
Harvesting Classification Trees for Drug

Discovery ?

Yan Yuan a, Hugh A. Chipman b, and William J. Welch c

aDepartment of Statistics and Actuarial Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada

bDepartment of Mathematics and Statistics, Acadia University,

Wolfville, Nova Scotia B4P 2R6, Canada

cDepartment of Statistics, University of British Columbia,

333-6356 Agricultural Road, Vancouver, BC, V6T 1Z2, Canada

Abstract

Millions of compounds are available as potential drug candidates. High throughput

screening (HTS) is widely used in drug discovery to assay compounds for a particular

biological activity. A common approach to analysis of the assay data is to build a

classification tree to predict the activity of unscreened compounds and hence select

further compounds for assay. In many assays, the response variable is a binary

indicator of biological activity; the explanatory variables are chemical descriptors

capturing compound structure. A tree model will often provide good prediction

relative to other methods. It is also relatively interpretable, which is key, since it

is of interest to identify diverse chemical classes amongst the active compounds,

to serve as leads for drug optimization. Interpretability of a tree is often reduced,

however, by the sheer size and number of variables involved. We develop a “tree

harvesting” algorithm to reduce the complexity of the tree. Using data from the

Preprint submitted to Elsevier Science 26 April 2006

National Cancer Institute, we illustrate that an explanatory variable used to build

part of a classification tree, may not necessarily be important. Unlike tree pruning,

tree harvesting allows such variables to be removed near the top of the tree. The

algorithm also aims to reorganize the tree nodes for the interesting “active” class

into more coherent groups, thus facilitating identification of the mechanisms for

activity.

Key words: Classification tree, high-throughput screening (HTS), sequential

screening, tree pruning.

1 Introduction

For drug discovery, the pharmaceutical industry has widely adopted high

throughput screening (HTS) to assay millions of compounds for a given target

biological activity. Throughput capacities of 100,000 compound/day/assay are

common. The purpose of HTS is to identify candidates that can be modified

to produce new and effective drugs.

Exhaustive screening of compounds via HTS has many obstacles, however.

First, the number of possible drug-like compounds is huge, many orders of

magnitude greater than the largest chemical collections. Second, active com-

pounds are very rare. The hit rate, or proportion of active compounds among

those screened, is often of the order 1% for a biological target, making the

screening process extremely inefficient. Third, valuable resources like proteins

? Research supported by MITACS and NSERC, Canada.

Email addresses: y4yuan at uwaterloo dot ca (Yan Yuan), hugh dot

chipman at acadiau dot ca (Hugh A. Chipman), will at stat dot ubc dot

ca (William J. Welch).

2

and chemicals from the inventory are consumed. Fourth, the search is not only

for high potencies but also for a variety of chemical structures associated with

high potency. Chemists need multiple chemical classes as starting points for

modification, because compounds, besides being potent, need to meet con-

straints on toxicity, side effects, and duration of effect and specificity (Bradley

et. al. 2000).

Sequential screening has been advocated by various authors (e.g., Abt et. al.

2001, Engels and Venkatarangan 2001, and Young et. al. 2002) to overcome

the obstacles mentioned above and hence improve the efficiency of the drug

screening process. In the sequential screening paradigm, the process starts

with screening an initial sample (Young et. al. 2002). The objective of the

initial screen is to build a statistical model for the structure-activity relation-

ship (SAR), where the explanatory variables are descriptors that characterize

physical and chemical properties of a compound and the response variable

is its biological activity. If the activity is simply labeled as active/inactive,

we have a classification problem. Based on the first statistical model, the bi-

ological activities of unscreened compounds are predicted, in order to get a

more focused set of compounds with higher probability of activity for a sec-

ond round of screening. Several cycles of screening-modelling-screening can be

used to increase the hit rate of active compounds.

Various statistical models have been investigated for sequential screening, such

as classification/regression trees (also known as recursive partitioning), cluster

analysis, neural networks, and genetic algorithms (Engels and Venkatarangan

2001). Several successful applications of tree models for SAR modelling have

been reported (e.g., Abt et. al. 2001, Young and Hawkins 1998, and van Rhee

et. al. 2001), and we concentrate on classification trees in this article.

3

Classification tree algorithms (Breiman et. al. 1984, Hawkins and Kass 1982)

split the space of explanatory variables successively into smaller hyper-rectangles.

They are data-adaptive, automatically approximating complex nonlinear re-

lationships, including interaction effects, given enough data. One practical

difficulty, however, is deciding on a tree size. Breiman et. al. (1984) tackled

this issue by growing a large tree and pruning it back, whereas Hawkins and

Kass (1982) used hypothesis testing at each iteration to decide whether to

continue partitioning the explanatory variable space. The C4.5 algorithm of

Quinlan (1993) has a tree growing stage similar to that of Breiman et. al.

(1984).

As mentioned already, in addition to finding active compounds, high through-

put screening aims to identify a diverse set of active compounds with different

chemical structures and possibly different activity mechanisms. For example,

an anti-viral compound could either block a critical enzyme or block the re-

ceptors on the host cell membrane that the virus uses to enter the host cell,

etc. These underlying mechanisms are totally different for a compound’s ac-

tivity, and the relevant chemical structures could be unrelated. Hence, it is

possible that some explanatory variables are important for one mechanism

but irrelevant for other mechanisms. Reorganizing a tree so that the impor-

tant explanatory variables and their critical ranges are more one-to-one with

the activity mechanisms is the major thrust of this article. Although such

complexities in drug discovery data are the motivation for the research, we

anticipate that the potential application areas are much wider.

