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Abstract
Array comparative genomic hybridization (aCGH) is a perva-
sive technique used to identify chromosomal aberrations in hu-
man diseases, including cancer. Aberrations are defined as
regions of increased or decreased DNA copy number, rela-
tive to a normal sample. Accurately identifying the locations
of these aberrations has many important medical applications.
Unfortunately, the observed copy number changes are often
corrupted by various sources of noise, making the boundaries
hard to detect. One popular current technique uses hidden
Markov models (HMMs) to segment the signal into regions of
constant copy number; a subsequent classification phase labels
each region as a gain, a loss or neutral. Unfortunately, standard
HMMs are sensitive to outliers, causing over-segmentation.
We propose a simple modification that makes the HMM more
robust to such single clone outliers. More importantly, this
modification allows us to exploit prior knowledge about the
likely location of such “outliers”, which are often due to copy
number polymorphisms (CNPs). By “explaining away” these
outliers, we can focus attention on more interesting aberrated
regions. We show significant improvements over the current
state of the art technique (DNAcopy with MergeLevels) on
some previously used synthetic data, augmented with outliers.
We also show modest gains on the well-studied H526 lung
cancer cell line data, and argue why we expect more substan-
tial gains on other data sets in the future. Source code writ-
ten in Matlab is available fromhttp://www.cs.ubc.ca/
∼sshah/acgh Contact: sshah@cs.ubc.ca.

1 Introduction
Array comparative genomic hybridization (aCGH) is a high-
throughput cytogenetic technique to measure DNA copy num-
ber changes in a disease sample compared to a normal sample
[19]. Chromosomal aberrations that exhibit DNA copy num-
ber changes are indicative of numerous diseases including can-
cer and mental retardation. Identifying such aberrations can
help to locate diagnostically important regions in the genome,

∗This is an extended version of a paper submitted to ISMB’06.

which harbour differentially expressed genes. Application of
aCGH is widespread in molecular analysis of cancer and holds
great promise as a technique to identify clinically relevant di-
agnostic biomarkers.

The aCGH technique is based on spotting clones that span a
discrete region in the human genome on an array. The size and
number of clones vary depending on the technological plat-
form and the desired resolution: see Pinkel and Albertson [19]
for a review. In this paper, we use data from four chromo-
somes from H526 (a well-studied cancer cell line) generated
using sub-megabase resolution tiling arrays (SMRT) [13]. The
output of all such methods is represented as a log2 ratio of
the reference and tumour fluorescence intensities, which are
proportional to copy numbers. So in a neutral state, one would
expect to see log2(2/2) = 0; with one copy lost, one would ex-
pect to see log2(1/2) = −1; with one gain log2(3/2) = 1.58,
etc. The goal of analysis techniques is to detect the regions of
changed copy number (i.e., to segment the signal), and then to
label each region as loss, neutral or gain (sometimes it is use-
ful to distinguish gains of 1 copy from gains of more than 1);
we call this latter task “classification”.

In reality, the observed data is much more complex than the
above description suggests. Figure 5 (A) shows a typical plot
of aCGH data for one chromosome from H526 (see Section 3.2
for more details on H526). The red squares represent copy
number losses and the green circles represent regions of gain.
(In this example, the aberrated regions were identified manu-
ally by an expert cytogenetecist.) The figure demonstrates that
although copy number changes in DNA is a theoretically dis-
crete process, the intensity ratios for aCGH do not produce a
clean piecewise constant signal. Also note that aberrated re-
gions tend to span contiguous sets of clones along a chromo-
some, although some aberrations can be as small as a single
clone. This suggests that any analysis technique should ex-
ploit such spatial correlation.

In Figure 5(A), we also depict ’outlying’ clones (detected
by eye) with light blue triangles. Treating such points as in-
liers can significantly affect the remaining points, by causing
over-segmentation, for example. There are several possible
causes of such outliers. The first is that they truly represent
aberrated regions. The second is some kind of measurement
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noise, or mislabeling (sometimes the locations of clones is
mis-recorded). Finally, there is the possibility that the single
clone outliers correspond to known locations of copy number
polymorphisms (CNPs). Examples of CNPs are shown as dark
blue diamonds in Figure 5(A).

The full impact of CNPs on aCGH analysis is not yet
known, however indications from two recent large scale stud-
ies by Sebat et al [24] and Iafrate et al [12] measuring back-
ground frequencies of copy number variations in the nor-
mal human population have revealed hundreds of loci in the
genome that are polymorphic in copy number. Buckley et al
[2] suggest that the results produced by these two studies rep-
resent the “tip of the CNP iceberg”. For example Sebat et al re-
port a CNP at a gene involved in food intake, suggesting a dif-
ferential propensity for obesity. They also report CNPs at loci
related to neurological development and at loci implicated in
leukemia and breast cancer drug resistance [24]. These latter
examples indicate that for cancer studies, the ’baseline’ copy
number should be considered when assessing aberrations. We
anticipate that the impact of CNPs will be greater on high-
resolution arrays and/or full genome coverage arrays, as they
are intended to reveal all aberrations in a sample and will de-
tect a larger number of CNPs.

