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1 Abstract

The popular cubic smoothing spline estimate of a regression function is the
minimizer of

b 2
S di(¥; = )+ A [ )] .
J
where (Y], ;) are the data and the d;’s are positive weights. However, some-

times the data are related to the function of interest p in another way, i.e.,
E(Y;) = Fi(u) for some known F;’s. And sometimes, one may wish to replace
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f(#")?* with another expression. This paper discusses the solution for these
generalizations, that is, the minimization of

S %~ L) 4 [ (o) ar

Here, L is a linear differential operator of order m > 1: (Lu)(t) = p™ (1) +

;”:_01 w; ()9 (). This paper outlines basic theory for this general minimiza-
tion problem, and provides explicit directions for calculating the minimizer.
The minimizer depends on the easily calculated reproducing kernel associated

with L.

2 Introduction

The cubic smoothing spline, a popular regression function estimate, is the
minimizer of

S dY; — plt) 4 [ () dt (1

Here, the regression data are (¢;,Y;), 5 =1,---,n, t; € [a,b] a finite interval,
and the d;’s are positive weights. The non-negative smoothing parameter
A balances p’s fit to the data (via minimizing 3 d;(Y; — u(¢;))?) with u’s
closeness to a straight line (via forcing p”(t) to be zero). The minimization
is performed over the function space

H*[a,b] = {p: [a,b] — R : p and x’ are absolutely continuous

and /ab(,/’(t))? dt < oo},

The purpose of this paper is to explain to the average statistician the
theory and techniques for minimizing (1) and for minimizing penalized least
squares expressions which are more general than (1). The material contained
here is drawn from many sources: from statistical literature, from the the-
ory of differential equations, from numerical analysis, and from functional
analysis.

The general penalized least squares problem is to minimize

S % - i) 4 [ o) a )
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where A > 0, the d;’s are positive weights, the F,;’s are continuous linear
functionals and L is a linear differential operator of order m > 1:

Le) = #0+ S w0 )

with w;(+) real — valued and continuous.
The minimization is over all p in the Sobolev space

H™[a,b] = {p:[a,b] = R: px),j =0,---,m —1 are absolutely continuous

and /b(ﬂ<m>(t))2 dt < oo},

To simplify notation, H™ will be used instead of H™[a, b].

F;’s have been studied other than F;(p) = u(t;) of equation (1). For
instance, to estimate u(t), the HIV infection rate at time ¢, the data are Y},
the number of new AIDS cases diagnosed in time period j. The expected
value of Y; depends on p(t) for values of ¢ up to and including period j, and
E(Y;) can be written as a continuous linear functional of p. The functional
depends on the distribution of the time of progress from HIV infection to
AIDS diagnosis. Li, 1996, has estimated g by minimizing (2) with Ly = p”.
Bacchetti et al, 1993, have considered minimizing a discretized version of (2)
with Ly = p”. This technique is known as backcalculation.

In a non-regression setting, Nychka et al (1984) minimize (2) to estimate
i, the distribution of the volumes of tumours found in livers of experimental
animals. The data are the areas of cross-sections of tumours, gotten from
cross-sectional slices of liver. The authors model tumours as spheres and,
via a continuous linear functional, relate p to the distribution of the area
of a randomly chosen cross-section of a sphere. Thus the observed data are
directly related to a linear functional of u. These authors use Ly = u”.

Wahba (1990) considers F;’s based on Fredholm integral equations of the
first kind, that is, E(Y;) = ¢(¢;) where ¢(t;) = fab H(s,tj)u(s) ds = Fi(p),
with H known. Such data can arise in tomography. For other applications,
see the references in Wahba. Wahba also takes Ly = p”.

Ansley, Kohn, and Wong (1993) and Heckman and Ramsay (1996) demon-
strate the usefulness of using L’s other than Ly = u”. Figure 1, taken from
the Heckman and Ramsay paper, shows two estimates of a regression func-
tion for the incidence of melanoma in males. The data, described in Andrews
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Figure 1: Male Melanoma Data. Estimates are the solid line, which is CUB
and uses L = 4", and the dashed line, which is PER, which uses L = p*) +

(.58)?u". Each estimate uses 5.6 parameters.



and Herzberg (1985), are from the Connecticut Tumour Registry and can be
found in Statlib, whose WEB address is http://www.stat.cmu.edu/. The
estimate labelled CUB is the minimizer of (1). The estimate labelled PER
is the minimizer of (2) with (Lu)(t) = ™ (¢) + w?u"(t) with w = 0.58. In
both estimates, the smoothing parameter A was chosen so that the “number
of parameters used” was equal to 5.6. The differential operator L. was chosen
because we didn’t want to penalize functions of the form u(t) = oy 4ast+
as coswt+ agsinwt. Such functions are exactly the functions Ly = 0 and
form a popular parametric model for fitting melanoma data. The value of w
was chosen by a nonlinear least squares fit to this parametric model.

