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Abstract

Computer models to simulate physical phenomena are now widely available in
engineering and science. Before relying on a computer model, a natural first step
is often to compare its output with physical or field data, to assess whether the
computer model reliably represents the real world. Field data, when available, can
also be used to calibrate or tune unknown parameters in the computer model.

Calibration is particularly problematic in the presence of systematic discrepan-
cies between the computer model and field observations. We introduce a likelihood
alternative to previous Bayesian methodology for estimation of calibration or tun-
ing parameters. In an important special case, we show that maximum likelihood
estimation will asymptotically find values of the calibration parameter that give an
unbiased computer model, if such a model exists. However, the calibration parame-
ters are not necessarily estimable. We also show in some settings that calibration
or tuning need to take into account the end-use prediction strategy. Depending on
the strategy, the choice of the parameter values may be critical or unimportant.

KEYWORDS: Computer experiment, Gaussian stochastic process, Maximum like-
lihood, Random function.

1. INTRODUCTION

In many engineering and science disciplines, deterministic computer models or codes

are used to simulate complex physical processes. For example, Sacks, Schiller and Welch

(1989), Sacks, Welch, Mitchell and Wynn (1989), and Currin, Mitchell, Morris and

Ylivisaker (1991) described applications in chemical kinetics, electrical engineering, and

the physics of heat storage.
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Ideally, a deterministic computer model is a perfect mathematical representation of

the physical system. If so, at every setting of the input (explanatory) variables used in

the field, the mean of the field response and the computer model output agree exactly.

In addition, one or more of the input variables to the computer code may be unknown

or unmeasurable in the physical system. Thus, the output values from limited computer

runs are compared to the field response measurements to adjust these input variables.

The objective of adjustment is either (i) to estimate the true values of the corresponding

physical parameters, the calibration problem or (ii) to tune adjustment parameters of

the computer code without physical meaning to be a better surrogate for the physical

process. An underlying objective of the analysis of such data is to build an accurate

predictor of the field mean, so avoiding the need for field response measurements in new

settings.

Kennedy and O’Hagan (2001) introduced a Bayesian model incorporating both the

computer-model and field data. Their formulation also recognized that the computer

model will inevitably be biased to some extent. As pointed out, by discussants of Kennedy

and O’Hagan (2001), in the presence of bias it is questionable whether calibration is

possible in the sense of estimating physically meaningful constants. This practical issue

is a major thrust of our paper.

To illustrate the practical complexities, an application described in greater detail in

Section 4 concerns a resistance spot welding process (Bayarri et al. 2002, 2005 and Hig-

don et al. 2004). There are three input variables to the computer code that may also be

set for field measurements. In addition, the computer code requires an input value for

a parameter, τ , which is not a variable in the field. Following the statistical model and

maximum likelihood approach of Section 2 leads to a profile likelihood for τ , as shown in

Figure 1. The profile likelihood is seen to be highly multi-modal, which leaves the prac-

titioner with many questions regarding the statistical model and the appropriate choice

of τ . This finding is consistent with the Bayesian marginal posterior distribution for τ

given by Higdon et al. (2004) for the same application. We argue in Section 6, however,

that in the most common setting for end-use prediction based on such a statistical model,
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Figure 1: Profile Likelihood for τ in the Spot Weld Example. An approximate 95% confidence

interval for τ is given by values with a likelihood above the horizontal line.

agonizing over the choice of τ is largely irrelevant to prediction accuracy.

This paper is outlined as follows. In Section 2 we introduce the standard model for

combining data from the field and the computer model (see Bayarri et al. 2002, 2005;

Higdon et al. 2004; Kennedy and O’Hagan, 2001) and develop a likelihood approach to

estimate the parameters in the model. In Section 3, we discuss the identifiability of the

model in Section 2 and show via a theoretical result that maximum likelihood estimation

will asymptotically find values of the calibration parameter that give an unbiased com-

puter model, if such a model exists. Section 4 presents detailed analysis of two examples.

Sections 5 and 6 focus on practical issues related to the implementation of the model

and formally discuss three end-use prediction strategies. Finally we will end with a brief

discussion in Section 7.

