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Abstract

The problem of estimating a normal mean θ based on X ∼ N (θ, 1) when |θ| ≤ m for

a known m > 0 under squared-error loss is considered in this paper. Eight estimators

are compared, namely, the maximum likelihood estimators (mle), three dominators of

the mle obtained from Moors (1981, 1985), Charras (1979) and Charras and van Eeden

(1991), two minimax estimators from Casella and Strawderman (1981), the Pitman

estimator and Bickel’s (1981) asymptotically-minimax estimator. Numerical as well

analytical results are presented. In particular we show that the dominating estimators

constructed by Charras and van Eeden are inadmissible and that, for m ≤ 1, Moors’

dominating estimator is Casella and Strawderman’s minimax estimator with respect

to a two-point least-favourable prior. We also show that, for 0 < m ≤ m1 ' 0.5204372,

the estimator δo(x) ≡ 0 dominates the mle. Explicit expressions are given for the

dominators of Moors, Charras and Charras and van Eeden. Asymptotic results are

proved on the behaviour of these estimators when m → ∞, results which can also be

observed from our graphs.
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1 Introduction

The problem considered in this paper is the estimation under squared-error loss of a normal

mean θ based on X ∼ N (θ, 1) when |θ| ≤ m for a known m > 0.

This estimating problem is considered by Casella and Strawderman (1981), by Bickel (1981),

and by Gatsonis, MacGibbon and Strawderman (1987). Casella and Strawderman show that,

when 0 < m ≤ m0 ' 1.056742, there exists a unique minimax estimator of θ with respect to

a symmetric two-point least-favourable prior on {−m,m}. They give an explicit expression

for it and show it dominates the maximum likelihood estimator. They also give a class

of minimax estimators for the case where 1.4 ≤ m ≤ 1.6. These estimators are minimax

with respect to a symmetric three-point prior on {−m, 0,m}. Bickel gives an estimator

which is asymptotically minimax for m → ∞ and Gatsonis, MacGibbon and Strawderman

graphically compare these estimators and the Pitman estimator for several values of m.

The usual estimator of a normal mean is the maximum likelihood estimator (mle) which is,

as is well-known, inadmissible for squared-error loss in our case. Dominators for the mle can

be obtained from results of Charras (1979), Moors (1981, 1985) and Charras and van Eeden

(1991). These authors consider estimation in restricted parameter spaces in a very general

setting, give conditions for inadmissibility for squared-error loss and either give methods

of constructing dominators (Moors and Charras and van Eeden) or prove the existence of

dominators within a given class of estimators (Charras). Their conditions are satisfied for the

bounded normal-mean problem and the purpose of this paper is to find explicit expressions

for these dominators and compare them, analytically and graphically, with the mle, the

Casella-Strawderman minimax estimators, Bickel’s approximate minimax estimator and the

Pitman estimator.

Casella and Strawderman show that, when m ≤ 1, their minimax estimator dominates the
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mle. One of our analytic results shows that, also for m ≤ 1, Moors’ dominator of the mle of

a bounded normal mean is the Casella-Strawderman minimax estimator, implying that this

Moors dominator is admissible when m ≤ 1. Another analytic result we have is that the

dominators in the Charras-van Eeden class are all inadmissible. Finally, again analytically,

we show that the estimator δo(x) ≡ 0 (which we will call the “trivial estimator”) dominates

the mle when 0 < m ≤ m1 ' 0.5204372.

Explicit expressions for the estimators are presented in Section 2. In that section we also

give, for some of the estimators, asymptotic results concerning their behaviour as m → ∞.

Our numerical comparisons in the form of graphs are presented in Appendix B and discussed

in Section 3. The proofs of the lemmas and theorems are given in Appendix A.

We know of only one other family of distributions for which Charras’ (1979) and Moors’

(1981, 1985) dominators have been obtained and compared. These results can be found in

Perron (2003). He compares the mle with its Charras and its Moors dominators, as well as

with the Pitman estimator and the Bayes estimator with respect to a prior proportional to

(p(1− p))−1, for the case where X ∼ Bin (n, p) when p ∈ [a, 1− a] for a given a ∈ (0, 1/2).