3 Results for the Cubic Smoothing Spline

Here, standard results for the minimization of (1) are stated without proof.
For details, see Eubank (1988), Wahba (1990), or Green and Silverman
(1994). Later sections contain the analogous results for the minimizer of
(2). In those sections, some proofs will be given, along with references.

The minimization of (1) over p € H?*[a,b] is easily done by considering
the Hilbert space structure of H*[a,b]. The inner product is given by

(F.9) = f@)gta) + alg'ta) + [ 1) "0 de.

With this inner product, the linear functional F;(f) = f(¢) is continuous and
so, by the Riesz representation theorem, there exists R; € H?[a, b] such that
(Ry, f) = f(t) for all f € H. One easily verifies that

Ri(s) = 1 4+ (s—a)(t—a) + Ruls)

where

Rii(s) = st (min{s,t}—a) +

s+t

1
((min{s,t})Z—a2> + g((min{s,t})g—a:}).
We call the bivariate function R with R(s,t) = R:(s) the reproducing kernel

for H?[a, b] and we say that H?[a, b] is a reproducing kernel Hilbert space.
One can show that the minimizer of (1) is of the form

p(t) = ap+ ast + Z B Ry, (1).
1
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Direct calculation yields that, for g of this form, (1) becomes
(Y —Ta-KB3)D(Y —Ta - KB) + \G'Kg (4)

where a = (ag, 1), B = (B1,---,6.), Y = (Y1,---,Y,), Tia =1, Tin = ¢,
i =1,---,n, Kij = Ry, (L), 4,5 = 1,---,n, and D is an n by n diagonal
matrix with D;; = d;. Thus one can minimize (4) directly, using matrix
calculus.

Unfortunately, solving the matrix equations resulting from the differenti-
ation of (4) involves inverting matrices which are very ill-conditioned. Thus,
the calculations are subject to round-off errors that seriously effect the accu-
racy of the solution. In addition, the matrices to be inverted are not sparse,
so that O(n?) operations are required. This can be a formidable task for, say,
n = 1000. The problem is due to the fact that the bases functions 1, ¢, and
Ry, (1) are almost dependent with supports equal to the entire interval [a, b].
There are two ways around this problem. One way is to replace this incon-
venient basis with a more stable one, one in which the elements have close
to non-overlapping support. The most popular basis for this problem is that
made up of B-splines (see, e.g., Eubank, 1988). The ith B-spline basis func-
tion has support [¢;,¢;12] and thus the matrices involved in the minimization
of (1) are banded, well-conditioned, and fast to invert. Another approach
is that of Reinsch (1967, 1970). The Reinsch algorithm yields a minimizer
in O(n) calculations. The approach for the Reinsch algorithm is based on a
paper of Anselone and Laurent (1968). The application of this technique to
the minimization of (2) with F;(p) = u(t;) is given in Section 5.

4 Hilbert Space Structure for the General
Problem

We would like to set up a Hilbert space structure on H™, similar to the
structure on H? of Section 3, so that the minimization of (2) is easy. In
particular, we would like to define a useful inner product on H™ so that it is
a reproducing kernel Hilbert space.

Definition. H with inner product (-,-) is a reproducing kernel Hilbert
space of functions on [a, b] if and only if H is a Hilbert space (that is, a



complete vector space with inner product (-,-)) where, for all ¢ € [a, b],
the linear operator Fi(f) = f(¢) is continuous. By the Riesz represen-
tation theorem, the continuity of F; is equivalent to the existence of a
bivariate function R defined on [a, b] X [a, b] such that R(-,t) € H for
all t and (R(-,1), f) = f(¢) for all f € H and all ¢ € [a,b]. The function
R is called the reproducing kernel of 'H.

Results from the theory of differential equations are important in calcu-
lating the reproducing kernel of a Hilbert space. These results are given in
Sections 6 and 7, and involve G/(-,-), the Green’s function associated with
the differential operator L.

Assume throughout that L is as in (3).
First note the following:

(4.1) For all p € H™, Lu(t) exists almost everywhere ¢ and Ly is square
integrable, since the w;’s are continuous and [a, b] is finite.