2. STATISTICAL MODEL

To build a joint model for both sources of data, the formulation given by Kennedy

and O’Hagan (2001) is adopted. The computer code has two types of input variables: the
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d variables x = (x1, . . . , xd) can also be manipulated and measured in the field, whereas

the q further variables t = (t1, . . . , tq) relate to calibration or tuning and cannot be varied

or observed in the field. The function coded in the computer model to generate output

is denoted by κ(x, t).

For the model generating the field observations in the real world, it is helpful concep-

tually to distinguish calibration from tuning. For calibration, the variables t = (t1, . . . , tq)

in the computer model correspond to q parameters, τ , in the real world. These para-

meters denote the unknown values of physical constants, for example rate constants in a

chemical kinetics system. The parameters τ define the physical process; they cannot be

adjusted in practice. Field observations on a scalar response variable are assumed to be

generated by

YF (x) = φ(x|τ ) + ε, (1)

where φ(x|τ ) describes how the field response mean changes with x, conditional on τ ,

and ε is white-noise measurement error with distribution N(0, σ2
ε). In contrast, when

tuning, t is a set of variables to adjust the computer model to more closely represent the

physical system in some way, but with no analogous τ in the real world. Thus, τ can be

removed from (1). Alternatively, we might think of τ as the best set of values of t, (i.e.,

those that make κ(x, τ ) and φ(x) close in some sense). Even in the case of calibration,

τ is fixed, and hence YF (x) is not written as a function of τ . Mathematically, then, all

these situations are indistinguishable. In Section 3, when we discuss the identifiability

of τ in calibration, it turns out that including τ in (1) is helpful. This we write φ(x|τ )

throughout as a convention.

Kennedy and O’Hagan (2001) formulated a model combining the computer-model

and field data:

yC(x, t) = κ(x, t) (2)

YF (x) = κ(x, τ ) + δ(x) + ε. (3)

Comparing (1) and (3), we see that the mean of the field response, φ(x|τ ), is modeled

as the sum of κ(x, τ ) and a discrepancy term, δ(x). Typically, δ(x) is attributed to
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deficiencies in the computer model, though bias in the field measurement system cannot

be distinguished. Note that the field-data model (3) is in terms of the computer code

with t hypothetically set to τ . As t = τ is fixed in κ(x, τ ), the discrepancy, δ(x),

is a function of x only. Kennedy and O’Hagan (2001) also included a scale parameter

multiplying κ(x, τ ) in (3), but this appears to be unimportant for the applications we

have encountered. The statistical model in (2) for the computer runs allows arbitrary

values of t according to some experimental plan.

We prefer a variation on this formulation where the mean field response is expressed

in terms of the computer model with t set to a “chosen” value, t0, not necessarily equal

to τ . First, as we see from Figure 1, τ might not be estimated well. Secondly, as we

shall illustrate in Section 6, different choices for t0 may be appropriate for prediction,

depending on exactly how the statistical model and future computer model runs are used.

For these reasons, we will use the combined model,

yC(x, t) = κ(x, t) (4)

YF (x) = κ(x, t0) + δt0
(x) + ε. (5)

The field mean in (5) is now in terms of the computer model with t = t0. Different

choices for t0 will lead to different discrepancy functions, δt0
(x). We can expand δt0

(x)

in (5) as

δt0
(x) = (φ(x|τ ) − κ(x, τ )) + (κ(x, τ ) − κ(x, t0)).

The first term on the right hand side might be called the “intrinsic” discrepancy if τ

were known and used for t, whereas the second term is the “miscalibration” discrepancy.

The model (4) for the computer model runs is the same as (2).

Again following Bayarri et al. (2002, 2005), Higdon et al. (2004) and Kennedy and

O’Hagan (2001), κ(x, t) and δt0
(x) are modeled as realizations of two independent

Gaussian stochastic processes. This approach has been widely used for modeling de-

terministic computer codes (see, for example, Currin et al. 1991; O’Hagan 1992; Sacks

et al. 1989; and Welch et al. 1992).