He gives an algorithm for finding the Charras dominator.

2 Estimators for a bounded normal mean and their

risk functions under squared-error loss

The problem of estimating a bounded normal mean based on X ∼ N (θ, 1) is a special case

of the following problem: (X ,A) is a measurable space and P = {Pθ, θ ∈ D} is a probability

measure on (X ,A), where D is a subset of the set of θ for which Pθ is a probabilty measure

on (X ,A). Further, D ⊂ <k is convex and closed. The problem is to find, for a given loss
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function, “good” estimators of θ based on a random vector X ∈ <n defined on (X ,A), where

δ(X) is an estimator if it satisfies Pθ(δ(X) ∈ D) = 1 for all θ ∈ D. Many results concerning

admissibility and minimaxity for such models have, for various loss functions, been obtained

(see e.g. van Eeden (2006)).

The present section contains explicit expressions for each of the estimators of a bounded

normal mean considered in this paper. Formulas for their risk functions for squared-error

loss are also given.

2.1 The maximum likelihood estimator and its risk function

The mle of θ for our problem of estimating a bounded normal mean is given by

δmle(X) =





−m if X ≤ −m
X if −m < X < m

m if X ≥ m.

The risk function of this mle is given by

R(θ, δmle) = (−m− θ)2Φ(−m− θ) +
∫ m−θ

−m−θ
z2φ(z)dz + (m− θ)2Φ(−m+ θ),

where φ(.) and Φ(.) are the pdf and cdf of standard normal distribution, respectively.

2.2 Casella and Strawderman’s minimax estimators and their risk

functions

Casella and Strawderman (1981) give conditions for a Bayes estimator to be minimax for

estimating a bounded normal mean based on X ∼ N (θ, 1) with squared-error loss. They

show that a two-point symmetric prior on {−m,m} is least-favorable if m ≤ m0 ' 1.056742,
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implying that the corresponding Bayes estimator is minimax. This m0 is the solution of

R(0, δcs.2)−R(m, δcs.2) = 0, where δcs.2 is the Bayes estimator which is given by

δcs.2(X) = m tanh(mX). (2.1)

The authors show that this minimax estimator dominates the mle. They also give a class

of minimax estimators for symmetric three-point priors as follows: for a three-point prior

π(0) = α and π(−m) = π(m) = (1 − α)/2, the Bayes estimator under the squared error is

given by

δcs.3(X) =
(1− α)m tanh(mX)

1− α + α exp(m2/2)/ cosh(mX)
. (2.2)

Casella and Strawderman show that, if α and m satisfy

(m2 − 1)(m2 − 1 + exp(m2/2))−1 ≤ α ≤ 2(2 + exp(m2/2))−1, (2.3)

and α is such that R(0, δcs.3) − R(m, δcs.3) = 0, then δcs.3 is a minimax estimator of θ when

|θ| ≤ m. They find, numerically, that these two conditions are satisfied when 1.4 ≤ m ≤ 1.6.

The corresponding risk functions of these estimators under squared-error loss, given by

R(θ, δcs.2) =
∫ ∞

−∞
(m tanh(mx)− θ)2φ(x− θ)dx

and

R(θ, δcs.3) =
∫ ∞

−∞

(
(1− α)m tanh(mx)

1− α+ α exp(m2/2)/ cosh(mx)
− θ

)2

φ(x− θ)dx

respectively, are easily obtained numerically.

2.3 Moors’ dominating estimator of the mle and its risk function

Moors (1981, 1985) considers the problem described in the begining of this section and gives

sufficient conditions for “boundary estimators” to be inadmissible for squared-error loss.
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Here, a boundary estimator is an estimator which takes values on or near the boundary of

D with positive probability for some θ ∈ D. He assumes that the problem is invariant with

respect to a finite group G = (g1, . . . , gp) of measure-preserving transformations from X to

X and that the induced group G̃ is commutative and satisfies

g̃(ad1 + bd2) = ag̃(d1) + bg̃(d2) for all d1, d2 ∈ D, all g̃ ∈ G̃.