(4.2) By Theorem 4 of Section 6, there exist wuq,---,u, € H™ with m
derivatives that are linearly independent and form a basis for the set
of all p with Lu(¢) = 0 almost everywhere ¢. Furthermore W(t), the

Wronskian matrix associated with wuy,-- -, u,, is invertible for all ¢ €
[a,b]. The Wronskian matrix is defined as [W(t)];; = ugj_l)(t), 1,] =
1 m.

R

(4.3) By Theorem 7 of Section 6, if f € H™ with Lf(¢) = 0 almost every-
where ¢ and with f¥)(a) =0, =0,---,m — 1, then f = 0.
We can define an inner product on H™ under which H™ is a reproducing
kernel Hilbert space. Let

m—1

(F.9)= 3 f@g (@) + [ (L) (Lo)(t) db 5

i=0

Theorem 1 Let {uy, -, uy,} be a basis for the set of p with Ly =0 and let
W (t) be the associated Wronskian matriz. Then, under the inner product (5),

H™ is a reproducing kernel Hilbert space with reproducing kernel R(s,t) =
Ro(s,t) + Ri(s,t) where

Ro(s,t) = i Cijui(s)u;(t) where Cyj = (W(a)W’(a))_l ,

i5=1 tj



Ri(s,t) = / " G(s,u) Gt ) du

u=a

and G(-,-) is the Green’s function associated with L, as defined in Section 7.
Furthermore H™ can be partitioned into the direct sum of the two subspaces

Hyt = the set of all f € H™ with Lf(t) = 0 almost everywhere ¢.
and
HY" = the set of all f € H™ with fW(a)=0,7=0,---,m — 1.

HEt has reproducing kernel Ry and HY* has reproducing kernel Ry.

Proof. To prove the theorem, it suffices to show the following.
(a) Any f in H™ can be written as f = fo + fi1, with f; € H".
(b) H{" is orthogonal to ‘H}* under the inner product (5).

(c) HF is a reproducing kernel Hilbert space with reproducing kernel Rq
under the inner product (f,¢)o = X775 f9)(a)g"¥(a).

i=0

(d) HT* is a reproducing kernel Hilbert space with reproducing kernel Ry
under the inner product (f,g)1 = f:(Lf)(t) (Lg)(t) dt.

To prove (a), we find ¢p,--+, ¢, such that, if fo = 3 c¢uy, then fi =
f—fo € H*. That is, we require that, for j =0,---,m—1, fl(j)(a) = 0, that
is fU(a) =%, ciugj)(a) = 0. Writing this in matrix notation and using the
Wronskian matrix yields

(f(a), f'(a), -, f"Da)) = (er, -+, en) W(a)

and we can solve this for (¢1,---,¢p), since the Wronskian is invertible, by
comment 4.2.

To prove statement (b), suppose that f; € H™, ¢ = 0,1. Then (fo, f1) is
obviously equal to zero, by the definition (5).

To prove statements (c) and (d), we must show that, for ¢ = 0,1, H/ is
a vector space (this is obvious), that (-,-); is an inner product, that H/ is

complete, that R;(-,t) € H", and that (R;(-,t), f); = f(¢) for all f € H".
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The only difficulty in verifying that (-,-); is an inner product lies in show-
ing that (f, f); = 0 implies that f =0, ¢ = 0, 1. But this follows immediately
from comment 4.3.

To prove that HT* is complete, suppose that f, is a Cauchy sequence in
Hp*. Let £y be the set of all functions on [a, b] that are square integrable,
with usual inner product (f,g) = [’ f(t) g(t) dt. Then, by the definition
of the inner product on H7*, Lf, is a Cauchy sequence in £, and, by com-
pleteness of L, there exists h € Ly such that ff((Lfn)(t) — h(t))* dt con-
verges to zero. Let G be the Green’s function associated with L and let
f(t) = f2G(t,u) h(u) du. Then, by Theorem 9 of Section 7, f € H}* and
Lf(t) = h(t) almost everywhere t. Therefore, f,, converges to f in HJ".

To prove that R; is the reproducing kernel for ‘HT*, first simplify notation,
fixing ¢t € [a, b] and letting r(s) = Ri(s,t). We must show that r € H* and
that (r, f)1 = f(t) for all f € H. But r(s) = IN G(s,u) h(u) du for
h(u) = G(t,u), which is in £?, so by Theorem 9 of Section 7, r € H}* and
Lr(s) = h(s) = G(t,s) almost everywhere s. Therefore, for f € HT,

o fh = () (LA)(s) ds = [ Glt,s) (LF)(s) ds = F0)

a

since (¢ is the Green’s function. (See the definition in Section 7.)

