugate) inverted gamma prior density for λ given by

π(λ|θ) =
βα−1

λαΓ(α− 1)
exp (−β

λ
), λ > 0 (2.1)

where θ = (α, β, γ) denotes the vector of hyperparameters. Thus,

E(λ|θ) ≡ µ(λ|θ)

3



=
β

α− 2
, α > 2 and

V (λ|θ) =
µ(λ|θ)2

α− 3
, α > 3.

Then this decision maker’s marginal density function for T is

fT (t|θ) = C(n, α)
(t/β)n−1

β(1 + t/β)(α+n−1)
, t > 0 (2.2)

where

C(n, α) =
Γ(α + n− 1)

Γ(n)Γ(α− 1)
.

It readily follows that

E[T |θ] ≡ µ(T |θ)
=

n

α
V [T |θ] ≡ σ(T |θ), and

= E[σ(T |λ)|θ] + V [E(T |λ)|θ]
=

n(α + n− 2)µ2(T |θ)
(α− 3)

.

Finally we may compute the Agent’s posterior density function conditional on the data,
that is on the value of the sufficient statistics T = t,

π(λ|t, θ) =
(β + t)α+n−1

Γ(α + n− 1)λα+n
exp

(
−β + t

λ

)
. (2.3)

It readily follows that

E[λ|t, θ] ≡ µ(T |t, θ)
=

β + t

α + n− 2
, α + n > 2, and

V [λ|t, θ] ≡ σ(T |t, θ)
=

µ2(λ|t, θ)
(α + n− 3)

, α + n > 3.

Observe that the just computed mean has the familiar form

E[λ|t, θ] =
α− 2

α + n− 2
µ(λ|θ) +

n

α + n− 2
λ̂MLE,

a weighted average of the prior mean the maximum likelihood estimator of λ.
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One solution to the prediction problem is a predictive distribution, fS(s|λ̂) for S, λ̂ being
an estimator of λ. That solution yields not only a point predictor, Ŝ =

∫
sfS(s|λ̂)ds but

also prediction intervals.
Following a common practice, the performance of that predictive distribution conditional
on λ, is quantified by

I =
∫

fS(s|λ) log

(
f(s|λ)

f(s|λ̂)

)
ds

=
∫

fS(s|λ) log f(s|λ)ds− ∫
fS(s|λ) log f(s|λ̂)ds

= − log λ− 1 + log λ̂ +
λ

λ̂

=
λ

λ̂
− log

λ

λ̂
− 1,





(2.4)

the Kullback-Leibler measure of the discrepancy between the true distribution and the
predictive distribution for S. Ideally λ̂ should be chosen to minimize the quantity in
Equation (2.4). Thus the problem of finding a good predictor for S has formally turned
into an estimation problem, that of estimating λ with the loss function given in Equation
(2.4). The latter is often referred to as entropy loss.
However, that commonly used loss function turns out to be unrealistic since it is unbounded.
Moreover, it is mathematically untractable. Thus, this formulation of the prediction prob-
lem has proven unsatisfactory. So we consider an alternative approach that looks for a
point predictor of S instead of a predictive distribution. Moreover, for convenience we
measure performance by means of a utility function U(Ŝ, S, λ) instead of a loss function.
Its conditional expectation given λ is then given by

E[U(Ŝ, S, λ)|t, λ] (2.5)

and we seek to maximize the expected gain in utility in Equation (2.5). Following Lindley
(1976), we adopt a conjugate utility function

U(Ŝ, S, λ) ≡ γ
1
2√
2π

e
[
S

Ŝ
exp

(
1− S

Ŝ

)]γ

. (2.6)

We now compute the conditional expectation of the utility in Equation (2.6) as
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Figure 1: Conjugate utility functions for the prediction of S for varying γ, plotted against
the S-Ratio, Ŝ/S.

E[U(Ŝ, S, λ)|t, λ]

=
1√
2π

γ
1
2 e

∫
fS(s|λ)

[
s

Ŝ
exp

(
1− s

Ŝ

)]γ

ds

=
1√
2π

γ
1
2 e1+γ

∫ 1

λ
exp

(
− s

λ

) [
s

Ŝ

]γ

exp
(
−γs

Ŝ

)
ds

=
1√
2π

γ
1
2 e1+γ

[
1

Ŝ

]γ 1

λ

∫
sγ exp

{
−s

(
1

λ
+

γ

Ŝ

)}
ds

=
1√
2π

γ
1
2 e1+γ

[
1

Ŝ

]γ 1

λ

(
1

λ
+

γ

Ŝ

)−(1+γ)

Γ(1 + γ)

=
1√
2π

Γ(1 + γ)e1+γγ−γ− 1
2
Ŝ

λ

(
1 +

Ŝ

γλ

)−(1+γ)

.





(2.7)

If we substitute λ̂ for Ŝ in Equation (2.7) we obtain what may formally be viewed as a
gain in utility function for the estimation of λ. In particular it is maximized by the choice
λ̂ = λ as would be required of any reasonable measure of utility.
However, that utility is not very tractable, in particular, it is not conjugate for the λ -
estimation problem. But we can obtain a conjugate utility as an approximation by letting
γ → ∞. In fact as Figure 1 shows, the conjugate utility in Equation (2.6) for predicting
S, which effectively tends to the 0-1 utility as γ increases, does not change very rapidly
as λ increases. Moreover, the derived utility for estimating λ in Equation 2.8 is well
approximated for λ’s as small as 10 as Figure 2 demonstrates.
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Figure 2: Approximate and exact utility functions for estimating λ for varying γ, plotted
against the λ-Ratio, λ̂/λ.