Like pruning in Breiman et. al. (1984), the proposed “tree harvesting” algo-

rithm simplifies a large tree. Unlike pruning, which works from the bottom

of the tree up, however, harvesting allows global reorganization of the tree.

4

The tree is simplified by removing redundant rules or explanatory variables.

Quinlan (1993, Chapter 4) also edited the decision rules of a tree, but the

method is quite different. We discuss these distinctions further at the end of

Section 2, when our algorithm has been made clearer.

The rest of the article is organized as follows. A simulated example is given

in Section 2 to describe the tree method and introduce our tree harvesting

algorithm. The algorithm is more formally defined in Section 3. Section 4

compares the results before and after harvesting for the simulated example

and for two drug-discovery data sets. The performance of the tree harvesting

algorithm is assessed with the latter two data sets. Finally, Section 5 concludes

with a discussion of the main findings and future work.

2 Simulated Example

A simple, simulated example (Lam et. al. 2001) will briefly review classification

trees and outline our harvesting algorithm.

There are three explanatory variables, LogP, MeltPt, and MolWt, as set out in

Table 1. There are two regions of activity, relating to two distinct mechanisms,

in the explanatory variable space:

A: 3.5 ≤ LogP ≤ 4.0, and

B: 160 ≤ MeltPt ≤ 205 and 400 ≤ MolWt ≤ 500.

Compounds with explanatory variables inside these two regions are active

with a nonzero probability; outside these two regions there are no active com-

pounds.

5

Table 1

Explanatory variables for the simulated example.

Variable Description Range

LogP Octanol/water partition coefficient −2 to 7

MeltPt Melting point 120 to 280 ◦C

MolWt Molecular weight 200 to 800

Specifically, the training data for 200 compounds are generated as follows.

First, 175 inactive compounds are randomly and uniformly distributed in the

three dimensional space of explanatory variables in Table 1. Then, 15 active

compounds are generated in the Region A for Mechanism A and another 10

actives are generated in Region B for Mechanism B. These two regions will

also contain inactive compounds, since they are uniformly distributed over the

entire space. The features of this data resemble those in actual drug discov-

ery problems: several underlying mechanisms, non-linear effects, thresholds,

imbalance of classes, and noise. Figure 1 plots the realized training data.

In practice, the various activity mechanisms are not distinguished in the data,

where there are just inactive and active compounds. Thus, the data set to be

analyzed looks like Figure 2. There is now no obvious pattern.

Uncovering the two active regions in Figure 2 is not straightforward for widely

used classification methods. First, we do not know whether multiple activity

mechanisms exist, or how many to expect. Second, the set of explanatory

variables that are useful versus irrelevant depends on the mechanism. Third,

the method needs to adapt to non-linear, threshold effects.

Tree models (e.g., Venables and Ripley 1999, pp. 303–327) are promising for

6

LogP

M
el

tP
t

−2 −1 0 1 2 3 4 5 6 7

12
0

20
0

28
0

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

(a)

MeltPt
M

ol
W

t
120 200 280

20
0

50
0

80
0

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O
O

O

O

O

O

O

O

O

O
O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

(b)

Fig. 1. Training data for the simulated example. Inactive compounds are shown by

circles in the explanatory variable space; compounds active via mechanisms A or B

are shown by “+” or ¦, respectively. In panels (a) and (b) the dashed lines mark the

active regions for LogP (Mechanism A) and for MeltPt and MolWt (Mechanism B),

respectively.

drug discovery data with irrelevant variables and threshold effects (Young and

Hawkins 1998). A tree model for the simulated example is shown in Figure 3. It

is produced by the rpart function (Therneau and Atkinson 2006) in R (R core

development team, 2006), which allows only binary splits. The ellipse at the

top of the tree is the root node, containing all 200 observations, 175 are class 0

(inactive) and 25 are class 1 (active). Because inactives are in the majority, the

node is deemed to be class 0. The root node is split into two descendant nodes

using the rule LogP < 3.425 versus LogP ≥ 3.425. This rule is chosen from all

possible explanatory variables and all possible split boundaries to make the

descendants as internally homogeneous as possible. Homogeneity is defined as

the change in the log likelihood based on a Bernoulli probability model. It is

7

LogP

M
el

tP
t

−2 −1 0 1 2 3 4 5 6 7

12
0

20
0

28
0

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

MeltPt

M
ol

W
t

120 200 280

20
0

50
0

80
0

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O
O

O

O

O

O

O

O

O

O
O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O
O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Fig. 2. Training data for the simulated example. Inactive compounds are shown by

small open circles in the explanatory variable space. The two mechanisms for activity

are not distinguished; all active compounds are shown by a large solid circle.

seen that 22 of the 25 active compounds go to the right descendant. Ideally,

the two descendant nodes would both be pure—all the inactive-class data

going to one node, and all the active-class data going to the other. One split

is insufficient, however, and the algorithm iterates, splitting each descendant

node. Ellipses denote internal nodes, which are split further by this process.