He then constructs a random, closed, convex subset DX of D with the property that an

estimator δ for which Pθ(δ(X) /∈ DX) > 0 for some θ ∈ D is inadmissible. These sets DX

are defined as follows. Let pθ be the density of Pθ with respect to a σ-finite measue ν defined

on (X ,A) and let

α(X, ḡj(θ)) =
pḡj(θ)(X)

S(X; θ)
, j = 1, . . . , p,

when S(X; θ) =
∑p

j=1 pḡj(θ)(X) > 0. Further define

hX(θ) =





∑p
j=1 α(X, ḡj(θ))ḡj(θ) when S(X; θ) > 0

θ when S(X; θ) = 0

then DX is the convex closure of the range of hX(θ) and boundary estimators are dominated

by their projection unto DX .

For the problem of estimating a bounded normal mean under squared error loss, Moors’ con-

ditions are satisfied with p = 2, g1(x) = x and g2(x) = −x which gives hX(θ) = θ tanh(θX),

because pθ(x) = 1/
√

2π exp(−(x− θ)2/2). So the subset DX of D is given by

DX = (−m tanh(m|X|),m tanh(m|X|)),

which implies by Moors that any estimator δ for which

Pθ(δ(X) /∈ (−m tanh(m|X|),m tanh(m|X|)) > 0 for some θ ∈ D
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is inadmissible and is dominated by its projection unto DX . Hence, Moors’ dominating

estimator of the mle is given by

δmr(X) =





−m tanh(m|X|) if X ≤ −m tanh(m|X|)
X if −m tanh(m|X|) < X < m tanh(m|X|)
m tanh(m|X|) if X ≥ m tanh(m|X|).

(2.4)

The following theorem shows that, for m ≤ 1, Moors’ dominating estimator of the mle

is Casella and Strawderman’s minimax estimator. We also obtain there a more explicit

expression for this dominator for the case when m > 1. The proof of the theorem is given

in Appendix A.

Theorem 2.1 Moors’ dominating estimator of the mle can also be written as

(i) if 0 < m ≤ 1, δmr(X) = m tanh(mX);

(ii) if m > 1, then

δmr(X) =




m tanh(mX) if X ≥ ξ(m) or X ≤ −ξ(m)

X if − ξ(m) < x < ξ(m),

where ξ(m), r(m) < ξ(m) < m, is the unique root of u(x) = x−m tanh(mx) = 0, for

x > 0, and r(m) = 1
m

ln[m+
√
m2 − 1].

The risk function of δmr under squared error loss is given in the following theorem, which is

an immediate consequence of Theorem 2.1.

Theorem 2.2 The risk function of δmr under squared error is given by

(i) if m ≤ 1, then

R(θ, δmr) =
∫ ∞

−∞
[m tanh(m(z + θ))− θ]2φ(z)dz;

7



(ii) if m > 1, then

R(θ, δmr) =
∫ −ξ(m)−θ

−∞
[m tanh(m(z + θ))− θ]2φ(z)dz

+
∫ ξ(m)−θ

−ξ(m)−θ
z2φ(z)dz +

∫ ∞

ξ(m)−θ
[m tanh(m(z + θ))− θ]2φ(z)dz,

where φ(z) is the standard normal density function.

2.4 Charras’s and Charras and van Eeden’s dominating estimators

of the mle and their risk functions

Charras (1979) considers the problem as described in the beginning of this section. He

gives, for squared-error loss, conditions for boundary estimators to be non-Bayes as well as

conditions for them to be inadmissible, where a boundary estimator is, for him, an estimator

δ for which Pθ(δ(X) ∈ B) > 0 for all θ ∈ D and B is the boundary of D. For the case where

k = 1 and θ ∈ [a, b] for known −∞ < a < b < ∞, he gives conditions for the existence

of classes of dominators of his boundary estimators. We use his approach to construct

dominating estimators of the mle for the bounded-normal-mean problem. These results are

presented in Section 2.4.2.