Thus, we will treat κ(x, t) as if it is the realization of a random function, µ+Zκ(x, t).
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Here, µ is a mean parameter, and Zκ(x, t) is a Gaussian stochastic process indexed by

(x, t) with mean zero and variance σ2
κ. The covariance between Zκ(x, t) and Zκ(x

′, t′) at

the two input vectors (x, t) and (x′, t′) is denoted by σ2
κRκ((x, t), (x′, t′)). Also following

common practice, the correlation function Rκ(·, ·) will be a product of one-dimensional,

Gaussian correlation functions,

Rκ((x, t), (x′, t′)) = exp

{

−

d
∑

j=1

θκ,j(xj − x′

j)
2 −

q
∑

j=1

θκ,d+j(tj − t′j)
2

}

, (6)

which depends on the unknown parameters θκ = (θκ,1, . . . , θκ,d+q), where θκ,j ≥ 0.

Similarly, we assume that δt0
(x) is a realization from a second mean-zero Gaussian

stochastic process, Zδ(x), which is independent of Zκ(x, t). It is set up analogously to (6),

with its own variance, σ2
δ , and its own correlations parameters, θδ = (θδ,1, . . . , θδ,d), in the

correlation function, Rδ(x,x′). Note that there is no need for parameters corresponding

to t in Rδ(x,x′), because whatever value t0 is chosen for the field data model (5), it is

constant for all field observations.

Data are collected by running the computer model and from the field. There are m

computer-code evaluations at (x∗

1, t1), . . . , (x
∗

m, tm) and n field observations at x1, . . . ,xn.

Note that the values of x need not be the same in the two data sources, and we use the

notation x∗ to identify input values for the computer-model runs. The observed values of

the output variable of interest are yC = (yC(x∗

1, t1), . . . , yC(x∗

m, tm))T from the computer

model and yF = (yF (x1), . . . , yF (xn))T from the field.

The likelihood function for the joint data, y = (yT
C ,yT

F )T , is

L(y; µ, σ2

κ, σ
2

δ , σ
2

ε ,θκ,θδ, t0) ∝ |Σ|−1/2 exp

{

−
1

2
(y − µ1)TΣ−1(y − µ1)

}

. (7)

Here, Σ is the (m + n) × (m + n) covariance matrix,

Σ = σ2

κRκ +





0 0

0 σ2
δRδ + σ2

εIn



 ,

where Rκ is the (m + n) × (m + n) correlation matrix for the combined data from the

correlation function Rκ(·, ·), Rδ is the n × n correlation matrix for the field data from
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the correlation function Rδ(·, ·), and In is the n × n identity matrix. Element (i,m + j)

of Rκ is the correlation between Zκ(x
∗

i , ti) and Zκ(xj, t0), corresponding to run i of the

computer model and observation j in the field (i = 1, . . . ,m; j = 1, . . . , n). The likelihood

depends on t0 through these elements of Rκ.

Bayarri et al. (2002, 2005), Higdon et al. (2004) and Kennedy and O’Hagan, (2001)

considered Bayesian approaches to estimate the unknown parameters (µ, σ2
κ, σ

2
δ , σ

2
ε ,θκ,θδ, τ ).

In this article, we focus instead on the method of maximum likelihood. When interest

centers on choosing values for t0, we can examine the profile likelihood. This approach

is conceptually and numerically simple. At least for low-dimensional t0, the profile like-

lihood is easily visualized, and gives the experimenter an indication of uncertainty.

3. IDENTIFIABILITY

Wynn (2001) raised the issue of identifiability of the terms κ(x, τ ) and δ(x) in

model (3), asking whether the two terms are separately estimable. The same concerns

would apply to the revised model (5) and we attempt to more formally discuss these

issues in this section.

If the computer model does not represent the field mean for any value of t0, (i.e., there

does not exist any value for t0 such that δt0
(x) = φ(x|τ ) − κ(x, t0) = 0 in (5) for all x

of interest), then the meaning of t0 is unclear. In particular, the feasibility of calibration

of τ is questionable. In much simpler contexts, (e.g., linear models), the parameters in

an inadequate model will not necessarily be estimated consistently. Thus, we investigate

the more promising case where the computer model does match the field mean for at

least one value of t0.