The rectangles represent terminal nodes, where splitting stops.

We now consider how the 12 terminal nodes relate to the two activity mecha-

nisms. Four terminal nodes are classified as active or Class 1. The only active

terminal node on the left hand side of the tree, labelled “Node 1”, is defined

by the rules:

LogP< 3.425 (1)

188.1 ≤ MeltPt< 218.5 (2)

400.7 ≤ MolWt< 500.3. (3)

8

Fig. 3. Tree for the simulated example. The predicted class for each terminal node

is indicated by a 0 or 1 directly above the rectangle. Class 1 nodes are the three

rightmost terminal nodes and the node labelled “Node 1”.

It contains a subset of the active compounds from Mechanism B. Similarly, the

three active terminal nodes on the right hand side of the tree together have

9

active compounds coming mainly from Mechanism A, with only one active

from Mechanism B. Six active compounds are distributed among the inactive

terminal nodes, one from Mechanism A and five from Mechanism B.

We can understand why the tree is unable to identify the two mechanisms

by looking at the first split, that of the root node. From Figure 3 we see

that the first split is based on LogP and the cutoff is 3.425. This rule cor-

responds roughly to the left boundary of Region A in Figure 1. While this

succeeds in keeping the active compounds for Mechanism A together in the

right descendant, the actives from Mechanism B are separated between the

two descendants. This root node splitting rule is passed down the tree to all

terminal nodes. Thus, it is impossible for the actives from Mechanism B to be

grouped together well. Similarly, if either MeltPt or MolWt had been used to

split the root node, the Mechanism A actives would have been divided.

The tree harvesting method we propose is a straightforward remedy for this

problem. For every terminal node, we consider a “simplification” in which

rules corresponding to one or more variables are discarded. For instance, let

us examine the active terminal node labelled Node 1 in Figure 3. If rule (1)

is removed from the rule set, leaving only rules (2) and (3), a new, larger

set of points in the explanatory variable space is defined. These points be-

come Node 1* at the top of Figure 4. The terminal nodes denoted by circles

in Figure 4 have fewer data points than before. In addition to all the com-

pounds in Node 1, five further active compounds from four terminal nodes

on the right side of the original tree fall in Node 1*. This appears to be an

improvement since no inactive compounds move to Node 1*. Moreover, four

of the active compounds are removed from inactive terminal nodes. Thus, ac-

tive compounds, which are of interest here, are gathered together in Node 1*,

10

Fig. 4. The harvested tree after removing rule (1) from Node 1 in Figure 3. Terminal

nodes that have changed are indicated by a circle. Node 1 in Figure 3 is now empty.

hence the term “harvesting”.

Alternatively, we could remove one of the other rules in Node 1 or a rule

from any other terminal node. To assess which choice is best, we used the log

likelihood criterion. For example, when rule (1) is removed from Node 1, five

11

terminal nodes change. Based on the same Bernoulli probability model used

to generate the original tree, the change in log likelihood from Figure 3 to

Figure 4 is

∆= l(2, 8) + l(0, 0) + l(51, 1) + l(6, 0) + l(9, 1) + l(2, 3)]

− [l(2, 3) + l(51, 2) + l(6, 1) + l(9, 3) + l(2, 4)]

=−16.6− (−25.3) = 8.7,

where

l(a, b) = a ln(a/(a+ b)) + b ln(b/(a+ b)), (4)

and l(0, 0) = 0. The positive value (∆ = 8.7) indicates that this simplification

actually yields an improvement in the overall fit of the tree.

After removing this rule from Node 1, we consider whether either of the re-

maining rules on MeltPt or MolWt can be removed. The changes in log like-

lihood are ∆ = −8.92 and −16.72, respectively (in both cases the resultant

tree is inferior). Since both changes fall below ∆crit = −
1
2
χ2

2,0.95 = −2.99,

the simplification process for Node 1 terminates without deleting either of the

remaining two rules. Two degrees of freedom (df) are used for the cutoff since

each rule in question has 2 constraints.

If the same calculation is performed for every terminal node in the original

tree, it turns out that simplifying Node 1 by removing only rule (1) gives the

largest value of ∆.

Harvesting can be applied to the tree iteratively, as shown in Figure 5, un-

til none of the nodes remaining in the original tree can be simplified. We

will examine the resulting final harvested tree for the simulated example in

Section 4.1.

12

T

T

T

T

F

F

F

F

...

Fig. 5. A tree after several harvesting iterations. Each ellipse is a rule set that gives

the rectangular harvested terminal node as its left descendant.

In C4.5, Quinlan (1993) also considered simplifying rules for terminal nodes.

His method and our method are different in several respects. First, his defini-

tion of a rule is any condition that leads to an internal or terminal node. For

example, there would be five rules for Node 1 in Figure 3. In our definition,

there is at most one rule for a variable (possibly with both lower and upper

bounds). Second, and most importantly, Quinlan’s decision to delete a rule

was based on a criterion similar to the misclassification rate for a single node.

In contrast, harvesting looks at the global change in log likelihood for the

entire model.