Arriving at the approximation requires Stirling’s approximation,

Γ(1 + γ) ∼
√

(2π) exp (−γ)γγ+ 1
2 .

The result after the substitution is a conjugate utility

λ̂

λ
exp

(
1− λ̂

λ

)
. (2.8)

In fact this has the same form as that adopted above for the prediction of S except that
γ = 1 in this case. This then is the utility we adopt in this paper. With this conjugate
utility for λ, we can now find this Bayesian’s predictor. However, before doing so, we
present a lemma that will be useful in computing its conjugate utility and in the next
section as well.

Lemma 2.1 For the utility function (2.8), posterior (2.3) and an estimator of the form
λ̂(t) = c1t + c2, c1 ≥ 0, c2 ≥ 0, the expected marginal utility is given by

U(λ̂, θ) = Eu(λ̂, λ, θ)

=
eβα−1

(c1 + 1)n+1(c2 + β)α
{c2(c1 + 1)(α− 1) + c1n(c2 + β)}.





(2.9)

Proof. First note that conditionally on λ,
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E [u(c1T + c2, λ, θ) | λ]

=
e

λ

∫ ∞

0
(c1t + c2) e−(c1t + c2)/λ tn−1

λnΓ(n)
e−t/λdt

=
e(1−(c2/λ))

λn+1Γ(n)

∫ ∞

0

(
λ

c1

c1 + 1
s + c2

)
e−ssn−1

(
λ

c1 + 1

)n

ds

=
e(1−(c2/λ))

λn+1Γ(n)

(
λ

c1 + 1

)n {
λ

c1

c1 + 1
Γ(n + 1) + c2Γ(n)

}

=
e(1−(c2/λ))

λ(c1 + 1)n+1
{c1nλ + c2(c1 + 1)}.





(2.10)

From (2.10) one obtains

U(c1T + c2, θ) = Eu(c1T + c2, λ, θ)

=
e

(c1 + 1)n+1

{
c1n

∫ ∞

0
e−c2/λ βα−1

λαΓ(α− 1)
e−β/λdλ

+ c2(c1 + 1)
∫ ∞

0

e−c2/λ

λ

βα−1

λαΓ(α− 1)
e−β/λdλ

}

=
e

(c1 + 1)n+1

βα−1

Γ(α− 1)

{
c1n

Γ(α− 1)

(c2 + β)α−1
+ c2(c1 + 1)

Γ(α)

(c2 + β)α

}
,

from which the result follows immediately. ♥

We now determine the Bayes rule for the conjugate utility.

Theorem 2.1 For the utility function (2.8) and the prior (2.1), the Bayes estimator λ̂B

of λ is given by

λ̂B(t) =
t + β

α + n− 1
. (2.11)

Proof. By (2.1) and the fact that for given λ > 0, T has density





tn−1e−t/λ

λnΓ(n)
if t > 0

0 if t ≤ 0,

the joint density of T and λ is given by
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



tn−1e−t/λ

λnΓ(n)

βα−1e−β/λ

λαΓ(α− 1)
if t > 0, λ > 0

0 if not.

From (2.2) it then follows that the posterior density of λ is, for t > 0, given by

π(λ | t) =





(t + β)α+n−1

Γ(α + n− 1)λα+n
e−(t+β)/λ if λ > 0

0 if λ ≤ 0.

For an estimator λ̂ = λ̂(T ), the expected posterior utility becomes

U(λ̂, θ | t) = E
{
u(λ̂, λ, θ) | t

}
= E

{
λ̂

λ
exp

{
1− λ̂

λ

}
| t

}

= e λ̂
(t + β)α+n−1

Γ(α + n− 1)

∫ ∞

0

1

λ
exp

{
−t + β + λ̂

λ

}
1

λα+n
dλ

= e λ̂
(t + β)α+n−1

Γ(α + n− 1)

Γ(α + n)

(t + β + λ̂)α+n
.





(2.12)

The Bayes estimator λ̂B maximizes U(λ̂, θ | t) and it is easily seen that this maximum is
attained for the λ̂ satisfying

d

dλ̂
U(λ̂, θ | t) = 0

where

d

dλ̂
log U(λ̂, θ | t) =

1

λ̂
− (α + n)

t + β + λ̂

=
t + β + λ̂− λ̂(α + n)

λ̂(t + β + λ̂)

= (α + n− 1)
(t + β)/(α + n− 1)− λ̂

λ̂(t + β + λ̂)
.

This proves (2.11). ♥

Corollary 2.1 The maximum value of the expected posterior utility by

eΓ(α + n)

Γ(α + n− 1)

(α + n− 1)α+n−1

(α + n)α+n
. (2.13)
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Proof. Apply Lemma 2.1 with c1 = (α + n − 1)−1 and c2 = β(α + n − 1)−1 to obtain
(2.13). ♥

Note that

λ̂B(t) =
t + β

α + n− 1
=

α + n

α + n− 1
E(λ | t),

where E(λ | t) is the Bayes estimator for squared error loss. Further, from (2.13) it is seen
that the maximum expected posterior utility does not depend upon the data and depends
on the prior only through α. This implies that the preposterior Bayes expected utility is
also given by (2.13). In the next section each of the group of agents using the same (α, n)
obtain, with their possibly different Bayes estimators, the same expected posterior as well
as expected marginal utility.

3 The multiagent prediction problem

In this section the conjugate utility function in equation (2.8) is used. The Bayes estimator
is obtained and a G-complete-class result is presented.