1.1 Our contribution
In this paper, we introduce a way of extending the HMM
framework proposed in Guha et al. [9] to handle outliers and
CNPs. The basic idea is to replace the Gaussian observation
model with a mixture of Gaussians; one mixture component
represents the log2 ratio we would expect from the given state
(loss, neutral or gain); the other mixture component represents
the log2 ratio we would expect from an outlier. This simple
change makes the model much more robust.

More significantly, we can incorporate knowledge about
CNPs into the mixing weights of the mixture model. That is,
we can set the prior probability of using the outlier compo-
nent at location i to the known frequency of CNPs at location
i, if i overlaps with a known CNP location; otherwise we set
it to the general background outlier probability (which is es-
timated from data). We explain our model in more detail in
Section 2.1.

Several authors (e.g., [9, 23]) propose estimating the param-
eters of the HMM using MCMC (Markov chain Monte Carlo)
techniques, as opposed to the more common EM (expectation
maximization) algorithm. The advantage of MCMC is that it
provides full posterior estimates over the parameters, rather
than just point estimates, thus properly modeling uncertainty
(see e.g., [8] for an introduction to MCMC and Bayesian data
modeling). MCMC also partly mitigates problems with local
minima than EM is well known to suffer from. It also turns
out to be simpler to exploit informative prior constraints in a
sampling framework than in an optimization framework. We
explain how to perform efficient MCMC in Section 2.2.

We first evaluate performance of our model on a synthetic
dataset published in Willenbrock and Fridlyand [25]. The ad-
vantage of using synthetic data is that the true locations of
the aberrations are known, so we can assess performance reli-
ably. In addition, we can control the difficulty of the problem.
The Willenbrock data is considerably harder (but more real-
istic) than other synthetic datasets used in earlier papers. We
make the Willenbrock data even harder by adding outliers, to
check the robustness of our method. We compare our method
to DNAcopy+MergeLevels (using default parameters), which
has been shown in two previous comparative studies [25, 16]
to be a leading current method. Henceforth we will refer to this
method as MergeLevels. Having established that our method
is better than current techniques on synthetic data, we then ap-
plied it to real H526 data. Our results are in Section 3, which
we discuss in Section 4.

1.2 Related work
A recent survey paper by Lai et al [16] describes and evaluates
eleven algorithms for aCGH data analysis. We can loosely
group these methods into three main approaches: smoothing,
segmentation, and combined segmentation and classification.
Smoothing approaches such as Quantreg, developed by Eil-
ers and Menezes [5], and the wavelet approach of Hsu et al
[10], attempt to fit a curve to the data, while handling abrupt
changes. Smoothing methods generally filter the data using a
fixed size window, and therefore will be unable to detect out-
liers or CNPs that span a single clone. In addition, they are
primarily designed as a visual aid interpret the data and do
not accomplish the main objective of automatically identify-
ing aberrated clones.

Segmentation methods identify contiguous sets of clones
(segments) that share the same mean log2 ratio. The output
of the segmentation methods usually consists of the bound-
aries and means of the segments. The clones within a seg-
ment are assumed to share the same copy number. We refer to
the boundaries of segments as breakpoints. Examples of seg-
mentation algorithms include DNACopy [17], which is based
on a recursive circular binary segmentation algorithm; CGH-
Seg [18] which uses a penalised likelihood model to determine
breakpoints; aCGH-Smooth [14], which uses a genetic algo-
rithm to find breakpoints; and the GLAD method of Hupe et
al [11], which includes a median absolute deviation model to
explicitly treat outliers as separate from its surrounding seg-
ment. In Lai’s comparison, CGHSeg and DNACopy are con-
sistently the best. Willenbrock and Fridlyand [25] compared
performance of DNACopy and GLAD and report better per-
formance with DNACopy. We therefore use DNAcopy as our
baseline model.

A general limitation of segmentation is that the output needs
to be further analysed in order to infer which segments are
aberrated regions, i.e., to “call” the gains and losses. Meth-
ods such as GLADMerge [11] and MergeLevels [25] perform
this post-processing task by merging together segments with
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“similar” mean levels, and then classifying them. However, as
noted by Engler et al [6] and Willenbrock and Fridlyand [25],
it is much better to perform the segmentation and classifica-
tion simultaneously, since the class labels can help with the
segmentation as well as vice versa.

An obvious way to perform simultaneous segmentation and
classification is to use an HMM. The first approach to do this
was by Fridyland et al [7]. However, in their approach, the
states of the HMM do not have any intrinsic meaning (they
are just indices to represent a discrete number of mean lev-
els, typically K = 5). Hence post-processing was necessary
to come up with labels. Guha et al. [9] modify this to use
a “supervised” 4-state HMM, where the states are defined to
mean loss, neutral, one-gain or multiple-gain. The advantage
of this is two-fold: first, it is easy to perform simultaneous
segmentation and classification using the Viterbi algorithm;
secondly, we can impose informative priors on the parameters,
since they now have biological meaning. This paper extends
the 4-state HMM model by adding robustness to outliers and
location-specific priors (LSPs), which can be used to encode
CNPs.