To finish the proof of (d), we first note that Hy* is complete since it is
finite dimensional, having as a basis u1,- -, uy,. Obviously, Ro(-,t) € H{,
since it is a linear combination of the u;’s. To show that (Ro(-,1), f)o = f(2),
it suffices to consider f =wu;, [ =1, ---,m. Then

(Ro(+,t),u)o = Cij uj(t) (us, w)o



= ul(t).

Algorithm for calculating Ry, R; and R.

Suppose that we’re given a linear differential operator L as in equation (3).
The following steps describe how to calculate Ry, Ry, and R, the associated
reproducing kernels.

I. Find uy, -+, U, a basis for the set of functions g with Ly = 0. (If L is
a linear differential operator with constant coefficients, this is easy to

do. See Theorem 5 of Section 6.)
2. Calculate W(+), the Wronskian of the u;’s: W;(t) = u(»j_l)(t).
3. Ro(s,1) = 223 ;[ [W(a)W'(a)]~'];; wils)u(t).
4. Calculate (uj(t),---,u’(t)), the last row of the inverse of W.

m

5. Find G, the associated Green’s function: G(t,u) = > u;(t)u;(u) for
u <1, 0 else.

6. Ri(s,t) = [> G(s,u)G(t,u)du.
7. R - Ro —|— Rl.
Example. Suppose that Lf = f” 4+ vf’, v a real number.

For 1, we can find u; and uy via Theorem 5 of Section 6. We first solve
z? + vz = 0 for the two roots, r; = 0 and r, = —v. Then

ur(t) =1 and wuy(t) = exp(—nt).

For 2, we compute the Wronskian

Wi(t) = l exp(l_w) — exg(—vt) ] '

For 3 we have

[w(@w’(@]—l:[ o ‘W%GXPW“)].

’YQ
- w% exp(va) ;—2 exp(2va)
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So

Ro(s,t) = Criug(s)ur(t) + Craug(s)ua(t) + Corua(s)uq(t) + Coaua(s)us(t)

= 1+¥—¥e><p(—vt )—;eXp(—vs )+;eXp(—7(8 +17))

with s* =s—a and t* =1t — a.
For 4, inverting W(t) we find that

1 1
ui(t)=— and wuy(t) = ——exp(yt
1) " 2() " ()

and so, in 5, the Green’s function is given by

G(t,u) = { %(1 —exp(—7y(t - u))) for u <t

0 else.

To find Ry(s,t) in 6, first suppose that s <¢. Then

Ri(s,t) = /b 72 (1 — 6_7(5_1‘)) (1 — e_W(t_“)) Hu < s} I{u <t} du

= / Ty (1= eE) (1= e du

1_|_3*_|_1 ( *)+1 (1)
= ——+ — + —exp(—7s — exp(—7
vty 3
1 1
35 exp(y(s" —17)) — ﬁexp(—v(s* +17)). (6)

Since Rq(s,t) = Ri(t,s), if t < s, then Ry(s,t) is gotten by interchanging s*
and t* in the above.

5 Minimization of the Penalized Sum of Squares

We’re now ready to minimize (2) over y € H™, where H™ has inner product
defined in (5) and L is as in (3). Most of the material here can be found in
Wahba (1990). We assume that the F;’s are continuous linear functionals in
the inner product (5) defined on H™.

11



Definition. F is a linear functional if F : H™ — R and F(af + Bg) =
aF(f) + BF(g) for all f,g € H™ and all reals @ and . A linear functional
F is continuous if and only if there exists a constant C' such that, for all
p € H™ |F(p)] < CJ|pll, where ||p]]* = (p, p). By the Riesz representation
theorem, this is equivalent to the existence of n € H™ such that (n, u) = F(u)
for all p € H™. The function 5 is called the representer of F, and it is unique,
since if F(p) = (n*,pu) = (n,p) for all g € H™ then (n* —n,p) = 0 for all
p € H™ and so n* —n = 0.

Note that F(u) = p(t) is linear. It is also continuous, since it has rep-
resenter n(-) = R(-,t), as defined in Theorem 1 of Section 4. The following
theorem is useful for calculating representers of continuous linear functionals.

Theorem 2 Suppose that F is a continuous linear functional on H™ with
inner product as in (5). Let n be F's representer. Using the notation and
results of Theorem 1,

n(t) = F(R(1)),

that is, we apply F to R(s,t) as a function of s, keeping t fived. Furthermore,
the representer of ¥ in H™, 1 = 0,1, is given by

ni(t) = F(Ri(+1)), ©=0,1
and n=mn9+ 1.