13

3 Harvesting Algorithm

We now describe the algorithm for the general two-class classification problem

with p explanatory variables, but first we need some definitions.

At any stage in the algorithm, let N = {N1, . . . , Nt} be a subset of t = |N |

terminal nodes from the original tree; we call these unharvested nodes. Simi-

larly, let H = {Ñ1, . . . , Ñh} be a set of harvested nodes. The tree harvesting

algorithm iteratively removes a node from N and places a simplified version

of the node in H.

Node Ni is defined by a set of k = |Ni| rules Ri1, . . . , Rik, where k ≤ p. A rule

refers to both the lower and upper constraints on the variable. For example,

suppose there are p = 3 explanatory variables; a node could be defined by

k = 2 rules x2 > 2.5 and 0.1 < x3 < 14.3. The distinction between < and

≤ is unimportant for tree models, because cutoff points are usually chosen

mid-way between distinct observed values.

A harvested tree is represented by the set of all nodes, {H,N}. The ordering

of the nodes is important. When a point (set of values for the explanatory

variables) is passed down the tree, if it satisfies the rules for Ñ1 then it is

assigned to that node. Otherwise, the rules for Ñ2, Ñ3, . . . are tested, and the

point is assigned to the first node where the rules are satisfied. Only if the

point does not belong to any of the harvested nodes is it assigned to one of

the unharvested nodes.

The log likelihood for a tree,

l(H,N) =
h∑

i=1

l(Ñi) +
t∑

i=1

l(Ni),

14

is the sum of contributions over all nodes. The contribution, l(N), from any

node depends only on a and b, the numbers of Class 0 and Class 1 points, and

is given by (4).

A key step in the algorithm is the creation of a new harvested node, Ñh+1

from one of the unharvested nodes, Ni, by removing one or more of its rules,

Ri1, . . . , Rik. As the rules for Ñh+1 are a relaxation of those for Ni, and har-

vested nodes are considered first in the tree, Ni is depleted of points when

harvested, and it no longer makes contribution to the log likelihood and can

be deleted from N .

The harvesting process is divided into two algorithms: harvest and simplify,

described in Figure 6. In this figure, set operators ∪ and \ denote addi-

tion/deletion of a node to/from a set of nodes.

The simplify function operates on a single node, attempting to remove re-

dundant rules. This is accomplished by deleting the least important rule, one

rule at a time, until all remaining rules are significant. The harvest func-

tion moves one node at a time from N to H. It identifies the best node Ni∗

(with simplified form Ñi∗) to move, and provided that the node has actually

been simplified (Ñi∗ 6= Ni∗), it will remove Ni∗ from N and insert a simplified

version Ñi∗ in H.

The fact that the simplify step relaxes the constraints on a node implies

that after each harvesting, membership of points in all nodes of N can change.

Thus, every time a node is harvested, the search for the next node to harvest

involves trying a simplification of each remaining node in N . Also, every time

a rule is removed inside simplify, all other rules must be re-evaluated to

determine the next best rule to remove.

15

harvest(N) {
H ← ∅
do {

for i = 1 . . . |N | {

Ñi ← simplify(Ni;N ,H)

if (Ñi∗ 6= Ni∗) ∆i ← l(N \ Ni,H ∪ Ñi)− l(N ,H)
else ∆i ← − inf

}
if (max(∆i) 6= − inf) {

i∗ ← argmaxi∆i

N ← N \ Ni∗

H ← H∪ Ñi∗

}
} while (|N | > 0 and max(∆i) 6= − inf)
return N ,H

}

simplify(Ni;N ,H) {

Ñi ← Ni

do {

for j = 1 . . . |Ñi| {

Ntry ← Ñi \ Rj

∆j ← l(N \ Ni,H ∪Ntry)− l(N \ Ni,H ∪ Ñi)

}
j∗ ← argmaxj∆j

if (∆j∗ > ∆crit) {

Ñi ← Ñi \ Rj∗

}

} while (|Ñi| > 0 and ∆j∗ > ∆crit)

return Ñi

}

Fig. 6. Pseudo code for the harvested algorithm. Details and notation are provided
in Section 3.

In simplify, the critical value ∆crit will correspond to −
1
2
χ2

m,0.95, half of a

95% upper quantile of a Chi-square distribution with m df, with m = 1 or 2

depending on whether the rule being deleted is 1-sided or 2-sided.

16

Table 2
Harvested nodes for the simulated example.

Harvested Variable range

node LogP MeltPt MolWt Inactive/Active

1 [- , -] [188.1, 218.5] [400.7, 500.3] 2/8

2 [- , 3.425] [- , -] [- , -] 99/0

3 [3.52, 3.98] [- , -] [626.2, -] 1/8

4 [3.52, 3.98] [- , -] [- , 405.5] 2/4

5 [- , -] [185.3, -] [- , -] 46/1

6 [3.52, 3.98] [- , -] [- , -] 0/2

7 [- , -] [- , -] [- , -] 25/2

4 Results

4.1 Simulated example

Applying the harvesting algorithm to the simulated data in Section 2 leads to

the harvested tree in Table 2. The choice of harvested node 1, labelled node 1*

in Figure 4, was described in Section 2. It contains two inactive compounds

and eight active compounds in the training data. Harvested node 1 is roughly

a subset of the actives from Mechanism B.