The inadmissibility results of Charras (1979) are published in Charras and van Eeden (1991),

but his dominators are only mentioned there. Instead, Charras and van Eeden study a

different class of dominators of Charras’ boundary estimators and these Charras-van Eeden

dominators are used, in Section 2.4.1 to obtain dominators for the mle for the bounded-

normal-mean problem.
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2.4.1 δcve and its risk function

Charras and van Eeden (1991) construct, for squared-error loss, a class of dominating esti-

mators δcve for boundary estimators δ(X) of θ when θ ∈ [a, b] with −∞ < a < b < ∞, i.e.,

they suppose that δ is an estimator satisfying

Pθ(δ(X) = a) > 0

Pθ(δ(X) = b) > 0.





for all θ ∈ [a, b].

They further suppose that, for each θo ∈ D,

lim
θ→θo

∫

X
|pθ(x)− pθo(x)|dν(x) = 0, (2.5)

where pθ is the density of Pθ with respect to the σ-finite measure ν.

The authors then show that there exist estimators of the form

δcve(X) =





a+ ε1 if δ(X) ≤ a

δ(X) if a < δ(X) < b

b− ε2 if δ(X) ≥ b

(2.6)

where ε1 > 0, ε2 > 0 and ε1 + ε2 ≤ b− a, which dominate δ.

The risk function of δcve is given by

R(θ, δcve) = (a+ ε1 − θ)2Pθ(δ(X) ≤ a) + (b− ε2 − θ)2Pθ(δ(X) ≥ b)

+
∫

X
(δ(x)− θ)2I(a < δ(x) < b)pθ(x)dν(x).

This Charras-van Eeden result with a = −m and b = m clearly applies to our problem

of dominating the mle of a bounded normal mean, where because of the symmetry of the

problem, one can take 0 < ε1 = ε2 = ε ≤ m. This gives a class of dominators of the mle of a

bounded normal mean for squared-error loss and using the results of Charras and van Eeden
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(1991) one finds that any ε ∈ (0, εo], where εo = min (m(8Φ(−2m)/(1 + 2φ(−2m)),m)

gives a dominator of the mle. However, each one of these dominators δcve of the mle is

inadmissible. This follows from Brown (1986)’s necessary condition for admissibility for

squared-error loss in the estimation of the mean of an exponential-family distribution. He

shows that an admissible estimator has to be non-decreasing and our estimator δcve is clearly

not non-decreasing, while the N (θ, 1) distribution is an exponential-family distribution.

This inadmissibility result is summarized in the following theorem:

Theorem 2.3 Let X ∼ N (θ, 1) with |θ| ≤ m for a known positive m. Then the Charras-van

Eeden dominators of the mle of θ are inadmissible for squared-error loss.

We have not been able to find dominators for these inadmissible dominators of the mle and

so will not consider them any further in this paper.

2.4.2 δch and its risk function

In this section Charras’ (1979) method of obtaining dominating estimators for his boundary

estimators is presented and used to find dominators of the mle in the bounded-normal-mean

problem.

Let δ be a Charras boundary estimator, then Charras considers the following class of esti-

mators

δt(X) =





a(t) if δ(X) ≤ a(t)

δ(X) if a(t) < δ(X) < b(t)

b(t) if δ(X) ≥ b(t),

(2.7)

where a(t) and b(t), t ∈ [0, 1] take values in [a, b] with a(0) = a, b(0) = b, a(1) = b(1), a(t)

non-decreasing and b(t) non-increasing. He then gives sufficient conditions on the functions

a(t) and b(t), on the distribution of X and of δ(X) and on the loss function for δt to dominate
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δ. These conditions are given in Appendix A. Here, we give this domination result for the

special case of the bounded-normal-mean when a(t) = −m(1 − t) and b(t) = m(1 − t),

t ∈ [0, 1]. Obviously, Charras’ conditions are satisfied in the bounded-normal-mean case and

his dominator of the mle can then be written as follows:

δch(X) =





−m(1− t) if X ≤ −m(1− t)

X if −m(1− t) < X < m(1− t)

m(1− t) if X ≥ m(1− t).