Formally, we define the issue of identifiability in terms of two questions. (i) Suppose

the computer model is a perfect representation of reality up to specifying an appropriate

value for t0, (i.e., δt0
(x) = 0 in (5) for all x of interest). Whatever value of t0 is used in

κ(x, t0), however, the bias term can model the slack, φ(x|τ ) − κ(x, t0). Does maximum

likelihood asymptotically choose a value of t0 such that δt0
(x) = 0? (We show the answer

to this question is “yes”, at least in one important special case.) (ii) If a value of t0 is

found such that δt0
(x) = 0 for all x, does this imply t0 = τ? (We argue the answer to
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this question is “maybe”.)

We give a formal answer to the first question in the important special case of the

computer code being computationally efficient. Following Higdon et al. (2004) if the

computer code is computationally efficient than an essentially unlimited number of runs

from the code can be performed and one can model the difference between the field data

and the computer code at a fixed value of t0. From (4) and (5), for any value of t0 the

differences between the field and computer model responses are

Y (xi) = YF (xi) − yκ(xi, t0) = δt0
(xi) + εi (i = 1, . . . , n). (8)

The following lemma relates to modelling such data using a random function model for

δt0
(x) as in Section 2. It shows that if δt0

(xi) = 0 for i = 1, . . . , n, then asymptotically

the method of maximum likelihood will lead to an estimated random-function model that

is always 0.

Lemma 1. Suppose response data are generated from

Yi = δi + ǫi (i = 1, . . . , n), (9)

where δ = (δ1, . . . , δn) are unknown constants, and ǫ1, . . . , ǫn are independent Gaussian

random variables with mean zero and unknown variance σ2
ε . Consider representing δ as

a realization of a random function, that is,

Yi = Zi + ǫi, (i = 1, . . . , n), (10)

where ǫ1, . . . , ǫn are defined as in (9) and are independent of Z1, . . . , Zn, which are

Gaussian random variables with mean zero, unknown variance σ2
δ , and any given positive

definite correlation matrix R 6= In. As n → ∞, the maximum likelihood estimator of σ2
δ

is 0 if δ = 0.

Proof: see appendix.

Turning to the second question, suppose a value of t0 is chosen by maximum likelihood

such that δt0
(x) = 0 for all x. All this says is that κ(x, t0) = φ(x|τ ) for all x. As we

discussed in Section 2 the discrepancy is the sum of the intrinsic discrepancy and the
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miscalibration discrepancy. If the sum is zero, this does not imply that the miscalibration

discrepancy is zero, i.e. that t0 = τ .

4. EXAMPLES

We consider an example from chemical kinetics and than revisit the spot welding

process introduced in Section 1.

Chemical Kinetics model

The following example is a demonstration of the above methodology, using a model

from chemical kinetics with simulated field data. The model under consideration predicts

the concentration y(x) of the chemical as a function of time, x, with mean response

governed by the equation

φ(x|τ) = c + y0 exp(−τx),

where c the residual concentration of the chemical at the end of the reaction process,

y0 is the initial concentration of the chemical and τ is an unknown decay rate that is

specific to the chemical reaction under consideration (see Fogler, 1999 for more details

of the chemical kinetics model).

Assume that three replicates were collected at 11 equi-spaced time points in [0,3] from

the following model

φ(x|τ = 1.7) = 1.5 + 3.5 exp(−1.7x) + ε; x ∈ [0, 3] and ε ∼ N(0, 0.36).

Let the computer model be κ(x, t) = 5 exp(−tx) for x ∈ [0, 3]. For this example, we

evaluate the computer model at (x, t) values given by a 21-point random Latin Hypercube

design (McKay, Conover and Beckman, 1979).

Applying the methodology from Section 2, Figure 2 shows the profile likelihood as a

function of the value of t0 used in the computer model in (5). A grid of 31 values of t0 on

[0, 3] is used. Notice that the likelihood surface is multi-modal, suggesting that various

values of t0 will lead to a good model.