Harvested node 2 concentrates 99 of the inactive compounds together, with

no actives. Its rules define essentially the inactive area to the left of the LogP

active region in Figure 1(a). Note that there are three active Mechanism B

compounds in this area of Figure 1(a), but they are picked up by harvested

node 1.

The rules defining harvested nodes 3, 4, and 6 all contain exactly the LogP

rule defining Mechanism A. Two of these nodes also include rules to exclude

Mechanism B active compounds.

17

Harvested nodes 5 and 7 are inactive nodes, with three active compounds

between them. In contrast, six active compounds were hidden in active nodes

in the original tree of Figure 3.

After harvesting seven terminal nodes, all 12 terminal nodes of the original

tree are depleted.

The harvested tree is therefore largely successful in separating the two mecha-

nisms. Mechanism A corresponds to harvested nodes 3, 4, and 6, while Mech-

anism B corresponds approximately to harvested node 1. The harvested tree

is also more successful in classifying active compounds overall: only three of

the 25 active compounds fall in inactive nodes.

4.2 NCI and Mutagenicity Data Sets

We now illustrate the algorithm with two binary classification problems. The

NCI data has six explanatory variables and extremely unbalanced classes. The

mutagenicity data has 47 explanatory variables and balanced classes.

4.2.1 Data descriptions

The NCI data set consists of 29,812 compounds that were measured for their

ability to protect human CEM cells from HIV-1 infection. The database is

available from the National Cancer Institute, at http://dtp.nci.nih.gov/

docs/aids/aids_data.html. The 1999 release of data is used in our analy-

sis. The original response contained three categories: Inactive (29,204 com-

pounds), moderately active (393 compounds) and active (215 compounds).

The two active classes were merged to form a single “active” class, somewhat

mitigating the problem of class imbalance. The BCUT descriptor set (Burden

18

1989, Pearlman and Smith 1999) is calculated (by GlaxoSmithKline chemists)

to serve as explanatory variables. BCUT metrics are an extension of Burden’s

parameters which are based on a combination of the atomic number for each

atom and a description of the nominal bond-type for adjacent and nonadja-

cent atoms (Burden 1989, Pearlman and Smith 1999). The six BCUTs used in

this study describe the compounds’ atomic charge, polarizability, and hydro-

gen bond donor-acceptor ability (Todeschini and Consonni 2000). This set of

BCUT numbers has been successfully used in modelling the NCI AIDS data

(Lam et. al. 2001, Wang et. al. 2002).

In the mutagenicity data, the binary response variable codes mutagenic/non-

mutagenic. Since mutagenic compounds tend to increase the frequency or ex-

tent of DNA mutation, it is cost effective to identify mutagens in the early

phase of drug development process. Here, we analyze a dataset of 1866 com-

pounds (968 non-mutagenic, 898 mutagenic) obtained from GlaxoSmithKline.

The constitutional descriptor set used for the explanatory variables is gener-

ated using Dragon software (Todeschini and Consonni 2000). The constitu-

tional descriptor set consists of 47 variables such as molecular weight, volume,

number of oxygen atoms, etc.

4.2.2 Analysis of NCI data

The rpart library (Therneau and Atkinson, 2006) in R was used to build the

tree model. Previous work on the NCI data (Wang et. al. 2002) found that

the best out-of-sample predictive performance was achieved by growing very

large trees without any pruning. Only node size was restricted (5 or more

observations per terminal node, and at least 10 observations are required to

split a node).

19

The original tree has 124 terminal nodes, while the harvested tree has 122

terminal nodes. Although harvesting does not dramatically reduce the num-

ber of nodes, it does simplify the rules making up each terminal node: the

original tree had an average of 4.54 rules/node, while the harvested tree has

2.5 rules/node. In these counts, a “rule” is defined as 1 or more conditions

on an explanatory variable, thus limiting the number of rules above by the

number of explanatory variables (6 for NCI). Although the number of nodes is

large, only a few are likely to be examined closely, since only a small fraction

of the total nodes have high activity levels. Short rules will aid interpretation

of these nodes.

As the nodes are harvested, the change in log-likelihood can be monitored.

Figure 7 shows that the changes are small, positive quantities, implying that

even though rules are being simplified, small improvements in fit are being

gained. The overall log likelihood change is 48.6, indicating a substantial im-

provement from the original tree model. A formal test of significance is not

carried out, because of difficulty in identification of an appropriate reference

distribution.

To accurately assess predictive performance, out of sample (i.e., test set) accu-

racy must be evaluated. The modelling described thus far was in fact carried

out on a randomly selected 50% subset of the full dataset. This division of the

data into train/test sets was constrained so that each set had the same balance

of active/inactive compounds. We now consider predictive performance on the

test set. Before giving performance results, we briefly discuss appropriate tech-

niques for assessing predictive performance in unbalanced classification.

20

0 20 40 60 80 100 120

−
1

0
1

2
3

Node sequence

Lo
gl

ik
el

ih
oo

d
ch

an
ge

 a
fte

r
ha

rv
es

tin
g

ea
ch

 n
od

e

Fig. 7. The sequence of log likelihood change as node is harvested from the first to
the last.