Proof. First, since 5 is the representer of F, n must satisfy F(R(-,t)) =
(n, R(-,1)). But, by the reproducing quality of R, this is equal to n(t).

By the same argument n;(t) = F(R;(-,t)), ¢ = 0,1, since, by Theorem 1 of
Section 4, R; is the reproducing kernel of H[*. To see that n = 5o+ 11, write
n =ns + ny with nf € H, « = 0,1. (This is possible since H™ is the direct
sum of Hy* and HJ*.) Then, using the facts that R and R; are reproducing
kernels, that Hj' and ‘HT* are orthogonal, and that 5 is the representer of I,

i (1) = (075 B, 1)) = (n, R 1)) = F(Ri(, 1)) = i)

So nf = ;.
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Theorem 3 Suppose that L is as in (3). Let uy,-- -, uy, be a basis for the
kernel of L and G the corresponding Green’s function. Let n; be the repre-
senter of ¥; and write n; = nj0 + nj with n;; € H*, + = 0,1. Then the
minimizer of (2) exists and is of the form

u(t) = ﬁ;%w T ilﬁjw» (7)

Furthermore, 5, can be calculated via
ni(t) = Fij(Ri(-,1)),
that is, we apply F; to Ru(s,t) as a function of s with t held fived, where
Ri(s,1) = /ab G(s,u) G(t,u) dt.
For u of the form (7), (2) becomes
(Y - Ta — KB)D(Y — Ta — KB) + \F'KS

where Y = (Y1,---. V), a = (a1, -, an), B=(51,--,6.), Tij = Fi(u,),

i=1,---,n,j=1-,m,
K =F;(na) =Fi(njn), 4,5=1,---,n,

and D is an n by n diagonal matriz with Dy; = d;. If T s of full column
rank, the minimizer s unique.

Proof. Using the notation and results of Theorem 1 of Section 4, we know that
we can write H™ as the sum of two orthogonal subspaces H™ = Hj* & HY".
We further partition H™ as follows. Let 5; be the representer of IF; and write

nj = Mjo + Mj1
with n;; € H*,72 = 0,1. Then

H™ = Hy & HY © HY,

13



where ‘HY; is the finite dimensional space spanned by 7;1, j = 1,---,n, and
‘HT; is the orthogonal complement of HY; in HT*. Therefore, any g € H™ can
be written as

f=po+prt+pz oy € HY;, =12, and po € Hy'

Statement (7) will follow if we show that any minimizer of (2) must have
p12 = 0. Let p € H™. First it’s shown that F;(p) = F;(po + p11). Since n; is
the representer of I; and p4, is perpendicular to 7;,

Fi(p) = (nj, 1) = (5, po + pa1 + paz) = 0y, po + p11) = Fj(po + p11).

To study the second term in (2), use the fact that Lyg = 0 and write

[uo@a = [ d
= (p1, 1) = (pa1, pa1) + (a2, f12)-

Therefore, to minimize
n 2 b )
> (V- Fiw) A [ () d
n 2
=Y. 4 (YJ — Fj(po + /m)) + )‘[Wm ) + (a2, pa2)

we should take p15 to be the zero function.
Therefore, the minimizing ¢ must be of the form (7). For a p of this form,
we see that

Fip =Y a;T;; + Y 3K
i=1 i=1
and

b

[ = 3 6085 [ (W)(0) (Cng)(0) de = 3 66 i)

1,5=1

By Theorem 2 of Section 5, ;1 is the representer of F; in H}* and so
(nii,nin) = Fi(nj1). Also by Theorem 2, ;1 is the representer of F; in H}*
and so (n;1,7;1) is also equal to F;(n;1). Therefore [°[Lu(t)]? dt = B'KB.

14



Computing
From Theorem 3 we see that we must minimize

(Y - Ta — KB)D(Y — Ta — Kf3) + \B'KS.

Taking the derivative with respect to o yields
—2T'D(Y — Té — KB) =0,

that is )
T'D(Y — K3) = T'DTé.
Taking the derivative of (8) with respect to 3 yields

—2K'D(Y — Té — KB) + 2AK3 = 0.

Since K and D are invertible and symmetric, this last equation is equivalent

to
Y - Ta - (K+AD™H)B3=0
Let
M=K+ DL
Then

B=MYY - Ta).
Substituting this into (9) yields
T'D[/ - KM™'|Y = T'D[/ - KM '|Ta4,

that is
T’D[M — K]M_lY = T’D[M — K]M_le,
or
AT'DD MY = A\T'DD M~ 'Ta.
Therefore
o= (T’M_IT)_IT’M_IY
and

=M1 -T(T'M'T)"'"T'M]Y.