For simplicity of the proof, we let ε = mt ∈ [0,m] and rewrite this dominator as follows:

δch(X) =





−(m− ε) if X ≤ −(m− ε)

X if −(m− ε) < δ(X) < m− ε

(m− ε) if X ≥ m− ε.

(2.8)

Its risk function is given by

R(θ, δch) = (m− ε+ θ)2Pθ(X ≤ −(m− ε)) + (m− ε− θ)2Pθ(X ≥ m− ε)

+
∫ m−ε

−(m−ε)
(x− θ)2φ(x− θ)dx,

and the following theorem holds:

Theorem 2.4 Let X ∼ N(θ, 1) with |θ| ≤ m for a known m > 0. Then {δch : 0 < ε ≤ ε′}
is a class of dominating estimators for δmle, where ε′ is the unique root of ψ(x) = 0, where

ψ(x) = g(2m− x) + g(x)− 2x and g(x) = 2xΦ(−x).

The proof of this theorem is given in Appendix A. It is Charras’ proof applied to our special

case and it goes as follows. First of all it is clear that, for all ε ∈ (0,m], δch dominates δmle
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on [−m+ ε,m− ε]. Further, by the symmetry of the problem, it is sufficient to look at the

behaviour of the risk functions on (m− ε,m]. It is then shown that

∆(θ, ε) = R(θ, δmle)−R(θ, δch) > 0 for ε ∈ (0,m] and θ = m− ε,

∂

∂ε
∆(θ, ε)|ε=0 > 0

and

ψ(ε) = min
θ∈(m−ε,m)

∂

∂ε
∆(θ, ε)

is strictly decreasing in ε with ψ(0) > 0 and ψ(m) < 0. And then the unique solution to

ψ(x) = 0, x ∈ [0,m] gives an ε′ with the required property. But it should be noted that this

ε′ is a lower-bound on the set of ε′ for which δch dominates δmle.

2.5 The trivial estimator

For the estimator δo(x) ≡ 0 the following theorem holds. Its proof is in Appendix A.

Theorem 2.5 Let m1 be the unique positive solution to u(2m) + 1/2 − m2 = 0, where

u(x) = x2Φ(−x)− Φ(−x)− xφ(x). Then the estimator δo(x) ≡ 0 dominates the mle if and

only if 0 < m ≤ m1 ' 0.5204372. Its risk function is given by θ2.

2.6 The Pitman estimator and its risk function

In this section we consider the Pitman estimator of θ defined as the Bayes estimator with

respect to a uniform prior on [−m,m] and squared-error loss. This Bayes estimator is the

posterior mean of θ given X. Since the marginal probability density function of X is given

by

p(X) =
∫ m

−m
pθ(X)π(θ)dθ =

1

2m
[Φ(m−X)− Φ(−m−X)] ,
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the posterior probability density function of θ given X is

p(θ|X) =
pθ(X)π(θ)

p(X)

=
1

Φ(m−X)− Φ(−m−X)

1√
2π

exp

{
−(θ −X)2

2

}
1{|θ|≤m}.

Hence the Pitman estimator for θ is given by

δP(X) = E(θ|X)

= X +

∫ m−X
−m−X zφ(z)dz

Φ(m−X)− Φ(−m−X)

= X − φ(m−X)− φ(m+X)

Φ(m−X)− Φ(−(m+X))
.

Its risk function under squared-error loss is given by

R(θ, δP) =
∫ ∞

−∞

[
z − φ(m− (z + θ))− φ(−m− (z + θ))

Φ(m− (z + θ))− Φ(−m− (z + θ))

]2

φ(z)dz,

which can be computed numerically.