In addition to the work mentioned above, two recent papers
have explored some interesting variations. Broet and Richard-
son [1] propose using a latent 1D Gaussian random field, as
opposed to a latent 1D discrete random field (i.e., an HMM), to
model spatial correlation between levels. However, this does
not solve the classification problem. Engler et al [6] intro-
duce spatial dependence by breaking the data into overlapping
triples, and then using a hierarchical random effects model.
Unfortunately, because the triples are overlapping, the data is
overcounted, so optimizing the likelihood turns out to be in-
tractable. Instead, they compute a local maximum of the pseu-
dolikelihood. We also use a hierarchical Bayesian model, but
we are able to compute posterior estimates using an exact like-
lihood function.

2 Methods
2.1 Our model
Our basic model very similar to the 4-state HMM in Guha
et al [9], where the states represent loss, neutral, one-gain and
multiple-gain. (We also tried a 3-state model, where we com-
bined all the gain states, but results were not as good.) The
main difference from Guha is that the observation density is
a mixture of 2 Gaussians, one representing inlier (clones be-
longing to one of the loss, neutral or gain states) and the other
representing outlier. We introduce binary indicator variables
Oi ∈ {0, 1} where Oi = 1 means location i is an outlier, and
Oi = 0 means it’s an inlier. Then the class-conditional density
becomes

p(yi|Oi, Si = s) =

{

N (yi|µ0, σ0) if Oi = 1
N (yi|µs, σs) if Oi = 0

(1)

where yi is the log2 ratio for clone i where the clones are
ordered by their physical location on a chromosome. Si is the
state label at position i. Thus Oi acts like a “switching parent”
variable, which selects between the outlier parameters µ0, σ0

or the inlier parameters, µs, σs. The Oi variables are mod-
eled as conditionally independent. Hence, there are no Marko-
vian dynamics on the outliers. This allows the model to make
temporary “excursions” to the outlier state, without incurring
any “penalty” implicitly encoded by the state transition matrix.
Our model is summarized in Figure 1.

Note that we model each chromosome of each sample in-
dependently. This is a deliberate design decision, since we do
not believe it is reasonable to share parameters (or “borrow
statistical strength”) across chromosomes or samples, since
the data have such different levels (magnitudes) in each sam-
ple. Clearly multiple samples of the same chromosome have
something in common — this is precisely what scientists hope
to discover! However, we do not believe that what they have
in common is the same mean levels for each state; rather, it
is presumably something more abstract, such as information
about locations of breakpoints. We plan to pursue this in future
work, but for now, we limit our attention to modeling samples
separately.

2.1.1 Priors
The parameters of the model are as follows. For each state
j ∈ {1, . . . , 4}, we have the mean and variance of the Gaus-
sian, µj , σ

2
j . We also have µ0, σ

2
0 for the outlier state. For

each location that is known to be a CNP, we have an outlier
probability, ρi = P (Oi = 1); for all other locations, we have
the “background” outlier probability, ρ0. Finally, we have the
transition matrix A and the initial state distribution π.

We use standard conjugate priors (see e.g., [8]) for all the
parameters, as follows:

p(µs|σ
2
s) = N (µs|ms,

σ2
s

κs

) (2)

p(σ2
s ) = χ−2(νs, τ

2
s ) = IG(

νs

2
,
νsτ

2
s

2
) (3)

p(A) =

K
∏

s=1

Dir(As,·|δ
A
1 , . . . , δA

K) (4)

p(π) = Dir(π|δπ
1 , . . . , δπ

K) (5)
p(ρi) = Beta(ai, bi) (6)

where K is the number of states, N is a Gaussian, χ−2 is an
inverse-chi-squared distribution, IG is an inverse Gamma dis-
tribution, Dir is a Dirichlet distribution, and Beta is the beta
distribution. As is apparent, these priors themselves have pa-
rameters, called hyperparameters. These all have intuitive in-
terpretations. ms is our prior belief about µs (the mean of
state s), and κs is how strongly we believe this (the effective
sample size of the prior); τ 2

s is our prior belief about σ2
s (the

variance of state s). and νs is how strongly we believe this; the
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Figure 1: Our model represented as a Bayesian network for a toy chromosome with 5 clones. Square nodes are parameters,
round nodes are random variables. Shaded nodes are observed (known), unshaded nodes are hidden (unknown). S1:5 represent
the states at positions 1 to 5 along the chromosome; y1:5 are the observations (log2 ratio); O1:5 indicates if the clone is an outlier
or not; µ1:4 and σ1:4 are the means and variances of states 1 to 4; µ0 and σ0 is the mean and variance of the outlier state; ρ1:5

are the probabilities of outlier at locations 1 to 5, ρ0 is the general background outlier probability; π is the initial distribution
of states; δπ are the hyperparameters for π; A is the Markov chain transition matrix; mj , τj are hyperparameters for µj ; αj , βj

are hyperparameters for σj ; ai, bi are hyperparameters for ρi; δA are the hyperparameters for A. Hyper-parameters are shown
shaded since they must be set by the user. In this example, we have assumed that locations 2 and 4 correspond to known CNPs;
other locations use the background outlier probability ρ0. Hence ρ1 = ρ3 = ρ5 = ρ0 are all the same.
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Param Loss Neutral One-gain Many-Gain
ms -0.1 0 0.57 1
κs 0.1 0.1 0.1 0.1
τ2
s 0.1 0.01 0.2 0.2

νs 0.1 0.1 0.1 0.1

Table 1: Setting of hyper-parameters for observation model.
For the H526 data, we reduced the variance of the neutral state
(bold) to τ2

2 = 0.01, since the data has been median filtered
and hence is less noisy than the synthetic data.