For each value of t0, Figure 3 plots the corresponding predicted computer model,

bias, and field mean as functions of x. The predicted computer model and bias functions
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Figure 2: Profile Log Likelihood for The Chemical Kinetics Example. Values of t0 with a log

likelihood above the horizontal line are an approximate 95% confidence region.

change considerably with t0, as would be expected. Surprisingly, the predicted field mean

functions show little variation with respect to t0.

If the experimenter is concerned only with predicting the field mean, Figure 3 sshows

that careful estimation of t0 is not important in this case. In order to further investigate

this we now consider the spot welding process that was introduced in Section 1.

Resistance Spot Welding

In resistance spot welding, two metal sheets of gauge, G, are welded together by

compressing them on the top and bottom by copper electrodes with an applied load

(L). A current (C) is then applied to the sheets which produces a local heating at the

interface (faying surface) where the two sheets have been pressed together. The heat

supplied causes the two sheets of metal to melt and after cooling produces a weld nugget.

See Figure 4 for a diagram of the process.

In the automotive industry it is often necessary to know the size of the weld nugget

under a variety of conditions as this feature is an indication of the weld quality. Since
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Figure 3: Predicted Curves for the Chemical Kinetics Example for Various Values of t0. Top

panel: computer model, κ(x, t0). Middle panel: discrepancy, δt0(x). Bottom panel: field mean,

φ(x|τ) = κ(x, t0) + δt0(x), with the field observations superimposed.

the physical process is costly and time consuming to perform, a computer model is con-

structed to simulate the spot welding process. The computer code uses a coupling of par-

tial differential equations (see Wang and Hayden, 1999) and requires inputs (L,C,G, t).

However, only the factors (L,C,G) can be adjusted in the physical process. One of the

important aspects of the spot welding process is the amount of heat generated by elec-

trical resistance at the faying surface. The input variable t affects the amount of heat

that is generated at the faying surface. Additional details regarding the process can be

found in Bayarri et al. (2002, 2005) and Higdon et al. (2004).

There are at least two different data sets relating to this example. The analysis

presented here is based on the data reported in Higdon et al. (2004), with m = 47

computer runs and n = 120 field observations. The latter are 10 replicates of a 2× 3× 2

design for (L,C,G). Bayarri et al. (2002, 2005) used another data set with m = 35
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Figure 4: Simplified Diagram of the Resistance Spot Welding Process (see Bayarri et al. 2002).

computer model runs; it gives similar results, and for brevity is not reported here.

Following the notation in Section 2 and the identifiability argument in Section 3, the

profile log likelihood in Figure 1 should be a function of t0 in (5), not a function of τ . The

multi-modal plot casts further doubt on whether to relate t0 to a scalar-valued parameter

τ . For comparison, Figure 5 shows the Posterior histogram for τ based on the Higdon et

al. (2004) MCMC approach with 50,000 runs.

Comparing the plots in Figure 1 and Figure 5 notice that the posterior histogram is

similarly multi-modal, suggesting that the Bayesian approach could be replaced with the

simpler likelihood approach here.

The rows of the plot in Figure 6 shows the predicted surfaces for the computer code,

the bias and the field mean for each value of t0 from the profile plot. The columns

show the four unique combination of Load and Gauge that were observed in the field.

We see the same features that we saw in Figure 3; the predicted surfaces for the field

mean, κ(x, t0)+ δt0(x), for various choices of t0 are very similar, and again the predicted
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Figure 5: Posterior Distribution for τ for the Spot Weld Data

computer model and the predicted bias functions are quite different. It is also interesting

to note that some of the predicted bias functions are flat and very close to zero. This

suggests that it may be possible to run the computer code at a carefully chosen value of

t0 to make reliable predictions of the physical process. We will return to this in Sections

5 and 6.

5. TESTING FOR DISCREPANCY

In this section we propose a likelihood ratio test to check if the bias term in (5) is

significant. There are two reasons one may wish to do this; first, if the discrepancy is not

significant then adequate predictions of the field data may be found by simply using the

computer code; secondly, the model below is simpler than the model in (5).

Consider the following model,

yC(x, t) = κ(x, t),

YF (x) = κ(x, t0) + ε. (11)
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surface for the discrepancy function δt0(x). Bottom Row: Predicted surface for the field mean,

with the actual field observations superimposed.