2.7 Bickel’s estimator and its risk function

Bickel (1981) gives a class of asymptotically minimax estimators for estimating a bounded

normal mean. He constructs this class in the following way:

Let, for |x| < 1, ψ̄(x) = π tan (π
2
x) and let

ψm(x) =




ψ̄(x) if |x| ≤ 1− a2

m

(ψ̄(1− a2
m) + ψ̄′(1− a2

m)(x2 − (1− a2
m)))sgnx if |x| > 1− a2

m.

He then shows that an asymptotically minimax estimator δB is given by

δB(X) = X − 1

n
ψm

(
X

n

)
,
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where n = m(1− am)−1, am < 1 and mam →∞ as m→∞.

Bickel (1981) suggests taking am = m− 1
8 which gives the following expression for ψm(x) :




π tan (π

2
x) if |x| ≤ 1−m− 1

4

(π tan(π
2
(1−m− 1

4 )) + π2

2
sec2(π

2
(1−m− 1

4 ))(x− (1−m− 1
4 )))sgnx if |x| > 1−m− 1

4 .

So Bickel’s asymptotically minimax estimator for θ is given by

δB(X) = X − 1−m− 1
8

m
ψm


(1−m− 1

8 )X

m


 . (2.9)

The corresponding risk function of δB(X) under squared-error loss is given by

R(θ, δB) = 1− π2

m2
+ o(m−2). (2.10)

2.8 The behaviour of the estimators for m→∞
Concerning the asymptotic behaviour of the estimators as m → ∞, the following theorem

holds. Its proof is given in Appendix A.

Theorem 2.6 Let δm be one of the estimators δmle, δmr, δch, δP, δB. Then δm(X) − X

converges to 0 almost surely as m→∞.

This theorem has the following obvious corollary.

Corollary 2.1 Let δm and δ′m be two of the estimators δmle, δmr, δch, δP, δB. Then δm(X)−
δ′m(X) converges to 0 almost surely as m→∞.
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3 Numerical comparisons

In this section we graphically compare the risk functions of the estimators δmle, δcs.2, δcs.3,

δmr, δch, δP and δB under squared-error loss. Figures 1 - 8 (in Appendix B) represent the risk

functions of different estimators for different fixed values of m. To check the performance

outside of the restricted parameter space, the risk functions are all plotted in a little wider

interval: [−5
4
m, 5

4
m].

Figures 1-3 demonstrate the risk functions when m = 0.5, 0.8 and 1 respectively. From there

we observe that the minimax estimator with respect to a two-point least-favourable prior of

Casella and Strawderman (1981) has the same risk function as Moors’ dominating estimator

of the mle, a result that follows from our Theorem 2.1, where we show that these two are the

same estimator. We also observe that Moors’ dominating estimator of the mle and the one

of Charras dominate the mle in these cases, as they should by Moors (1981, 1985) and by our

Theorem 2.4. For m = .5, R(θ, δmle) > θ2, showing that the trivial estimator dominates the

mle – as it should, by Theorem 2.5. When m = 0.8, δch works better than δmr in the middle

part of the parameter space but worse when m = 1. The Pitman estimator dominates the

other estimators in the middle part of the parameter space but is worse at the boundary.

Figure 4 represents these risk functions when m = 1.5. Here a minimax estimator with

respect to a three-point least favourable prior is also compared with the other estimators.

We took (see (2.2) and (2.3)) α = 0.341. We observe that the risk functions of δmle, δmr and

δch are very close to each other, which verifies our conclusions on the convergence modes of

these estimators as in Section 2.8. The Bayes estimator with respect to a two-point least

favourable prior (δcs.2) performs very badly in the middle part of the restricted parameter

space but very good at the boundary. But, as shown by Casella and Strawderman (1981),

it is not minimax for m > 1. Conversely, the Pitman estimator performs much better than
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the other estimators in the middle part of the space but worse at the boundary.

Figures 5-6 illustrate the risk functions when m = 1.8 and 3, where it can be observed that

δmle, δmr and δch have almost identical risk functions. Note that δcs.3 is not included in these

graphs. We observe the same performance of the Pitman estimator and δcs.2 as in Figure 4.