Synthetic H526
Param Outlier CNP Outlier CNP
ai 0.75 0.5 0.25 fi

bi 0.75 0.5 0.25 1 − fi

Eρi 0.5 0.5 0.5 fi

Strength 1.5 1 0.5 1

Table 2: Setting of hyper-parameters for outlier process. Here
fi is the population frequency of a polymorphism at location i.
We show the parameters and the expected probability of outlier
this implies; we also show the strenght of the prior in terms of
its equivalent sample size. For the CNPs, we only observe one
data point, so we must set the prior carefully. For the other
outliers, there is usually enough of them that they overwhelm
the prior, so the posterior mean E[ρ0|D] represents the overall
outlier probability (excluding known CNPs).

δi parameters of the Dirichlet distributions can be interpreted
as pseudo counts; finally, ai/(ai + bi) is the probability of
being an outlier at location i, which we believe with strength
ai + bi.

We use a uniform (uninformative) prior for the transition
matrix A and the initial state distribution π (i.e., we use δA

i =
δπ
i = 1/K), since the signal can start in any state and move

from any state to any other state. The remaining parameters
are given weakly informative priors, as shown in Table 1 and
2. These values were chosen by hand by looking at the data.
More rigorous approaches, based on empirical Bayes [3] or
hierarchical priors, could be used.

In order to ensure the model is identifiable (i.e., to avoid
label switching), we enforce the following constraint on the
mean parameters: µ1 < µ2 < µ3 < µ4, where the states
represent loss, neutral, one-gain and multiple-gain. We do this
using a truncated Gaussian prior as follows:

µs|σ
2
s ∼ N (µs|ms,

σ2
s

κs

)Is(µs) (7)

where Is(µs) = 1 is µs is in interval Is and 0 otherwise. We
use the lower and upper bounds shown in Figure 3, based on
[9]; we use ε = 0.1.

We define the prior so that σ3,4 > σ1 > σ2, which means
that the gain states have higher variance than the loss state,
which has higher variance than the neutral state (an empiri-

Bound Loss Neutral One-gain Many-Gain
Lower −∞ −ε/2 ε µ3 + 3σ3

Upper −ε ε/2 0.58 ∞

Table 3: Setting of the truncation intervals for the means. We
require than µ4 be at least 3 standard deviations above µ3, so
that single gains do not get called as multiple gains.

Bound Loss Neutral One-gain Many-Gain
Upper 0.41 0.41 0.41 ∞

Table 4: Setting of the truncation intervals for the standard
deviations for each state, σs. By prevent the variance getting
too large, we ensure that the “bands” defining each state do not
overlap, and that extreme points are explained by the outlier
process (or by the many-gain state). The lower bound is 0 since
a Gamma distribution is only defined on positive variables.

cal fact about most aCGH data). We could also enforce this
ordering using a truncated Inverse Gamma prior as follows

σ2
s ∼ IG(

νs

2
,
νsτ

2
s

2
)Is(σ

2
s) (8)

We use the bounds shown in Table 4, based on [9].
Note that handling truncated priors in EM (for MAP estima-

tion) is tricky, since it would require constrained optimization
methods in the M step. However, when using MCMC, there
are standard methods for sampling from truncated Gaussians
[21] and trunctated Gammas [4].

Prior knowledge about CNPs is encoded as follows. Lo-
cations i ∈ P which are known to come from CNPs get an
adjustable parameter ρi which reflects the probability of out-
lier at that location. The parameters of the (beta) prior on ρi is
set so that the expected value of ρi is equal to the frequency of
polymorphisms at that location in the population. Locations
i 6∈ P , which are not known to come from CNPs, share the
same parameter ρ0, which represents the background proba-
bility of outlier. The (beta) prior on ρ0 is set so that the ex-
pected value of ρ0 is equal to the expected fraction of outliers.
The exact value is not important (we currently use Eρ0 = 0.5)
since we use a weak prior strength and we have enough data
that the prior is irrelevant. We will let C = |P | be the number
of CNP locations, so ρ is a vector of length C + 1.