Now consider group G of (Bayesian) agents and look at the problem of finding a G-complete
class of estimators of λ using the expected marginal utility as the basis for comparisons
between estimators. More specifically, the problem is to find a class C of estimators of λ
such that, for each estimator λ̂ ∈ C̄, there exists a λ̂1 ∈ C with





U(λ̂1, θ) ≥ U(λ̂, θ) for all θ ∈ Θ

U(λ̂1, θ) > U(λ̂, θ) for some θ ∈ Θ.

We have succeeded in finding such a G-complete-class result for the special case where
the group G consists of two agents and the estimators under consideration are of the form
λ̂(t) = c1t+ c2. However, for the proof of our G-complete-class result the following lemmas
for the general case of an arbitrary number of agents are needed.

In Lemma 3.1 and Lemma 3.2, the expected utility U(c1T + c2, θ) is studied as a function
of c1 and c2 for ci ≥ 0, i = 1, 2.

Lemma 3.1 Under the conditions of Lemma 2.1

d

dc1

U(c1T + c2, θ)





>
=
<





0 ⇐⇒ c2





<
=
>





β
1− c1n

c1(α + n− 1) + α− 2
.
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Proof.

d

dc1

U(c1T + c2, θ)





>
=
<





0 ⇐⇒ d

dc1

c1n(c2 + β) + c2(c1 + 1)(α− 1)

(c1 + 1)n+1





>
=
<





0 ⇐⇒

(c1 + 1)[n(c2 + β) + c2(α− 1)]





>
=
<





(n + 1)[c1n(c2 + β) + c2(c1 + 1)(α− 1)]

⇐⇒ c2





<
=
>





β
1− c1n

c1(α + n− 1) + α− 2
.

♥

Lemma 3.2 Under the conditions of Lemma 2.1

d

dc2

U(c1T + c2, θ)





>
=
<





0 ⇐⇒ c2





<
=
>





β
1− (n− 1)c1

c1(α + n− 1) + α− 1
.

Proof.

d

dc2

U(c1T + c2, θ)





>
=
<





0 ⇐⇒ d

dc2

c1n(c2 + β) + c2(c1 + 1)(α− 1)

(c2 + β)α





>
=
<





0 ⇐⇒

(c2 + β)[c1n + c2(c1 + 1)(α− 1)]





>
=
<





α[c1n(c2 + β) + c2(c1 + 1)(α− 1)]

⇐⇒ c2





<
=
>





β
1− (n− 1)c1

c1(α + n− 1) + α− 1
.

♥

Now let (see Lemma 3.1 and Lemma 3.2)

h1(c) =
1− cn

c(α + n− 1) + α− 2
0 ≤ c ≤ 1/n

h2(c) =
1− c(n− 1)

c(α + n− 1) + α− 1
0 ≤ c ≤ 1/(n− 1)
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and let n > 1 while α > 2. Then h1 and h2 are each continuous and strictly decreasing in
c with





h1(c) > 0 ⇐⇒ c < 1/n

h2(c)) > 0 ⇐⇒ c < 1/(n− 1)

h1(0) = 1/(α− 2) h1(1/n) = 0

h2(0) = 1/(α− 1) h2(1/(n− 1)) = 0.

Further, for 0 ≤ c ≤ 1/n,

h1(c)





>
=
<





h2(c) ⇐⇒ c





<
=
>





1

α + n− 1
(3.1)

and the pair (c1, c2) with




c1 =
1

α + n− 1

c2 =
β

α + n− 1
= βh1

(
1

α + n− 1

)
= βh2

(
1

α + n− 1

)

gives the Bayes estimator λ̂B.

Now let

S1(β) = {(c1, c2) | 0 ≤ c1 ≤ 1/n, 0 ≤ c2 ≤ β min {h1(c1), h2(c1}}

S2(β) = {(c1, c2) | 0 ≤ c1, c2 > β max {0, h1(c1), h2(c1}}

S3(β) = {(c1, c2) | 0 < c1 < 1/(α + n− 1), βh2(c1) < c2 ≤ βh1(c1)}

S4(β) = {(c1, c2) | 1/(α + n− 1) < c1 ≤ 1/(n− 1), βh1(c1) < c2 ≤ βh2(c1}.





(3.2)

Then it follows from Lemma 3.1, Lemma 3.2 and (3.1) that U(c1T + c2, θ) is, for each fixed
β,

(i) increasing in c1 and in c2 on S1(β)

(ii) decreasing in c1 and in c2 on S2(β)

(iii) increasing in c1 and decreasing in c2 on S3(β)

(iv) decreasing in c1 and increasing in c2 on S4(β).





(3.3)

Finally, the next lemma gives the behaviour of U(cT+c2, θ) as a function of c for c2 = βh1(c)
as well as for c2 = h2(c).
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Lemma 3.3 For

0 ≤ c ≤ 1

n
, c2 = βh1(c), (3.4)

as well as for

0 ≤ c ≤ 1

n− 1
, c2 = βh2(c), (3.5)

U(cT + c2, θ) is, for c ≥ 0 and c2 ≥ 0, increasing in c for c < 1/(α + n− 1) and decreasing
in c for 1/(α + n− 1) < c.

Proof.
To see this result for (3.4) note that

d

dc
U(cT + βh1(c), θ) =

d

dc
U(cT + c2, θ))|c2=βh1(c)+

d

dc2

U(cT + c2, θ))|c2=βh1(c)
d

dc
βh1(c).





(3.6)

The first term on the right hand side of (3.6) is zero by Lemma 3.1. Furthermore,

d

dc
h1(c) < 0 for 0 ≤ c ≤ 1

n
,

so it is sufficient to show that

d

dc2

U(cT + c2, θ)|c2=βh1(c)





<
=
>





0 ⇐⇒ c





<
=
>





1

α + n− 1
.