Measuring performance in unbalanced classification

We will consider a performance measure specifically designed to assess the abil-

ity of the model to accurately identify active compounds. We note in passing

that misclassification rate is inappropriate for unbalanced problems: a very

low misclassification rate can be obtained by a naive classifier that always

predicts the majority class.

We describe briefly the hit curve, a graphical measure of performance (see also

Zhu et. al. 2006). In its construction, compounds are first ranked according

to their predicted probability of being active. These compounds are then “se-

lected”, one at a time, and the cumulative number of actives recorded. A hit

curve displays the number selected on the horizontal axis against the num-

ber of actives on the vertical axis. Steeply rising hit curves indicate a model

effective at selecting active compounds, while a line with slope n1

n
, where n1

denote the number of actives and n denotes the number of total compounds,

21

corresponds to selecting compounds in random order. Tied predictions are

typically handled by selection of groups of tied points rather than one-at-a-

time selection. When tied groups arise, the ranking problem becomes one of

ranking groups rather than individual observations.

Two ranking criteria are used producing two hit curves in this study. One is p̂,

the estimated probability of being active. For both trees and harvested trees,

p̂ for each terminal node is the sample proportion of actives in that node.

Predictions are then made by passing each new compound down the tree,

and assigning the p̂ from the node in which the compound lands. The main

problem with ranking by p̂ is that estimation uncertainty is ignored. Consider

two terminal nodes, one having 100 compounds with 99 active (p̂= 99/100 =

0.99), the other having only one compound which is active (p̂ = 1/1 = 1.00).

The p̂ criterion will give the second node higher rank, even though its p̂ is more

variable. Lam et. al. (2001) encountered this problem in a similar context, and

ranked nodes using a lower confidence bound on the probability of activity.

Assuming a Binomial model for responses in each terminal node, we shall

use an exact 95% lower confidence bound, plb. In a node with m actives out

of n compounds, plb can be calculated as the solution for p in the equation

Pr(M ≥ m|n, p) = 0.05, assuming that M ∼ Bin(n, p). Under this criterion,

the plb is 0.95 for the 1/99 node and 0.05 for the 0/1 node.

We now return to a comparison of predictive accuracy. Figure 8 displays test-

set hit curves for the original tree and for the harvested tree. Two different

curves are displayed for each model, corresponding to ranking by p̂ and by plb.

When we select more than 250 compounds, the harvested tree dominates the

original tree regardless of criterion used. For a smaller number of compounds

selected, the original tree with either ranking criterion is comparable to the

22

0 100 200 300 400 500 600

0
20

40
60

80
10

0
12

0

Number of compounds selected

A
ct

ua
l h

its

harvested (lower p)
original (lower p)
harvested (est. p)
original (est. p)

Fig. 8. Actual number of hits as compounds are selected from the test data by the
tree and harvested tree model (NCI data).

harvested tree with plb ranking. Overall, the harvested tree with plb ranking is

very close to optimal no matter how many compounds are selected, and beats

the original tree when more than 250 compounds are selected.

4.2.3 Analysis of Mutagenicity Data

The balanced nature of the mutagenicity data leads to some different tech-

niques for model-building and performance assessment. The rpart tree was

pruned using cross-validated misclassification rate, and the harvesting algo-

rithm applied to the pruned tree. Due to the balanced nature of the data,

predictive performance will be measured with misclassification rate.

Table 3 shows some characteristics of the original tree and harvested tree. Five

different partitions of the data into training and test sets are reported. In the

23

Table 3
Results of tree algorithm and harvesting algorithm for five different train/test splits
of the mutagenicity data set. In the first row all data was used for model-building,
while in the other rows 25% was used for testing.

Test set # of

Train/ # of Nodes Rules/node misclass rate variables used

Test H. Tree Tree H. Tree Tree H. Tree Tree H. Tree Tree

abcd/ 20 22 2.25 4.73 n/a n/a 15 15

bcd/a 18 19 2.11 5.42 0.275 0.290 13 13

acd/b 19 22 2.42 5.27 0.236 0.240 16 16

abd/c 24 25 2.71 5.28 0.262 0.266 14 14

abc/d 24 25 2.25 6.08 0.218 0.212 18 18

first instance, all data were used for training. In the other instances, a 75/25%

train/test split was used. Within the training set, 3-fold cross-validation (each

time leaving out 25% of the full data) was used to select tree size. In all

instances, the same four subsets (labelled a-d) are used as building blocks for

the train/test splits, and for cross-validation within the training set. In all

cases, the harvested tree has (i) slightly fewer nodes, (ii) half the number of

rules in each node, (iii) comparable or better test set misclassification rates,

and (iv) no reduction in the number of variables used. These results are similar

to the NCI example, with harvesting yielding shorter, more interpretable rules,

and a slight improvement in out-of-sample predictions.

The tree constructed using all the data has 22 terminal nodes and uses 15 of

the variables. Table 4 shows the first 9 harvested nodes, and lists the variables

removed during harvesting. The table indicates considerable simplification of

the original tree.

In the original tree, node 1 is constrained by five conditions:

2.5< nAB (number of aromatic bonds) < 14.5 (5)

24

Table 4
The first 9 harvested nodes for the mutagenicity data.