2.2 Algorithm
The output of the algorithm is the following: estimates of
the states γi(s) = p(Si = s|y1:n) and outlier probabilities
ωi(o) = p(Oi = o|y1:n), as well as estimates of the param-
eters, p(θ|y1:n). We use an MCMC algorithm called block
Gibbs sampling to infer these quantities. The key to mak-
ing this efficient is to use the forwards-filtering backwards-
sampling algorithm for HMMs [23]. This is very similar to
the more familiar forwards-backwards and Viterbi algorithms,
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initialize parameters sensibly (eg set to prior mean)
initialize o1

1:n sensibly (eg set Oi = 1 if obviously an outlier)
for each iteration k

Compute local evidence Bk
i (s) = p(yi|Si = s, ot

i, µ
k, σk)

using Equation 1
Block B1: sample st+1

1:n |y, Ak, Bk with forwards-backwards
Block B2: sample ot+1

1:n |y, st+1, ρk, µk, σk in parallel
Block B3: sample µt+1

0:4 , σt+1

0:4 |y, st+1

1:n , ot+1

1:n

Block B4: sample ρt+1

0:C |ot+1

1:n in parallel
Block B5: sample At+1|st+1

2:n

Block B6: sample πt+1|st+1

1

next k
Compute Rao-Blackwellised estimates:
γ̂i(s) = 1

N

∑niter

t=burnin γk
i (s)

ω̂i(s) = 1

N

∑niter

t=burnin ωk
i (s)

Figure 2: Pseudo code for the algorithm.

except we sample state sequences from their posterior, rather
than computing the most probable sequence or marginal state
probabilities. Conditioned on knowing the states, it is easy to
update the parameters of the model. The same intuition is used
in EM, but the advantage of sampling is that we can model un-
certainty in the parameters more easily.

The algorithm is sketched in Figure 2. The running time is
O(NT ) where N ∼ 1000 is the number of clones in the input
and T ∼ 100 is the number of MCMC iterations needed to
obtain convergence (which we assess informally by monitor-
ing quantities of interest by eye). We explain the steps in more
detail below.

2.2.1 Updating S1:n

We use the forwards filtering, backwards sampling algorithm
for HMMs. This samples paths from the posterior

s∗1:T ∼ p(s1:T |x1:T ) (9)

This can be done as follows. First define Bt(j) = p(yt|St =
j, ot) using Equation 1 with the current parameters µ, σ2, and
the current outlier status o1:n. Then compute the filtered dis-
tributions αt(j) = p(St = j|x1:t) and ξt|t(i, j) = p(St−1 =
i, St = j|x1:t) using the standard forwards equations (see e.g.,
[20]).

α1 ∝ B1π (10)
αt ∝ BtA

T αt−1, t = 2 : N (11)
ξt|t(i, j) = Bt(j)A(i, j)αt−1(i) (12)

Then recurse backwards as follows. Base case:

s∗T ∼ p(ST |y1:T ) = αT (ST ) (13)

Induction step:

s∗t ∼ p(St|s
∗
t+1:T , y1:T ) (14)

∝ p(St|s
∗
t+1, y1:t) (15)

We can compute the sampling distribution as follows

p(St = i|St+1 = j, y1:t)ξt|T (i, j) =
ξt+1|t+1(i, j)

αt+1(j)
(16)

It will also be useful (see Section 2.2.7) to simultaneously
compute the smoothed state estimates in the backwards pass
as follows. Base case

γT (j) ∝ αT (j) (17)

Induction step

γt(j) =
∑

i

ξt|t(i, j)
γt(j)

αt(j)
(18)

2.2.2 Updating O

We just use Bayes rule:

p(Oi = 1|yi, ρi, µ0:K , σ0:K , si) = (19)
ρiN (yi|µ0, σ0)

ρiN (yi|µ0, σ0) + (1 − ρi)N (yi|µsi
, σsi

)
(20)

For later use we will define

ωi(o) = p(Oi = o|yi, ρi, µ0:K , σ0:K , si) (21)

2.2.3 Updating µ and σ2

We update µ and σ2 jointly since they are coupled in the pos-
terior (and the prior). Recall the following standard result for
conjugate updating of a Normal-inverse-Chi-squared model
[8]:

p(µs, σ
2
s |y1:T ) = N (µ|m′

s,
σ2

s

κ′
s

)χ−2(σ2
s |ν

′
s, τ

2
′

s ) (22)

m′
s =

κs

κs + Ns

ms +
Ns

κ′
s

ys (23)

κ′
s = κs + Ns (24)

ν′
s = νs + Ns (25)

ν′
sτ

2
′

s = νsτ
2
s + Nsσ̂

2
s +

κsNs

κ′
s

(ys − ms)
2(26)

where, in our case, we sum over all observations that are in
state s and which are not outliers:

Ns =

N
∑

i=1

I(Si = s, Oi = 0) =
∑

i:Si=s,Oi=0

1 (27)

ys =
1

Ns

∑

i:Si=s,Oi=0

yi (28)

σ̂2
s =

1

Ns

∑

i:Si=s,Oi=0

(yi − ys)
2 (29)
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Since the posterior factorizes

σ2
s |y1:T ∼ χ−2(ν′

s, τ
′
s) (30)

µs|σ
2
s , y1:T ∼ N (m′

s, σ
2
s/κ′

s) (31)

we can sample from the posterior by first sampling σ2 and then
sampling from µ|σ2. To sample from a σ2 ∼ χ−2(ν, τ) =
IG(ν/2, ντ/2) distribution, we can use