Finally, Figures 7-8 plot the risk functions when m = 5 and 10. Moreover, Bickel’s asymp-

totically minimax estimator is now included. In Figure 7, Bickel’s asymptotically minimax

estimator performs better than the other estimators in the middle of the restricted parameter

space. However, when m = 10, we observe that the risk functions of all these estimators tend

to be close to the constant risk function of the unrestricted maximum likelihood estimator,

which again verifies the results shown in Section 2.8.

For each value of m there are two graphs with the right-hand side one giving a clearer pic-

ture of the differences between the risk functions near the boundary of the parameter space

- thus giving a better idea of how robust the properties of the estimators are with respect to

misspecification of m.
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In this section proofs are given for the results in Section 2.
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1) Proofs for Moors’ dominator δmr.

The following lemma is needed for the proof of Theorem 2.1.

Lemma A.1 Let u(x) = x−m tanh(mx) and v(x) = x+m tanh(mx). Then

(a) for 0 < m ≤ 1, u(x) and v(x) are increasing in x and have the same sign as x;

(b) for m > 1, let r(m) = 1
m

ln[m+
√
m2 − 1]. Then:

(i) u(x) increases in x for x > r(m) and for for x < −r(m), and decreases for

−r(m) < x < r(m);

(ii) 0 < r(m) < m;

(iii) u(r(m)) < 0;

(iv) there exists a unique ξ(m), r(m) < ξ(m) < m, such that u(−ξ(m)) = u(ξ(m)) =

0.

Proof

(a) For 0 < m ≤ 1, since u′(x) = 1−m2sech2(mx), we have

u′(x) > 0 ⇔ exp(2mx)− 2m exp(mx) + 1 = (emx −m)2 + 1−m2 > 0.

Consequently, when 0 < m ≤ 1, u′(x) > 0 for x ∈ (−∞,∞) and, when m = 1,

u′(x) > 0 for x 6= 0 and u′(0) = 0. So, u(x) increases in x and u(x) has the same

sign as x because u(0) = 0. Since v′(x) = 1+m2sech2(mx) > 0, for x ∈ (−∞,∞),

we have v(x) increases in x, and v(x) has the same sign as x because v(0) = 0.
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(b) (i) Since u′(x) = 1−m2sech2(mx), we have

u′(x) > 0 ⇔ cosh(mx) >
1

m

⇔ | exp (mx)−m| >
√
m2 − 1

⇔



x > r(m) > 0 if exp(mx) > m

x < −r(m) < 0 if exp(mx) < m.

So u(x) increases in x when x > r(m) and when x < −r(m). It decreases in

x when −r(m) < x < r(m).

(ii) Let p(x) = x − ln[x +
√
x2 − 1]/x for x > 1. Then p(m) = m − r(m) for

m > 1. Further note that

p(x) =
1

x
ln

(
exp (x2)

x+
√
x2 − 1

)
>

1

x
ln

(
exp(x2)

2x

)
> 0. (A.1)

Since x > 1, x +
√
x2 − 1 < 2x. So the first inequality in (A.1) holds. Let

q(x) = exp(x2)−2x. Because q(1) = e−2 > 0 and q′(x) = 2(x exp(x2)−1) > 0

for x > 1, we have q(x) > 0, that is, the second inequality in (A.1) also holds

for x > 1. Hence, p(x) > 0 for x > 1, and so 0 < r(m) < m for m > 1.

(iii) Since

u(r(m)) = r(m)−m tanh(mr(m))

=
1

m
ln(m+

√
m2 − 1)−

√
m2 − 1,

we have

u(r(m)) < 0 ⇔ m
√
m2 − 1 > ln(m+

√
m2 − 1)

⇔ f(m) > 0,
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where f(x) = x
√
x2 − 1− ln(x+

√
x2 − 1) for x > 1. Since f(1) = 0 and

f ′(x) =
√
x2 − 1 +

x2

√
x2 − 1

− 1

x+
√
x2 − 1

(
1 +

x√
x2 − 1

)

=
√
x2 − 1 +

x2

√
x2 − 1

− 1√
x2 − 1

= 2
√
x2 − 1 > 0,

for x > 1, we have f(x) increases in x and f(x) > f(0) = 0, for x > 1. That

is, u(r(m)) < 0 for m > 1.