Mutagenic/ Deleted

Node total Label Rules variables

1 40/65 1 2.5<nAB<14.5; nBM<6.5; nN=1 AMW nR03

2 71/92 1 nAB>14.5; nN>1.5 nCIR

3 53/64 1 nAB<14.5; nR03>0.5 AMW nN

4 15/126 0 nR06>0.5; nAT<15.5 nAB nN nO Sp

5 20/60 0 2.5<nAB<14.5; Mv<0.635; nN=1 AMW nBM nR03

6 96/125 1 nAB<14.5; AMW>6.245; 0.5<nX<3.5 nN nR03

7 9/47 0 nBnz=0; nO=0; nN>1.5 nAB Sp

8 93/132 1 nN>1.5; nBnz>0.5; Sp<20.33 nR03 nX

9 35/131 0 nAB<14.5; nN<1.5; AMW>6.245; nR03 nX

MW<221.3

nN (number of Nitrogen atoms) = 1 (6)

nBM (number of multiple bonds) < 6.5 (7)

nR03 (number of 3-membered rings) = 0 (8)

AMW (average molecular weight) < 6.245. (9)

Node 1 contains 49 compounds and 32 of them are mutagenic. When har-

vested, conditions (8) and (9) on nR03 and AMW were dropped. The result-

ing harvested node contains 65 compounds, of which 40 are mutagenic. Since

there are three rules for this harvested node, the interpretation becomes sim-

pler. Similar complexity reduction occurs in the harvesting of node 2, while

increasing the size of the node from 45 to 92 compounds and reducing the

node’s misclassification rate from 27% to 23%.

Similar to the NCI analysis, the harvesting process yields a sequence of mostly

small increases to the log-likelihood. The improvement is largest for the first

six nodes, then near zero for the remaining nodes. The overall log likelihood

increase is 21.62, indicating a substantial improvement from the original tree

25

model. These results are for harvesting a tree grown to the full dataset, al-

though the patterns are similar for the four train/test splits as the above.

5 Discussion

The tree harvesting algorithm is an innovative approach to deal with multiple

mechanisms. The current algorithm creates simpler rules in harvested nodes,

can increase the size of nodes (improving the support of the rules generated),

and often demonstrates modest improvements in prediction performance. We

have focussed on classification trees, but the same methodology would apply

to regression trees for a continuous response variable.

The current harvesting algorithm treats the original rules coarsely, considering

the deletion of all rules involving a variable at once. Finer control might be

possible, such as adjusting the individual constraints on variables rather than

just deleting them. For example, in the simulated example, the true constraint

on MeltPt for mechanism B is [160, 205], while the tree identifies the constraint

as [188.1, 218.5]. By adjusting (and possibly deleting) the individual bounds

in this rule, it may be possible to better uncover the actual structure, and

perhaps reduce the number of terminal nodes substantially.

In unbalanced problems, where the goal is to identify a target class, tree har-

vesting can be valuable because (1) it produces simpler rules and (2) the

harvested nodes are often applicable to more data, since rules have been re-

moved. Thus, the first few harvested nodes that are active may be all that

need be examined in order to identify sufficient observations from the rare

class. Interpretability might be further improved if the harvesting algorithm

could be biased to select more “active” nodes early in the harvesting process.

26

One possible approach for this is to differentially weight classes during the

harvesting stage.

The criterion to harvest nodes is based on the log-likelihood, and harvesting

continues provided that the change in log-likelihood is larger than a negative

cutoff. Although an appropriate reference distribution has not been identified,

the current cutoffs are based on the 95th percentiles of a χ2 distribution with

1 or 2 degrees of freedom, depending on whether 1 or 2 constraints make up

the rule being deleted. While identification of a proper reference distribution

for this cutoff would be desirable, it is complicated by the greedy nature of

the harvesting algorithm.

A number of other approaches have some similarity to our tree harvesting

algorithm. Quinlan’s C4.5 algorithm has an optional step, c4.5rules (Quinlan

1993, Ch. 5), which allows the deletion of rules from the rulesets that identify

terminal nodes. This approach is similar, although our method uses likelihood-

based criteria for pruning, considers deletion of entire variables, and includes

specialized tools for the analysis of unbalanced classification problems.

Friedman and Fisher’s (1999) PRIM algorithm seeks to identify rules of the

same form as our tree harvesting algorithm. A critical difference is that PRIM

is a top-down algorithm that constructs the final nodes “from scratch”, while

our approach modifies an existing tree. Both methods have merits and limita-

tions. One advantage of our approach is that it can be used as a complement

to a tree-based analysis, producing rules that are more interpretable than the

original tree. More recent work by Friedman and Popescu (2005) also consid-

ers the generation of rule ensembles, but allows different rules to additively

combine to generate a final prediction.

27

Building models for HTS data on low dimensional subspaces (subsets of vari-

ables) was investigated by Lam et. al. (2001) and Wang et. al. (2003). These

approaches are based on the hope that only a few variables are relevant to

structurally different chemical classes at a time. Their results suggested it is

likely the case. The results of this study also support this hypothesis.