The likelihood for model (11) is the same as the likelihood in (7) except

Σ = σ2

κRκ +





0 0

0 σ2
εIn



 .

The estimation of t0 can again be done using the profile likelihood, or by treating t0 as

further parameters to be numerically optimized.

Since (11) is a sub-model of (5) standard likelihood results can be used to test if there

is a discrepancy between the two sources of data. The appropriate asymptotic test would

be to compare twice the difference in the two maximum log-likelihood values with a χ2
ν

distribution where ν = d + 1 is the difference in the number of parameters.

In general, the maximum likelihood estimates of t0 will not be the same in both

models, thus the above test is not of practical interest. That is, the experimenter is

interested in knowing if there exists a value of t0 that can be used to make the bias term
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essentially zero for all values of x. Thus it would be more appropriate to check if the

there is a significant bias by using the same value of t0 in both models.

Recall in Section 4 we mentioned that some of the bias functions for the spot weld

data were flat and relatively close to zero. Applying the methodology above leads to

t̂0 = 7.7 for the model without bias, whereas the model with bias led to an estimate of

t̂0 = 2.5. Using the test above with different values of t0 and degrees of freedom equal

to four the test indicates that the bias is not significant. However, as mentioned above

it is more appropriate to compare the likelihoods at the same value of t0, i.e. t0 = 7.7.

In this case the degrees of freedom are three and the test still indicates that the bias is

not significant.

6. STRATEGIES FOR PREDICTION

In Section 1 we outlined three possible strategies for predicting the mean of the

physical system, φ(x|τ) at x:

φ̂(x|τ) = κ(x, t0), (12)

where t0 is chosen to be appropriate for model (11);

φ̂(x|τ) = κ(x, t0) + δ̂t0
(x), (13)

where δ̂t0
(x) is the best linear unbiased predictor (BLUP) of δt0

(x) in the full model (5),

and t0 is chosen for this model; and

φ̂(x|τ) = ̂κ(x, t0) + δt0
(x), (14)

which is the prediction of the sum of the computer model and bias functions from the

full model (5). The strategies in (12) and (13) involve running the computer model again

at x. For models with multiple sources of data, the forms of the BLUPs in (13) and (14)

and their associated mean squared errors of prediction are given by Santner, Williams

and Notz (2003). (See also Journel and Huijbregts, 1978, where similar methodology

applied to geostatistics is called cokriging).

To explore the merits of the three strategies and various choices of value for t0,

we again consider the chemical kinetics example in Section 4. As φ(x|τ) is known, it is
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possible to calculate the root mean squared error (RMSE) of prediction to assess accuracy.

Figure 7 gives the RMSE values averaged over the 10 sites x = {0.15, 0.45, . . . , 2.85},

which are the midpoints of the 11 values of x for the field data. Each strategy is evaluated

over a grid of t0 values.
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Figure 7: RMSE of prediction for various values of t0. Strategies (12), (13), and (14) are

denoted by “×”, “▽”, and “◦”, respectively.

We see immediately in Figure 7 that carefully choosing a value of t0 is important

when predictions are from (12) or (13) but not important for strategy (14). Secondly,

strategy (14) typically performs much better.

We next give more detailed discussion of strategies (12) and (14), and conclude with

the more difficult (13).

Using the Computer Code Directly As In (12)

We assume that the computer code is computationally demanding, but it is possible

to run the code at a small number of future sites. From Figure 7 we can see that t0 = 0.6

minimizes the RMSE. This is consistent with the MLE, t̂0 = 0.6 found using model (11).
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The RMSE is large, however, relative to the other two strategies. This is not surprising

since the likelihood ratio test in Section 5 indicates that there is a significant bias.

Using the Full Model for Prediction As In (14)

In Figure 7 we see that the RMSE is relatively small for various choices of t0. The

minimum RMSE occurs when t0 = 1.6, whereas the MLE is t̂0 = 1.4. It is interesting to

note that the likelihood for this example appears to provide very little information for

selecting an appropriate value of t0. However, the root mean squared error at t0 = 1.4

is about 1.2 times larger than the minimum value at t0 = 1.6. Overall, however, this

method performs well and is robust to choice of t0.