1/σ2 ∼ Ga(ν/2, ντ/2) (32)

2.2.4 Updating ρ

Recall that updating beta distributions just means increment-
ing the pseudocounts. For those locations i ∈ P known to be
covered by a CNP, we have simply

p(ρi|oi) = Beta(a′
i, b

′
i) (33)

a′
i = ai + I(oi = 1) (34)

b′i = bi + I(oi = 0) (35)

where we can see that we just update the prior with one data
point. For the other locations, we just count the total fraction
of outliers:

p(ρ0|o1:n) = Beta(a′
0, b

′
0) (36)

a′
0 = a0 +

n
∑

i=1

I(oi = 1, i 6∈ P) (37)

b′0 = b0 +

n
∑

i=1

I(oi = 0, i 6∈ P) (38)

2.2.5 Updating A

We update the counts as follows

p(Aij |s1:n) = Dir(Nij + δij) (39)

Nij =

N−1
∑

n=1

I(Sn = i, Sn+1 = j) (40)

2.2.6 Updating π

We update the counts as follows

p(πi|s1) = Dir(Ni + δi) (41)
Ni = I(S1 = i) (42)

2.2.7 Rao-Blackwellisation

A simple estimate of the state probabilities, γ̂i(s) = p(Si =
s|y1:n), can be computed by simply counting the number of
samples in which Si = s. However, the following Rao-
Blackwellised estimate

γ̂i(s) =
1

Nsamples

niter
∑

k=burnin

γk
i (s) (43)

has much lower variance, since it sheds a layer of Monte Car-
los variability by averaging probabilities rather than events
simulated with those probabilities. (Here Nsamples = niter−
burnin.) We can similarly estimate

p(Oi = o|y) =
1

Nsamples

niter
∑

k=burnin

ωk
i (o) (44)

Note that we currently use burnin = 0, niter = 100.

2.3 Evaluation methods
We evaluated our algorithm by calculating precision and re-
call for aberrations (gains and losses grouped together). Given
a ground truth labeling and a predicted labeling of the clones
(obtained by thresholding the p(Si|y) probabilities), let ntp be
the number of true positives (correctly predicted aberrations),
let nt be the number of true aberrations, and let np be the num-
ber of predicted aberrations. Recall is defined as ntp

np
, meaning

the proportion of true aberrations detected by the algorithm.
Precision is defined as ntp

nt
, meaning the proportion of pre-

dicted aberrations that are true. By varying the threshold on the
probabilities, we can vary the tradeoff between precision and
recall. To summarize the precision-recall curve in one number,
we use the F -measure, which is the geometric mean:

F = 2 ×
precision× recall

precision + recall
(45)

To summarise accuracy results over many samples or chromo-
somes, we use distributions of F -measures.

We now explain how we modify the above method to handle
outliers. We first compute the posterior probability of outlier
for each clone, p(Oi = 1|y). We then rank these probabil-
ities and take the top po% of them; finally, we select those
whose absolute probability is above a threshold to. We then
remove all those clones, which are deemed outliers, and com-
pute precision-recall on the remaining locations in the usual
way. (Currently we do not assess the reliability of outlier de-
tection, since we do not have reliable ground truth for outlier
locations for real data; we are interested in considering outliers
in order to help detect aberrations.)

3 Results
To systematically test our approach, we ran three variants of
our algorithm on each data set:

• The baseline HMM which clamps the probability of out-
lier at each location to 0, p(Oi = 1) = 0.0. This reduces
the model to an HMM with no outlier processing ability,
as in [9].

• The robust HMM, which uses C = 0 CNPs but updates
the global outlier probability p(ρ0|y) given data from all
locations.
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• The robust HMM augmented with location specific prior
(LSP) knowledge. In particular, we allow all locations
i ∈ P to have their own prior probability of outlier, ρi.

We also ran MergeLevels, considered to be the current best
method.

3.1 Simulated data with outliers
To check our model works, we used the synthetic data cre-
ated by Willenbrock and Fridlyand [25], downloaded from
http://www.cbs.dtu.dk/∼hanni/aCGH/. This data
is fairly realistic, since it is generated by sampling segments
from a large set of primary tumours [25]. To simulate CNPs,
we modified this data by adding outliers planted randomly at
10% of the locations in the samples. The positions were sam-
pled from a uniform distribution from 1 to 2000 (the number
of clones in each sample). The log2 ratios for these outliers
were sampled from a Gaussian distribution with mean 0 and
variance 2. This gave us a data set with ground truth locations
for the aberrated clones and for the positions of the outliers.

We chose 10% as the outlier fraction for the following rea-
son. Our internally generated list of CNPs covers nearly 20%
of the SMRT clones. However, publicly available CNPs repre-
sent approximately 1% of the SMRT clones. Therefore, we
chose 10% as a reasonable compromise between these ex-
tremes.