Algorithm for Minimizing (2) for General F;’s

We now have an algorithm for finding the minimizer of (2).

15
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A. Follow steps 1-6 of Section 4 to find wuy,-- -, u,,, a basis for Ly = 0, and
the reproducing kernel R;.

Find 51 (t) = F;(Ry(-,1)), 7 =1,---,n
 Let Ty = Fi(u;), Kij = Fi(n;).

. Find & and 3 using (11) and (12).
i(t) = Yy dgu() + ey Binan ().

m o A W

Example
Suppose we want to find x € H[0, 1] to minimize

Z[Y /f] ) di)? +)\/ W (1)]? dt

where the f;’s are known. Thus F;(p) = fy fi(t)p(t) dt and Ly = p'.
For A, our basis for Ly =0 is ul( ) = 1. The Wronskian is a one by one
matrix [1] So ui(s) =1 and G(t,u) =1 if u <1, 0 else. Therefore
min{s,t} .
Ri(s,t) = / 1 du = min{s,t}.
0
For B
ni(t /f] (s)Ri(s,1) d :/sf] ds —I—t/ fi(s
For C, T is n by 1 with
1
T = Filw) = [ fit) e

and

1

Kij=Fi(np) = | filt)nj(t) dt
() [/_ sFi(s) ds +t/ £i(s ds] dt

1
/ (s)f;(t) ds dt—|—/ / sfi(s)fi(t) ds dt
0 Js=0 s=0

16
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Continue with D and E.

Minimizing (2) when F;(u) = u(t))

Unfortunately, equations (11) and (12) result in computational problems
since M 1is an ill-conditioned matrix and thus difficult to invert. Fortunately,
when F;(u) = p(t;) we can transform the problem to alleviate the difficulties.
Assume that a <t; < ... <1¢,.

Let Q be an n by n — m matrix of full column rank such that Q'T is
an n — m by m matrix of zeroes. (Q isn’t unique. Later, a “good” Q is
described.) The goal here is to show that

B3=Q(QMQ)'QY (13)

and ) )
Y=Y -\D'3.
We then seek Q so that Q'MQ is easy to invert.

~

We first show that T'B = 0. (This will imply that there exists an n — m
vector 7 such that 8 = Q~.) Multiplying both sides of (10) by M yields

Y = M3 + Ta. (14)
Substituting this into (11) yields
& =(T'M™'T)"'T'3 + a.

Therefore )

(T'M™'T)'T'8 =0
and so T'3 = 0 and 3 = Q~ for some ~. To find ~, use (10):

QMJ = Q(Y - Ta) = Q'Y

since Q'T = 0, and so Q'MQ~ = Q'Y, yielding

v =(QMQ)'QY.

Therefore (13) holds. )
We easily solve for Y = Ta + K3 using (14):

Y=(K+\DH3+Ta=Y+ D3

17



and so ) )
Y=Y - D3
Note that we have not yet used the fact that F;(pu) = u(t;).

If F;(p) = p(t;), we can choose Q so that Q' MQ is banded and thus very
easy to invert. In addition to requiring that QT = 0 we also seek Q with

Qi =0 wunless ¢e=3,7+1,---,7+m.

So we want Q with [Q'T];; = 72y Qissitj(tiys) = 0 for all j = 1,--- m,
t = 1,---,n — m. That is, for each ¢, we seek an m + 1 vector q; =
(Qiiy+, Qitm,)" with qiT; = 0 where T; is the m 4+ 1 by m matrix with
ljth entry equal to w;(t;4,). This is easily done by a QR-decomposition of
T,;. Write the decomposition as T; = Q,R,;. Then the required vector q; is
the (m + 1)st column of Q;.

We now show that Q'MQ is banded, specifically, that [Q'MQ]z = 0
whenever |k —£]| > m. Write Q MQ = Q' KQ + XQ'D'Q. Obviously, since
D is diagonal, [QD ™' Q] = 0 for |k — £| > m. We'll show that the same is
true for Q' KQ. Write

= /G(ti,w)G(tj,w) dw
min{t;,t;}

= D ur(ti)us(t)) / w(w)u (w) dw

7,8 a

> ur(ti)us(t;) Frs(min{ti, t;}) (15)

7,8

Since Q'KQ is symmetric, it suffices to show that [Q'K Q] = 0 for k—¢ > m.