Lam et. al. (2001) proposed a cell-based analysis method for HTS data. With

their method, preliminary identification of a good cell is achieved by three

steps. In step 1, the descriptor (explanatory variable) space is divided into

1D/2D/3D cells. In step 2, cells are shifted to optimize their boundary with

respect to active compounds. The shifting of cells provides an effective means

of handling different shapes and sizes of active regions. In step 3, the prelim-

inary good cells are identified by counting the number of active compounds

in each cell. Our harvested active nodes may be used as initial cells in step

1, since the harvested nodes are often associated with 1-3 variables defining a

low dimensional subspace. The harvested active nodes could also be used to

guide the dividing process in step 1 by pointing out relevant subspaces. Lam

et. al. (2001) considered all possible 1D/2D/3D subspaces. With p descriptors,

there are
(

p

1

)
+

(
p

2

)
+

(
p

3

)
= (5p + p3)/6 subspaces in total. For large p, it is

suggested that reducing the number of subspaces by focusing on only 1D and

2D subspaces for computational reasons. After we obtained harvested nodes,

we can focus on the subspaces defined by them. This could lead to a significant

reduction in the number of subspaces to be searched.

28

References

Abt, M., Lim, Y., Sacks, J., Xie, M. and Young, S. S. (2001), “A Sequential

Approach for Identifying Lead Compounds in Large Chemical Databases.”

Statistical Science, 16, 154–168.

Bradley, E. K., Beroza, P., Penzotti, J .E., Grootenhuis, P. D. J., Spellmeyer,

D. C., and Miller, J. L. (2000), “A Rapid Computational Method for Lead

Evolution: Description and Application to α1-Adrenergic Antagonists.” Jour-

nal of Medicinal Chemistry, 43, 2770–2774.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classi-

fication and Regression Trees. Wadsworth, Monterey, CA.

Burden, F. R. (1989), “Molecular Identification Number for Substructure

Searches.” Journal of Chemical Information and Computer Science, 29,

225–227.

Engels, M. F. M. and Venkatarangan, P. (2001), “Smart Screening: Approaches

to Efficient HTS.” Current Opinion in Drug Discovery and Development,

4, 275–283.

Friedman, J. H. and Fisher, N. I. (1999) “Bump Hunting in High-Dimensional

Data”, Statistics and Computing, 9, 123–143.

Friedman, J. H. and Popescu, B. E. (2005) “Predictive learning via Rule En-

sembles”, Technical report, Stanford University Department of Statistics.

Hawkins, D. M. and Kass, G. V. (1982), “Automatic Interaction Detection.”

Topics in Applied Multivariate Analysis, Hawkins, D. M., ed. Cambridge

University Press, Cambridge.

Lam, R. L. H., Welch, W. J., and Young, S. S. (2001), “Cell-Based Analysis

of High Throughput Screening Data for Drug Discovery.” Research Report

29

RR-02-02, Business and Industrial Statistics Research Group, University of

Waterloo.

Pearlman, R. S. and Smith, K. M. (1999), “Metric Validation And The Receptor-

Related Subspace Concept.” Journal of Chemical Information and Com-

puter Science, 39, 28–35.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo, California.

R Development Core Team (2006), R: A Language and Environment for Statis-

tical Computing, R Foundation for Statistical Computing, Vienna, Austria,

http://www.R-project.org.

Therneau, T. M. and Atkinson, B. (2006) “Rpart: Recursive Partitioning”,

R package version 3.1-22, S-PLUS original at http://www.mayo.edu/hsr/

Sfunc.html.

Todeschini, R. and Consonni, V. (2000), Handbook of Molecular Descriptors.

Wiley-VCH, Weinheim, Germany.

van Rhee, A. M., Stocker, J., Printzenhoff, D., Creech, C., Wagoner, P. K.

and Spear, K. L. (2001), “Retrospective Analysis of an Experimental High-

Throughput Screening Data Set by Recursive Partitioning.” Journal of

Combinatorial Chemistry, 3, 267–277.

Venables, W. N. and Ripley, B. D. (1999), Modern Applied Statistics with

S-Plus (3rd edition). Springer.

Wang, M., Chipman, H., and Welch, W. J. (2002), “Mining Nuggets of Ac-

tivity in High Dimensional Space from High Throughput Screening Data.”

Research Report RR-02-01, Institute for Improvement in Quality and Pro-

ductivity, University of Waterloo.

Wang, M., Chipman, H., and Welch, W. J. (2003), “Classification for Ranking

in Drug Discovery: Identifying and Aggregating Relevant Subsets of Vari-

30

ables.” Proceedings of the ISI Conference on Environmental Statistics and

Health, Santiago de Compostela, Spain, pp. 173–181.

Young, S. S. and Hawkins, D. M. (1998), “Using Recursive Partitioning to An-

alyze a Large SAR Data Set.” SAR and QSAR in Environmental Research,

8, 183–193.

Young, S. S., Lam, R. L. and Welch, W. J. (2002), “Initial Compound Se-

lection for Sequential Screening.” Current Opinion in Drug Discovery and

Development, 5, 422–427.

Zhu, M., Su, W., and Chipman, H. A. (2006) “LAGO: A Computationally

Efficient Approach for Statistical Detection”, to appear in Technometrics.

31