Using the Computer Code Directly With an Adjustment for the Bias As In (13)

The RMSE values in Figure 7 show a few surprises. First, the minimum RMSE occurs

at t0 = 0.9, and secondly the RMSE for the full model is smaller at all other values of t0.

At first glance this appears to be counter-intuitive: One would expect that knowing the

true value of the code would result in a better prediction. If this strategy is to be effective,

however, the model in (5) has to provide a good estimate of the bias function. Consider

Figure 8, which compares the estimated and true functions for each component of the

model, with t0 set to 0, for example. It is clear that the estimates of both the computer

model and the bias functions are relatively poor, whereas the field mean function is well

predicted.

Alternatively, to utilize a new computer model run, in general one could use the

following procedure: i) run the code at κ(x, t̂0); ii) add the new observation to the

existing data and reconstruct the full model from (5); and iii) use the new full model and

predict based on (14).

Using this strategy for the kinetics data and the MLE, t̂0 = 1.4, the RMSE is about

one third of that from (13) and about two thirds that from (14) without a new run.

Thus, if one is prepared to run the code again, it seems more advantageous to recompute

the full model and use it for prediction.

7. DISCUSSION

In this paper we introduced a likelihood based approach for model calibration in
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Figure 8: Top Panel: Dashed line shows the predicted surface for the computer model κ(x, 0),

solid line shows the true function κ(x, 0) . Middle Panel: Dashed line shows the predicted

surface for the discrepancy function δ0(x), the solid line shows the true discrepancy. Bottom

Panel: Dashed line shows the predicted surface for the field mean function, solid line shows the

true function, with the actual field observations superimposed.

computer experiments. By using the likelihood approach we were able to make three

simple points. First, it maybe impossible to find an interpretable estimate of a calibration

parameter. However, even if one could estimate the calibration parameter exactly, it

may be the case that this value leads to a worse prediction of the process mean than

a value of the parameter that was used to adjust the computer code (see Kennedy and

O’Hagan, 2001). Secondly, the choice of the tuning parameter is relatively unimportant

when a model with discrepancy is considered. Lastly, the choice of the tuning parameter

varies depending on how one intends to use the computer model. Finally, we concluded

the paper with some practical considerations for the experimenter when applying the

methodology for model calibration.

APPENDIX

Proof of Lemma 1: The log likelihood for the model in (10) is

l(σ2

δ ,R, σ2

ε ;Y) = −
1

2
(n ln(2π) + ln |Σ| + YTΣ−1Y),
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where Σ = σ2
δR + σ2

εIn and Y = (Y1, . . . , Yn). Applying the results for differentiating a

log determinant or a matrix inverse given by, for example, Searle, (1982, pp. 335, 337),

a second-order Taylor series expansion of the log likelihood around σ2
δ = 0 is

l(σ2

δ ,R, σ2

ε ;Y) ≃ l(0,R, σ2

ε ;Y) +
σ2

δ

2σ2
ε

(

YT RY

σ2
ε

− n

)

+
(σ2

δ )
2

4σ4
ε

(

tr(R2) −
2YT R

2Y

σ2
ε

)

.

(15)

Because the data, Y, are assumed to be generated by (9), YT RY/σ2
ε is a quadratic

form in Gaussian random variables. Thus, the coefficient of σ2
δ in (15) has expectation

δ
T
Rδ/(2σ4

ε) (e.g., Seber, 1977, p.13), which is zero if δ = 0 and positive otherwise.

The coefficient’s standard deviation is
√

n/2/σ2
ε (e.g., Seber, 1977, p.16). Similarly, the

coefficient of (σ2
δ )

2 in (15) has expectation −(tr(R2) + δ
T
R

2
δ/σ2

ε)/(4σ
2
ε) and standard

deviation
√

tr(R2)/(4σ2
ε). We also note that n < tr(R2) ≤ n2. Thus, the coefficient of

(σ2
δ )

2is negative with probability 1 as n → ∞. Comparing the distributions of the two

coefficients, we see that σ2
δ = 0 is a maximum likelihood solution as n → ∞ if δ = 0. 2
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