In synthetic data, we can control what fraction of the known
outlier locations we actually choose to incorporate into our
prior, to simulate the effect of partial knowledge. We also
add locations to the prior which are not outliers, to simulate
the effect of an incorrect prior. In addition to choosing the
locations, we can choose the strength of the prior. We set the
prior probability to 0.75, which empirically worked better than
some lower values we tried, possibly because it increases the
sensitivity of the model to single clone outliers. (As we see be-
low, such a strong prior does not hurt performance, even when
it is wrong.)

Figure 3 shows a sample from the simulated data set with
outliers added. In (A) we see the ground truth labeling, in
(B) the result of MergeLevels, and in (C), our robust-LSP
method, informed with 50% of the known outlier locations.
The vertical dashed lines represent the boundaries of the simu-
lated chromosomes. MergeLevels only detected four of eleven
aberrated regions, while the Robust-LSP-HMM detected all
regions, although with some false positive results. The LSP
model was only given locations for half of the outliers, yet
easily detects the remaining ones. We have also tried versions
where the LSP model is given incorrect prior locations (i.e., a
superset of the known outlier locations). It successfully learns
to ignore the prior in this case.

To complement this qualitative assessment, in Figure 4 we
present distributions of accuracy on 100 samples for the three
variants of our algorithm, including the Robust-LSP-HMM in-
formed by a superset of the positions, half of the positions,

and exactly all the positions of known outliers. Distributions
are shown as box-and-whisker plots where the line within the
box indicates the median of the distribution, the top and bot-
tom edges of the box indicate the third and first quartiles, the
ends of the whiskers indicate the 95% confidence intervals of
the distribution. The points shown on the plots are outside the
95% confidence intervals.

MergeLevels performs considerably worse than all the
HMMs: its F -measure was 0.37±0.26 over 100 samples.
The Base-HMM had a F -measure of 0.56±0.17, indicating
that by using an HMM framework, significant improvement
is attained over MergeLevels. Further improvement was at-
tained by adding outlier detection. The Robust-HMM had
a F -measure of 0.68±0.14. Finally the three versions of
the Robust-LSP-HMM performed increasingly better when in-
formed by a superset of the positions (F -measure 0.69±0.14),
half of the positions (F -measure 0.73±0.15) and exactly all
the positions (F -measure 0.77±0.15) of the known outliers.
This shows that informative prior knowledge can help, but in-
correct prior knowledge will not hurt performance (as long as
the prior is not too strong, contradictory data will always over-
whelm it).

3.2 H526 lung cancer cell line data
To illustrate the performance of our method on real data, we
used a set of 12 replicates from the well studied H526 lung
cancer cell line and evaluated performance on four chromo-
somes (1, 3, 4, 17) known to exhibit aberrations [13]. The
data was generated using the Sub-Megabase Resolution Tiling
(SMRT) arrays [13] using a set of approximately 27,000 clones
that cover the human genome. The log2 ratios were normalised
according to the stepwise method described in Khojasteh et al
[15]. We produced a single ’sample’ from the 12 replicates
by taking the median log2 ratio for each clone after removing
between-array systematic variations at each position. This was
then manually labeled. This resulted in a relatively clean data
set in terms of noise, but it allowed us to test our model on
high resolution real data, likely to contain CNPs.

We used a publicly available list of CNPs available from
http://projects.tcag.ca/variation/, first de-
scribed in [12], and an internally generated list of CNPs (Wong
et al, unpublished) detected using SMRT arrays on a popula-
tion of 105 normal individuals to set the location specific prior
probability of an outlier. We report results using our internally
generated CNPs.

Figure 5 shows chromosome 3 of H526 labelled by an ex-
pert (A), by MergeLevels (B) and by Robust-LSP-HMM (C).
We show results from chromosome 3 as it shows the biggest
difference between MergeLevel output and the Robust-LSP-
HMM output; the differences on other chromosomes are less
dramatic.

MergeLevels mis-classifies a large neutral region on the
p-arm as a loss and misses several small aberrations on
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Figure 3: Array CGH profile for a sample from the simulated
data set of Willenbrock and Fridlyand [25] augmented with
outliers. The color scheme is the same as explained in Fig-
ure 5. Panel A shows the ground truth labeling of the sample.
Vertical dashed lines represent the boundaries of the chromo-
somes. Each chromosome was analysed separately. The out-
lying points were inserted randomly at 10% of the locations
according to a Gaussian distribution with µ=0 and σ=2. There
are 11 aberrated regions in this sample. Panel B shows the out-
put of DNACopy+MergeLevels. This only detected 4 of the
aberrated regions. Panel C showing the output of the Robust-
LSP-HMM informed by half of the locations of outliers. All
11 aberrated regions are detected by our algorithm, although
there are numerous false positive predictions. We set po=10%
and to=0.1 when detecting outliers.
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Figure 4: F -measures for 100 samples of Willenbrock and
Fridlyand’s simulated data augmented with outliers. From left
to right: MergeLevels had an F -measure of 0.37±0.26. The
Base-HMM had better accuracy (F -measure of 0.56±0.17).
Further improvement was gained using the Robust-HMM
(F -measure of 0.68±0.14). As expected, informing the
Robust-LSP-HMM with the locations of the outliers re-
sulted in the best performance. Robust-LSP-HMM A (F -
measure=0.69±0.14) was informed with a superset of the out-
lier locations, Robust-LSP-HMM B (F -measure 0.73±0.15)
was informed with half of the locations, and Robust-LSP-
HMM C (F -measure 0.77±0.15) was given all and only the
outlier locations.
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the q-arm, but is otherwise correct. Also note the obvi-
ous positive outliers near the center of the chromosome that
MergeLevels mis-classified as losses. The F -measure was
0.73 for MergeLevels.