But by Lemma 3.2

d

dc2

U(cT + c2, θ)





>
=
<





0 ⇐⇒ c2





<
=
>





βh2(c).

The result then follows from (3.1).

For a proof of the result when (3.5) holds, note that

d

dc
U(cT + βh2(c), θ) =

d

dc
U(cT + c2, θ))|c2=βh2(c)+

d

dc2

U(cT + c2, θ))|c2=βh2(c)
d

dc
βh2(c)





(3.7)

with, by Lemma 3.2,
d

dc2

U(cT + c2, θ)|c2=βh2(c) = 0.
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So, it is sufficient to show that

d

dc
U(cT + c2, θ))|c2=βh2(c)





>
=
<





0 ⇐⇒ c





<
=
>





1

α + n− 1
.

But, by Lemma 3.1,

d

dc
U(cT + c2, θ))





>
=
<





0 ⇐⇒ c2





<
=
>





βh1(c)

and the result then follows from (3.1). ♥

The above given properties of U(c1T + c2, θ) as a function of c1 and c2 are summarized in
Figure 3, where the arrows indicate the direction in which U(c1T + c2, θ) increases.

The following theorem gives our complete class result.

Theorem 3.1 Let G be a group consisting of two Bayesians, each using the utility function
(2.8) with the posterior (2.3) with the same α (α > 2) but with different β’s, β1 and β2

with β1 < β2. Let n > 1. Then the class

C = {λ̂(T ) = c1T + c2 | (c1, c2) ∈ S∗}

where S∗ is the closure of the set {(c1, c2) |(c1, c2) ∈ S1(β)∩ S2(β)}, is a G-complete class
of estimators within the class of linear estimators.

Proof. First note that S∗ is not empty and contains points (c1, c2) with c1 < 1/(α+n−1),
points (c1, c2) with c1 > 1/(α+n− 1), as well as all points (c1, c2) with c1 = 1/(α+n− 1),
β1/(α + n− 1) ≤ c2 ≤ β2/(α + n− 1). This can be seen as follows. First note that, by the
definitions of S1(β) and S2(β)

S∗ = {(c1, c2) | 0 ≤ c1 ≤ 1/n, β1M(c1) ≤ c2 ≤ β2m(c1)}

where

m(c) = min {h1(c), h2(c)}
M(c) = max {h1(c), h2(c)}.

Further (see (3.1))

β2m
(

1

α + n− 1

)
− β1M(

1

α + n− 1
) = (β2 − β1)h1

(
1

α + n− 1

)
> 0.
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That S∗ is not empty then follows from the fact that β2m(c)− β1M(c) is continuous in c
on 0 ≤ c ≤ 1/(n− 1).
Figures 4 and 5 summarize the properties of U(c1T + c2, θj), j = 1, 2 as functions of c1

and c2, as well as the relationships between the sets Si(βj), i = 1, . . . , 4, j = 1, 2. The two
cases considered are

(i)
β1

α− 2
≤ β2

α− 1
in Figure 3.2

(ii)
β1

α− 2
>

β2

α− 1
in Figure 3.3.





(3.8)

To study the shape of S∗, let H(c) = β2m(c) − β1M(c). First, consider the case where
0 ≤ c ≤ 1/(α + n− 1). Then

H(c) = β2h2(c)− β1h1(c)

= β2
1− c(n− 1)

c(α + n− 1 + α− 1)
− β1

1− cn

c(α + n− 1) + α− 2
.





(3.9)

When β2/(α−1) ≥ β1/(α−2), it follows from (3.9) that H(c) > 0 for 0 ≤ c ≤ 1/(α+n−1)
because 1 − c(n − 1) ≥ 1 − cn > 0 and α − 2 < α − 1. When β2/(α − 1) < β1/(α − 2),
H(0) < 0, H(1/(α + n− 1)) > 0 and H(c) = 0 has exactly one root, co, say, in the interval
[0, 1/(α + n− 1)] because H(c) ≥ 0 if and only if

(α + n− 1)(nβ1 − (n− 1)β2)c
2 +

[(α + n− 1)(β2 − β1) + β1n(α− 1)− β2(n− 1)(α− 2)]c + β2(α− 2)− β1(α− 1) ≥ 0.

Moreover, H(c) < 0 for 0 ≤ c ≤ co and H(c) > 0 for co < c ≤ 1/(α + n− 1).
Now consider the case where 1/(α + n− 1) ≤ c ≤ 1/n. Then

H(c) = β2h1(c)− β1h2(c)

= β2
1− cn

c(α + n− 1) + α− 1
− β1

1− c(n− 1)

c(α + n− 1) + α− 2

with H(1/(α + n− 1)) > 0 and H(1/n) < 0. That H(c) = 0 has exactly one root, c∗o say,
in the interval (1/(α + n− 1), 1/n) follows from the fact that H(c) ≥ 0 if and only if

(α + n− 1)(β1(n− 1)− β2n)c2 +

[(β2 − β1)(α + n− 1)− (β2n(α− 1)− β1(n− 1)(α− 2)]c + β2(α− 1)− β1(α− 2) ≥ 0.

Further, of course, H(c) > 0 for 1/(α + n− 1) < c < c∗o and H(c) < 0 for c∗o < c ≤ 1/n.
It now needs to be shown that, for every (c1, c2) not in S∗, there exists (c′1, c

′
2) ∈ S∗ such

that
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U(c′1T + c′2, θj) ≥ U(c1T + c2, θj), j = 1, 2

U(c′1T + c′2, θj) > U(c1T + c2, θj) for some j ∈ {1, 2}.