[QKQ]w = zn:Qik](iijﬁ

1,5=1
m
= Y QurinKrriniQurje
1,j=0
Since k — { > m > 7 — ¢ whenever 0 < 7,5 < m, in the above summation we

have k 4+ ¢ > {+ j. So, using (15),

QKQle = Y Quvik Y Frs(teri)Togir Tog s Qe

2,j=0 r,s=1
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Z (o) Lot sQetij Z Qrtik Lrgiy-

=0
But ZZO Qk-l—i,ka'-}—i,T = [Q/T]k'r = (.
Algorithm for Minimizing (2) when F;(u) = u;(t)

A. Follow steps 1-6 of Section 4 to find wuy,-- -, u,,, a basis for Ly = 0, and
the reproducing kernel R;.
B. Let Tij = u]'(ti), [X’” = Rl(ti,t]‘).
C. Find Q n by n—m of full column rank with QT = 0 and ;; = 0 unless
D. Let )
A =Q[Q(K+AD™)QI"'QY,
speeding up the matrix inversion by using the fact that Q' (K+AD™")Q

is banded. Then ) )
Y=Y - )\D_l,fj'.

Example
Suppose that we want to minimize

> di(Y; +A/ "(t) + (1) dt
7=1

over u € H*0,1]. So F;(u) = pu(t;) and Ly = p"” + yp'. For simplicity,
assume that t; =¢/(n 4+ 1).
For A, by the example in Section 4,

ui(t) =1 and wuy(t)=e™

and Ry(s,t) = Ry(t,s) with, for s <t and s* =s—aand t* =1 — q,

1 s 1 L1 .
Rl(sat) = —$ + ? + ;eXp(—’ys ) + ;exp(—yt )
1 1
— 5,5 P57 = 17)) = g5 exp(—1(s” + 1))
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For B, T;1 = 1, T;s = exp(—~t;), and K;; = Ry1(;,1;).
For C, we seek Q n by n — 2 with @);; =0 unless ¢t = 3,7+ 1,7 + 2 and

0=[QTl=> Qulr=Qili;+ Qiix1Tis1,; + Qiiralis2;.
k=1
Thus
0=Qu+ Qiip1+ Qiiso
and

0 = Qiiexp(—9ti) + Qiix1exp(—7tiy1) + Qiiy2 exp(—7tiza).

There are many solutions. For instance, we can take
v v v
i=1- - fitl = — ] - -
< eXp( n—l—l) Qiin eXp(n+1) eXp< n—l—l)

Qusa=exp (T55) =1

Continuing with D is straightforward.

and

6 Differential Equations

This section contains the results from differential equations that were used in
the definition of our reproducing kernel Hilbert space. Details can be found
in Coddington(1961). The main theorem, stated without proof, is

Theorem 4 Let L be as in (3). Then there exists uq,- -, Uy a basis for the
kernel of L, with each u; real-valued and having m derivatives. Furthermore,
any basis for the kernel of L will have an invertible Wronskian matriz W (t).
The Wronskian matriz is defined as

The following theorem, stated without proof, is useful for calculating the
basis functions in the case that the w;’s are constants.
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Theorem 5 Suppose that L is as in (3), with the w;’s real numbers. Denote
the s distinct roots of the polynomial x™ + E;":_Ol w;x! as vy, .. Let my
denote the multiplicity of root r; (so m = 3 1r;). Then the following m
functions of t form a basis for the kernel of Li:

exp(rit), texp(rit), ---, t™ lexp(rit) i=1,---,s.

The following result, stated without proof, is useful for checking that a
set of functions does form a basis for the kernel of L.

Theorem 6 Suppose that uy,- -, u, have m derivatives on [a,b] and that
Lu; = 0. If W(tg) is invertible at some tog € [a,b], then the u;’s are linearly
independent, and thus a basis for the kernel of L.

The following result was useful in defining the inner product in Section
4, where ty was taken to be a.

Theorem 7 Suppose that L is as in (3) and let to € [a,b]. Then the only
function in H™ that satisfies Lf = the zero function and fU)(ty) =0, j =
0,---,m—1 s the zero function.

Proof. By Theorem 4, there exists uy, -+, u,, a basis for the kernel of L. with
W (t) invertible for all ¢ € [a,b]. Suppose Lf = 0. Then f = Y, cu; for
some ¢;’s. We see that the conditions fW)(t5) = 0, j = 0,---,m — 1 can
be written in matrix/vector form as (¢1,---, ¢ )W(to) = (0,---,0). Since
W (to) is invertible, ¢; = 0,7 =1,---, m.