Our algorithm performed better than MergeLevels on chro-
mosome 3 (F -measure = 0.94) and nearly matched the ground
truth labeling, with the exception of missing very small aberra-
tions. The algorithm was given the complete list of CNPs de-
scribed in Section 3.2 that covered approximately 20% of the
clones. We used po = 1% and to=0.1 to determine outliers.
Other parameters used for this data set are listed in Table 1.

Figure 6 shows the quantitative evaluation of over chro-
mosomes 1, 3, 4, and 17 of H526 for MergeLevels, the
Base-HMM with no outlier detection, the Robust-HMM and
the CNP-informed Robust-LSP-HMM. The HMMs performed
marginally better than MergeLevels: The F -measures for the
HMMs are 0.96±0.02, while for MergeLevels it is 0.91±0.12.
In view of the big differences on the synthetic dataset, we were
somewhat surprised that MergeLevels did nearly as well as
the HMMs on average. (The low minimum performance of
MergeLevels is mainly attributed to the misclassification of the
large region on the p-arm of chromosome 3 mentioned earlier.)
We believe this is because our synthetic data is actually harder
than this real data set. However, recall that this “real” data set
is actually the result of averaging 12 replicates, and hence is
less noisy than one would typically expect. (Unfortunately, we
only had ground truth labels for the averaged data set.)

Another thing to note from Figure 6 is that all the HMM
variants do basically the same. This is a strong result, con-
sidering that the list of CNPs covers about 20% of the clones.
Once again, this indicates that the algorithm allows the data
to overwhelm the prior at CNP locations that are not exhibited
in the sample. In addition, note that although the performance
of the regular HMM and the robust methods were equivalent,
the robust methods provide extra information over the regular
HMM, since they flag outliers.

4 Discussion
We have presented a new model for classifying aberrated
clones in aCGH data, which is robust to outliers and is able
to leverage prior knowledge about CNP locations. In simu-
lated data, this model works better than a standard HMM and
a state of the art method, DNAcopy+MergeLevels.

However, on real H526 data, all methods work about the
same, on average. We believe one reason for this may be the
evaluation metric. We evaluated performance at the level of
precision/ recall of individual clones (as is standard). Thus
methods that get most of the large aberrations correct will
score well, even if they miss smaller aberrations (since the
small ones constitute a small fraction of the test set). How-
ever, it may be more clinically relevant to measure precision/
recall of aberrated regions rather than aberrated clones. This
will then treat all regions equally, regardless of size, and will
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Figure 6: F-measures over chromosomes 1,3,4,17 for
MergeLevels, the Base-HMM, the Robust-HMM and the
Robust-LSP-HMM with CNP location prior. The F -measures
is lower (mean 0.91±0.12) for MergeLevels than the HMM
variants, whose F -measures were all 0.96±0.02. (Note that
the horizontal line inside a box plot denotes the median, not
the mean.)

reward algorithms that can detect narrow aberrations. Narrow
aberrations are by their nature harder to detect. We believe our
method, which can incorporate prior knowledge, stands a bet-
ter chance of detecting these. (Of course, many of these small
aberrations may be called outliers, so we may need to merge
the outlier and gain labels.)

In the future, we plan to apply the method to samples ex-
tracted from a cohort of lymphoma patients. The aCGH pro-
files for these patients have been manually classified and nu-
merous clinically relevant aberrations have been identified. We
will evaluate applicability of our method in a clinical setting
using this data set.

We are also developing new models to identify locations of
recurrent aberrations across samples, and to use other forms of
prior knowledge, such as the locations of fragile sites. Com-
bined with CNP information, we anticipate that such models
will be extremely useful in profiling sub-types of cancer with
aCGH.
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Figure 5: Array CGH profile for chromosome 3 of the lung cancer cell line H526. Panel A shows the log2 ratios plotted against
the position of each clone on the chromosome. The red squares indicate clones labeled as losses by an expert cytogenetecist.
The green circles similarly indicate clones that are gains. Clones marked with dark blue diamonds indicate a known CNP (for
clarity, not all CNPs are shown). Clones marked with light blue triangles indicate non-CNP outliers identified by eye. These
may represent single clone aberrations, measurement errors or previously unknown CNPs. Panel B shows the predicted gains
and losses output by MergeLevels (F -measure 0.73). Panel C shows the output of the Robust-LSP-HMM (F -measure 0.94).
Predicted outliers are shown as pink stars. Note that the algorithm finds both CNP and non-CNP outliers (marked as such in
Panel A), while correctly identifying nearly all aberrated clones.
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