(3.10)

Such (c′1, c
′
2) can be obtained as follows (see also Figures 3.1 -3.3). Start, e.g., with (c1, c2) ∈

S1(β1). Then because S1(β1) ⊂ S1(β2), (c1, c2) ∈ S1(β2) Thus, one can, keeping c1 fixed,
increase each of the expected utilities by increasing c2 until (c1, c2) satisfies

c2 = β1m(c1) = β1 min {h1(c1), h2(c1)}.

Then

(i) if c1 ≤ 1/(α + n− 1), one can increase c1 while keeping c2 fixed. Each of the expected
utilities then increases until (c1, c2) satisfies c2 = β1h2(c1). One then has reached S∗

or, if not (as might be the case when β1/(α− 2) > β2/(α− 1) one can “slide down”
the curve c2 = β1h1(c1) and thus increase each of the expected utilities, until S∗ is
reached;

(ii) if c1 > 1/(α + n− 1), one can further increase c2 until (c1, c2) satisfies c2 = β1h2(c1).
Then one either has reached S∗, or one can “slide up” the curve c2 = β1h2(c1),
increasing each of the expected utilities, until S∗ is reached.

Similar reasoning works for the other cases. ♥

Remarks:

(i) We do not know whether C contains a proper subset which is G-comp1ete within the
class of linear estimators.

(ii)In the above only nonrandomized estimators were considered. We do not have a similar
result for the class of all estimators.
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Figure 3: Behavior of U(c1T + c2, θ) as a function of c1 > 0 and c2 > 0

17



Figure 4: Behavior of U2(c1T + c2, θj), j = 1, 2 as a function of c1 and c2 and βj when
β1(α− 2)−1 ≤ β2(α− 1)−1
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Figure 5: Behavior of U2(c1T + c2, θj), j = 1, 2 as a function of c1 and c2 and βj when
β1(α− 2)−1 > β2(α− 1)−1

4 Consensual Choice

In this section we consider the case where the group G consists of two Bayesians, Bi,
i = 1, 2, with the same conjugate utility function, while their priors have the same α > 2
but different β’s. They have the same data, t, available. Then (see (2.11)) Bi’s preferred
decision is λ̂i = (t + βi)/(α + n − 1), i = 1, 2 and the question we are looking at in this
section is what decision λ̂ these two Bayesians could agree upon as a compromise between
their λ̂i.

To find an answer to this question we study (see (2.12)) the joint behavior of the expected
posterior utilities Ui(x, θi | t), i = 1, 2 as a function of x. To simplify the notation we put,
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for i = 1, 2, δi = βi + t and Ui(x) = Ui(x, θi | t). Then

Ui(x) = Ki
x

(δi + x)α+n
, i = 1, 2,

where Ki is a positive constant independent of x. Further we suppose, without loss of
generality, that λ̂1 < λ̂2.

The theorems below, whose proofs are given in the Appendix, give the needed properties
of U2(x) as a function of U1(x) for x > 0.

Theorem 4.1 For x > 0

dU2

dU1

(x) ∝ λ̂2 − x

λ̂1 − x

(
δ1 + x

δ2 + x

)α+n+1

> 0 when x < λ̂1

= ∞ when x = λ̂1

< 0 when λ̂1 < x < λ̂2

= 0 when x = λ̂2

> 0 when x > λ̂2.

This theorem follows directly from Lemma A.1.

The following theorem, which follows directly from Lemma A.2, gives the convexity-
concavity properties of U2 as a function of U1 for x < λ̂1 as well as for x > λ̂2.

Theorem 4.2 For x < λ̂1 U2(x) is a convex function of U1(x), while for x > λ̂2 U2(x) is
a concave function of U1(x).

The next theorem gives the convexity-concavity properties of U2(x) as a function of U1(x)
for λ̂1 < x < λ̂2.

Let A, B and C be given by (A.5), let (see Lemma A.5) s(α, n) = 8(α + n)/(α + n − 1)
and let r(α, n) be the unique solution > 1 to r2 + (2− s(α, n))r + 1 = 0. Then

r(α, n) = 3 +
4

α + n− 1
+

√(
3 +

4

α + n− 1

)2

− 1 (4.1)

and the following theorem follows from Lemma A.7.

Theorem 4.3 On (λ̂1, λ̂2)

1) when λ̂2/λ̂1 ≤ r(α, n), U2(x) is a concave function of U1(x);

2) when λ̂2/λ̂1 > r(α, n), U2(x) is a concave, convex, concave function of U1(x) on,
respectively, (λ̂1, x1], (x1, x2), [x2, λ̂2), where x1 < x2 are the roots to Ax2+Bx+C = 0.
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Remark:
The result in Theorem 4.3 is not in agreement with Theorem 4.3 of van Eeden and Zidek
(1994). By Theorem 4.3 above we have concavity on (λ̂1, λ̂2) if and only if

λ̂2

λ̂1

≤ r(α, n)

or (see Lemma A.5) if and only if
(
λ̂1 + λ̂2

)2

λ̂1λ̂2

≤ s(α, n).

But, by Theorem 4.3 of van Eeden and Zidek (1994) we have concavity on (λ̂1, λ̂2) if and
only if (

λ̂1 + λ̂2

)2

λ̂1λ̂2

≤ 4C2
0

where

4C2
0 =

(α + n)2 − (α + n) + 2

α(α + n)2
α(α + n)2 6= s(α, n).