Before using the smoothing technique in (2), one must first, of course,
decide on the operator L. Often, the easiest way to do this is by specifying
basis functions uq, - - -, u,, for a preferred parametric model. One must then
calculate the w;’s in (3) so that Lu; =0, ¢=1,---,m for these w;’s. This is
simple to do, assuming that each u; has m continuous derivatives and that
the associated Wronskian matrix W (t) is invertible for all ¢ € [a, b]. Suppose
this is true for a specified set of u; with m continous derivatives. To solve
for the w;’s, write

—

m—

0= (Lug)(t) = (1) + 3 wi(t)u”(0)

J=0
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that is )
u™ () = = X wi(tu”().
7=0

This can be written in matrix/vector form as

wi(t) uy™ (1)
wo L s =
wm(t) ul(t)
yielding
wy (1) uy™ (1)
: = _W(t)_l :
Wt ur (1)

Obviously, the w;’s are continuous, by our assumptions concerning the u;’s.

7 The Green’s Function Associated with
the Differential Operator L

The definition below gives the definition of G(-,-), the Green’s function as-
sociated with the differential operator L with specified boundary conditions.
Theorem 8 gives an easily calculated form of G. The Green’s function is used
in Section 4 to calculate the reproducing kernel.

Let L be the linear differential operator (3) defined on H™.

Definition G is a Green’s function for L if and only if
b
)= [ Gltu) (LF)(w) du

=a

for all functions f in H™ satisfying the boundary conditions

f9a)=0, j=0,---,m—1. (16)
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Of course, it’s not immediately clear that such a function G exists. How-
ever, (& exists and is easily calculated by using the Wronskian matrix associ-
ated with L. Recall from Theorem 4 of Section 6 that there exists a basis for
the kernel of L, uq, - -+, u,,, with invertible Wronskian. Furthermore, each u;
has m derivatives. Theorem 8 shows how to calculate G.

Theorem 8 Let uj(t),---,u’ (t) denote the entries in the last row of the
inverse of W(t). Then

Gt u) = {OE:L ui(t) ul(u) foru<t (17)

else

is a Green’s function for L.
The following theorem will be useful in the proof of Theorem 8.

Theorem 9 Let G be as in (17) and suppose that h € L*. If

mwzﬁammumm

Then
reH", (18)
(Lr)(t) = h(t) almost everywhere t € [a, b] (19)
and ‘
r(a)=0 j=0,---,m—1. (20)
Proof. Write
b m ¢
r@:/G@mM@m:Zm@/@wumm.
a =1 a

Note that the u}’s are continuous, since u} = (det W(¢))™! times an expres-
sion involving sums and products of ugj), l=1,---,m,y=0,---,m—1, and
the u;’s have m — 1 continous derivatives. We’ll first show that

(D)= D a0 [y ) du =0, m -1 (1)
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¢
P (1) = h(t) + Zufm)(t)/ u;(u) h(u) du almost everywhere t € [a, b].
(22)

These equations follow easily by induction on j. We only present the case

7 =1. Then

(0= 3u) [t st o+ w0 | [ it b .
Since v and h are in Ly,
S tt) | [ it i) du] = S0 ity

almost everywhere t. But, by definition of W and the u}’s, this is equal to

h(t) 2 IW ) W) i = (1) W)™ W(t)]n1

7

which equals zero for m > 1 and equals h(t) for m = 1. Therefore, for m = 1,
(22) holds and for m > 1 (21) holds when j = 1. For m > 1 and j > 1,
we can calculate derivatives of r up to order m — 1, and can calculate the
mth derivative almost everywhere to prove (21) and (22). Clearly, the mth
derivative in (22) is square-integrable. Therefore we’ve proven (18).

To prove (19), use (21) and (22) and write

(Lo)(1) )+ mZ w

—I—E (m) /atu* du—l—ZZw] ‘7 /tlul(u)h(u)du
= h(t) + 2 ul™ (1) + m__o ﬁ;w](t)ugj)(t)] / t ul(u) h(u) du
= h(t) + S 0u)(0) [ uiw) hw) du = A1)



since Lu; = 0.
Equation (20) follows directly from (21) by taking ¢t = a.

Proof of Theorem 8. Let f € H™ satisfy (16). Define r(t) = [, G(t,u) (L )(u)
Then, by Theorem 9 of section 6, Lr = L f almost everywhere and r(])(a)
J=0,---,m—1. Thus L(r — f) = 0 almost everywhere and (r — f)(

i

0,7=0,---,m —1. By Theorem 7, r — f is the zero function, that is r f
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