From the theorems 4.2 and 4.3 it follows that, when λ̂2/λ̂1 ≤ r1(α, n),

C = {λ̂ | λ̂1 ≤ λ̂ ≤ λ̂2}
is a complete class of decision rules within the class of all rules. But when λ̂2/λ̂1 > r1(α, n),
some of the rules in C can be improved upon by randomized rules. So in the latter case,
optimality would force the two Bayesians into the practically objectionable position of hav-
ing to resort to randomized rules to arrive at a consensual choice.

We now turn to the following question (which could be asked before the data are collected):
“Conditional on λ, what is the probability that for two Bayesians using the same data,
λ̂2/λ̂1 ≤ r1(α, n)?”. In other words:“Conditional on λ, what is, the probability that the
optimal consensual choice of two Bayesians can be reached with a nonrandomized rule?”.
This probability is given by

Pλ

(
T

λ
≥ β2 − r(α, n)β1

λ(r(α, n)− 1)

)
= Pλ

(
T

λ
≥ β2 − β1

λ(r(α, n)− 1)
− β1

λ

)
, (4.2)

where, by the assumption made above, λ̂1 < λ̂2, β1 < β2.
Clearly, if the priors of the two Bayesians are not too far apart in the sense that

β2 ≤ β1r(α, n), (4.3)

they are sure to be able to reach consensus.

More properties of the probability (4.2) are given in the theorems 4.4 and 4.5 for which
the following result is needed.
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Lemma 4.1 For n = 1, 2, . . .,

3 +
√

8 < r(α, n + 1) < r(α, n)

< r(α, 0) = 3 +
4

α− 1
+

√(
3 +

4

α− 1

)2

− 1.





(4.4)

The proof of this lemma follows immediately from (4.1).

Theorem 4.4 If, for some No ≥ 0,

r(α, No + 1) <
β2

β1

≤ r(α,No), (4.5)

then the probability of consensus equals 1 for every n ≥ No. In particular, if

β2/β1 ≤ 3 +
√

8,

the probability of consensus equals 1 for all n ≥ 0.
Finally, if

β2/β1 > 3 +
4

α− 1
+

√(
3 +

4

α− 1

)2

− 1

the probability of consensus is less than 1 for all n ≥ 0.

Proof: The results follow immediately from (4.2) and (4.5). ♥
Theorem 4.5 If the prior β’s do not satisfy (4.3), then (4.2) is less than 1 and the
following hold:

i) for fixed α, n and λ, (4.2) increases as β2 − r(α, n)β1 decreases, i.e. as the priors
get closer together, the probability (4.2) increases;

ii) for fixed α, n, β1 and β2, the probability (4.2) increases as λ increases;

iii) for fixed α, λ, β1 and β2, the probability (4.2) converges to 1 as n →∞.

Proof: The first results follows from (4.2). To see the second result, note that the distri-
bution of T/λ does not depend on λ. For the third result, let

An =
r(α, n)− 1

β2 − β1

.

Then it follows from (4.1) that
√

nAn → ∞. The result then follows from the fact that
(4.2) can be written as

Pλ

(
T − nλ

λ
√

n
≥ 1

λAn

√
n
− β1

λ
√

n
−√n

)

and the asymptotic normality of (T − nλ)/λ
√

n. ♥
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5 Selecting a predictor

The last two sections explored the Pareto boundary from which the agents would select
their joint predictor of S. However, we have side-stepped the question of how the joint
predictor might be chosen.
The answer depends on the specific context in which the predictor is being selected, in
particular which of the three paradigms describe in the Introduction is to be used. This
section investigates the implications of choosing each of these paradigms.
First consider Paradigm #1. Suppose the G agents share with the supra - Bayesian, the
conjugate prior in Equation (2.1) only with varying hyperparameters, so that Agent i has
hyperparameters, (αi, βi), i = 1, . . . , G while the supra-Bayesian has (α0, β0).
One common interpretation of conjugate priors leads us to a predictor for the supra-
Bayesian. Thus, the supra-Bayesian (Agent 0) might well assume that the hyperparameters
actually represent prior knowledge gained from the equivalent of repeated observations of
the exponential random variable itself. Consequently the {αi} represent the number of
prior observations Agent i has made (that is, the amount of prior information i has) while
the {βi} represent the values of their respective sufficient statistics, their prior counterparts
of T , in other words.
Assuming independence of the agents’ prior data leads to a likelihood for λ based on the
prior data that can readily be combined with that based on the data (T ). Then the results
of Section 2 apply directly to yield the following predictor for the supra-Bayesian (Agent
0):

Ŝ ≡ λ̂Supra−Bayesian =
t + β.

α. + n
, (5.1)

the “.” subscript standing for summation over that subscript i = 0, 1, . . . , G.
Although Paradigm #1 and the approach taken above lead directly to a predictor for Ŝ,
they have some objectionable features discussed in Section 6. In any case, the second
paradigm enjoys appeal. Here instead of trying to “accumulate” the prior knowledge in
the various priors, a single prior is adopted to “represent” or “typify” them. In particular,
Genest and Zidek (1986) along with references therein suggest the use of the geometric
average of the priors to do so:

πMultagent(λ) ≡ ΠG
i=1π

ωi(λ|αi, βi),

∝
(

1

λ

)∑G

i=1
ωiαi

exp

(
−

∑G
i=1 ωiβi

λ

)
, λ > 0

the weights {ωi}, ωi ≥ 0,
∑

ωi = 1 reflecting the importance to be attached to each agent.
Thus a conjugate prior is obtained. In the simplest case ωi ≡ G−1 and then

πMultagent(λ) ∝
(

1

λ

)ᾱ

exp

(
− β̄

λ

)
, λ > 0,

where ᾱ ≡ G−1α. and β̄ ≡ G−1β..
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Note that generally the weighted geometric average of the prior densities does not integrate
to 1. However that is a non-issue. After all both the utility function and likelihood functions
are only defined up to a positive multiplicative scaling factor. Moreover, the prior gives
the same Bayes rule no matter how it is scaled. In fact, in this case Section 2 again leads
directly to a predictor

Ŝ ≡ λ̂Multiagent =
t + β̄

ᾱ + n
.

Paradigm #2 also has shortcomings in some situations and these are discussed in Section
6. In fact, neither #1 nor #2 will be suitable in situations where the groups of agents are
required to act in their individual self interest and yet choose a compromise that recognizes
their individual positions. Paradigm #3 is most appropriate in that case.
The linearity in t of (2.11) suggests restricting the search for a compromise to the class of
linear predictors Ŝ ≡ λ̂ = c1t+ c2, t > 0. Each agent’s expected gain in utility for members
of that class appears in Equation (2.9). Selecting a compromise entails finding a solution
concept on which the choice could be made. We adopt the one advocated in Weerahandi
and Zidek (1983) that is based on maximizing the celebrated Nash-Kalai product of their
utilities, that is their geometric average:

UMultiagent(λ̂) ≡ ΠG
i=1U

ωi(λ̂, θi)

∝ 1

(c1 + 1)n+1
ΠG

i=1

(
c2(c1 + 1)(αi − 1) + nc1(c2 + βi)

(c2 + βi)αi

)ωi

where again the {ωi}, ωi > 0,
∑G

i=1 ω1 = 1 represent the weights to be attached to each
agent when seeking the compromise.
In general, the compromise predictor cannot be found in an explicit form even in the
simplest case where ωi ≡ G−1. Instead numerical methods would need to be used in
specific cases. Moreover, as the results of Section 4 show, the Nash-Kalai solution may not
be optimum in the class of that includes randomized rules, even in the case G = 2 unless
the conditions for consensus in that section are met.

6 Discussion

Observe that the logarithm of the conjugate utility (2.8) is

−
[
+

λ̂

λ
− log

[
λ̂

λ

]
− 1

]
. (6.2)

Multiplying the result by −1 to convert it from a log utility to a loss function leads,
curiously, to the entropy loss with the roles of λ and λ̂ interchanged.
This paper assumes the agents share their data. However, sharing may not be feasible in
some situation so that Agent i has only Ti, the sufficient statistic from ni observations on
which to base an estimator of λ. Some of our results extend to this case in a straightforward
manner. However, generally it proves much more challenging, corresponding to the case
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where not only the β’s but also the α’s vary in the prior distributions of the agents in
Equation 2.1. Here little analytic progress can be made.
In Section 5 three paradigms were invoked to find a predictor, #1 and #2 leading to an
explicit result, while #3 leads to a criterion function that would need to be maximized
numerically. Which of these is most appropriate will depend largely on the context. The
first, #1, requires a supra-Bayesian (Agent 0) to supervise the other agents. The gain in
utility function is Agent 0’s. Even if having such an agent is feasible the derivation of
Agent 0’s predictor in Section 5 is too simplistic, supposing as it does the independence of
the agents’ prior data. In fact, their prior opinions will be shaped to a considerable extent
by common knowledge. In fact in the extreme case βi ≡ β and αi ≡ α when the agents
have identical prior information. In general the supra-Bayesian would need to construct a
likelihood function that reflects the correlation among these parameters. The result will
be far less accumulated information than that reflected in the very optimistic Equation
5.1. In other words, implementation of the Paradigm #1 will require some sophisticated
modelling by the supra-Bayesian. That agent’s predictor will be much harder to find than
our analysis suggests.
If the agents’ opinions can be combined say by the organization they serve and a supra-
Bayesian approach is not feasible, then Paradigm #2 obtains. The result is formally
similar to that obtained above for #1. However, it differs in a very fundamental respect
that instead of trying to accumulate prior information as #1 does, it merely tries to deal
with the competing priors by finding one that represents them. This shows that the two
approaches differ in a very fundamental respect.
The last paradigm (#3) is the one to be used by autonomous agents required to find
a compromise predictor. This one leads to difficult computational issues. Indeed, it is
difficult to determine in general when grounds for consensus exist (that is when randomized
predictors are unnecessary.) However, Section 5 does provide an explicit criterion for
finding an optimum Nash-Kalai predictor.
Another solution criterion, a variation of a supra-Bayesian approach is also feasible. Sup-
pose one Bayesian, i, is to be selected at random from among the G agents with probability
ρi. The value of a predictor or estimator (λ̂) will then be assessed using that agent’s ex-
pected gain in utility function. However, the predictor must be selected in advance, without
knowing which agent will be selected. Then to maximize the expected gain, the predictor
should be chosen to maximize

USupra ≡
G∑

i=1

ρiU(λ̂, θi)

∝ 1

(c1 + 1)n+1

G∑

i=1

ρi

(
c2(c1 + 1)(αi − 1) + nc1(c2 + βi)

(c2 + βi)αi

)
.

This and other solution criteria remain to be explored in future work.
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A Appendix

Lemma A.1 For i = 1, 2 and x > 0,

dUi(x)

dx
∝ (α + n− 1)

1

(δi + x)α+n+1
(λ̂i − x).

Proof

dUi(x)

dx
∝ 1

(δi + x)α+n
− (α + n)

x

(δi + x)α+n+1

=
1

(δi + x)α+n+1
(βi + t− (α + n− 1)x)

= (α + n− 1)
1

(δi + x)α+n+1
(λ̂i − x). ♥

Lemma A.2 For x > 0, x 6= λ̂1,

d2U2

dU2
1

(x) =
K(x)

x− λ̂1

{
−(λ̂2 − λ̂1)(δ1 + x)(δ2 + x) + (α + n + 1)(δ2 − δ1)(λ̂2 − x)(x− λ̂1)

}
,

where K(x) > 0 for x > 0.

Proof Let g(x) = dU2(x)/dU1(x). Then

d2U2

dU2
1

(x) =

d

(
dU2

dU1

)

dU1

(x) =
dg(x)/dx

dU1(x)/dx
(A.3)

with (see Theorem 4.1)
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dg(x)

dx
∝ d

dx


 λ̂2 − x

λ̂1 − x

(
δ1 + x

δ2 + x

)α+n+1



=
d

dx




(
λ̂2 − λ̂1

λ̂1 − x
+ 1

) (
1− δ2 − δ1

δ2 + x

)α+n+1



=
λ̂2 − λ̂1

(x− λ̂1)2

(
1− δ2 − δ1

δ2 + x

)α+n+1

+ (α + n + 1)

(
λ̂2 − λ̂1

λ̂1 − x
+ 1

) (
1− δ2 − δ1

δ2 + x

)α+n
δ2 − δ1

(δ2 + x)2

=

(
δ1 + x

δ2 + x

)α+n
1

δ2 + x

1

x− λ̂1

(
λ̂2 − λ̂1

x− λ̂1

(δ1 + x)

+ (α + n + 1)
δ2 − δ1

δ2 + x
(x− λ̂2)

)
.





(A.4)

The result then follows from (A.3) and Lemma A.1. ♥
Let

A = −(α + n)2

B = (α + n− 1)(λ̂1 + λ̂2)(α + n) (A.5)

C = −2λ̂1λ̂2(α + n− 1)(α + n)

and let H(x) = Ax2 + Bx + C. Then (see Lemma A.2) for x 6= λ̂1,

d2U2

dU2
1

(x) =
H(x)

K(x)(x− λ̂1)
. (A.6)

The needed properties of H(x) are given in the following lemmas.

Lemma A.3 For i = 1, 2, H(λ̂i) < 0.

Proof For i = 1, 2

H(λ̂i) = Aλ̂2
i + Bλ̂i + C =

= −(α + n)2λ̂2
i

+ (α + n− 1)(λ̂1 + λ̂2)(α + n)λ̂i
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− 2λ̂1λ̂2(α + n− 1)(α + n)

= −λ̂2
i (α + n)2 − λ̂1λ̂2(α + n− 1)(α + n) < 0. ♥

The following lemma follows directly from the definition of H(x).

Lemma A.4 For the derivative of H(x) with respect to x we have

d

dx
H(x) |

x = λ̂2

= −2(α + n + 2)(α + n− 1)λ̂2 + (α + n− 1)(λ̂1 + λ̂2)(α + n)

= −(λ̂2 − λ̂1)(α + n− 1)(α + n + 2)− 2λ̂1 − 2λ̂2(α + n− 1) < 0.

The next lemma gives conditions under which Ax2 + Bx + C = 0 has two, one or zero
solutions.

Lemma A.5 Let

s(α, n) = 8
α + n

α + n− 1
. (A.7)

Then

B2 − 4AC





<
=
>





0 ⇐⇒ λ̂2

λ̂1





<
=
>





r(α, n)

where r(α, n) is the unique root > 1 of r2 + (2− s(α, n))r + 1 = 0.

Proof First note that

B2 − 4AC = (α + n− 1)2(λ̂1 + λ̂2)
2(α + n)2

−8(α + n)3(α + n− 1)λ̂1λ̂2





<
=
>





0 ⇐⇒ (λ̂1 + λ̂2)
2

λ̂1λ̂2





<
=
>





s(α, n).

Further, because s(α, n) > 8, r2 + (2 − s(α, n))r + 1 = 0 has exactly two roots, r0 < r1,
say, with r0 < 1 < r1. ♥
In the next lemma, assuming B2−4AC > 0, the location of the roots of Ax2 +Bx+C = 0
is investigated.
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Lemma A.6

B2 − 4AC > 0 =⇒ λ̂1 < x1 < x0 < x2 < λ̂2,

where x0 maximizes Ax2 + Bx + C and x1 < x2 are the roots of Ax2 + Bx + C = 0.

Proof First note that the lemmas A.3 and A.4 imply that x2 < λ̂2. Further, B > −2Aλ̂1

is equivalent to B2 > −2ABλ̂1. So, in order to show that x0 > λ̂1, it is sufficient to show
that 4AC > −2ABλ̂1. But

4AC > −2ABλ̂1 ⇐⇒ −2C > Bλ̂1 ⇐⇒

(n + α− 1)(n + α)(λ̂1 + λ̂2) < 4(n + α− 1)(n + α)λ̂2.

But
(n + α) < 2(n + α)

and λ̂1 + λ̂2 < 2λ̂2 which proves that x0 > λ̂1. Finally, given that x0 > λ̂1, it follows from
Lemma A.3 with i = 1 that x1 > λ̂1. ♥
From the above lemmas we get

Lemma A.7 On (λ̂1, λ̂2)

1) when
λ̂2

λ̂1

≤ r(α, n)

d2U2

dU2
1

(x) ≤ 0;

2) when
λ̂2

λ̂1

> r(α, n)

d2U2

dU2
1

(x)





< 0 when λ̂1 < x < x1

= 0 when λ̂1 = x1

> 0 when x1 < x < x2

= 0 when x = x2

< 0 when x2 < x < λ̂2.
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