(iv) By (i), u(x) increases for x > r(m) and for x < −r(m). It decreases for

−r(m) < x < r(m). Since u(r(m)) < 0 (by (iii)) and u(m) > 0, by the

continuity of u(x), there exists the unique ξ(m), r(m) < ξ(m) < m, such that

u(ξ(m)) = 0. ♥

Proof of Theorem 2.1

(i) When 0 < m ≤ 1, it follows from Lemma A.1 that

x ≤ −m tanh(m|x|) ⇔ x ≤ 0

and

x ≥ m tanh(m|x|) ⇔ x ≥ 0

and this shows that, whenm ≤ 1, we can then rewrite (2.4) as δmr(x) = m tanh(mx)

for x ∈ (−∞,∞).

(ii) When m > 1, let u(x) = x − m tanh(mx). By Lemma A.1, u(x) increases in x

when x > r(m) or when x < −r(m). It decreases in x when −r(m) < x <

r(m). Moreover, ξ(m) is the unique root of u(x) = 0 in [r(m),m]. Hence, u(0) =
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u(−m) = u(m) = 0, u(x) > 0 when −ξ(m) < x < 0 or x > ξ(m) and u(x) < 0

when x < −ξ(m) and when 0 < x < ξ(m).

So, when m > 1,

x ≤ −m tanh(m|x|) ⇔ x ≤ −ξ(m)

and

x ≥ m tanh(m|x|) ⇔ x ≥ ξ(m).

This proves the result for the case where m > 1. ♥

2) Proofs for the Charras dominator δch.

Charras (1979) (see also Charras and van Eeden (1991)) gives conditions for estimators

of the form (2.7) to dominate a boundary estimator δ, i.e. an estimator δ satisfying

Pθ(δ(X) = a) > 0

Pθ(δ(X) = b) > 0





for all θ ∈ [a, b]. (A.2)

Charras’ conditions on a(t) and b(t) for (2.7) to dominate δ are

(a) a(t) and b(t) are continuous;

(b) a(t) and b(t) have continuous and bounded right derivatives which are bounded

in absolute value on [0, 1];

(c) a(0) = a, b(0) = b and a(1) = b(1);

(d) for all t ∈ [a, b], a′+(t) =
da(t)

dt+
> 0 and b′+(t) < 0

and his conditions on the distribution of X and δ(X) and on the loss function are

(1) condition (2.5) is satisfied;
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(2) The loss function L(θ, d) has, for all θ in a neighbourhood N of [a, b], a partial

derivative ∂L/∂d with respect to d which is, on N ×N , continuous in d and in θ.

Moreover,

∂L(θ, d)

∂d





< 0 when d < θ

= 0 when d = θ

> 0 when d > θ;

(3) The estimator δ to be dominated satisfies (A.2);

(4) The estimator δ has, for each θ ∈ [a, b], a Lebesgue density on (a, b), i.e. there

exsits a function f(y, θ) such that, for all (α, β) with a ≤ α < β ≤ b,

Pθ(α < δ(X) < β) =
∫ β

α
f(y, θ)dy.

Moreover, that density is bounded on (a, b)× [a, b].

Clearly, these Charras conditions are satisfied for our bounded-normal-mean prolem.

REMARK: Charras also has results for the case where δ has a discrete distibution.

Our proof below of Theorem 2.4 is a special case of Charras’ proof for his general case

and we need the following lemmas A.2, A.3 and A.4 for our proof. The proofs of the

lemmas A.2 and A.3 are straightforward and omitted.

Lemma A.2 Let u(x) = x2Φ(−x)− Φ(−x)− xφ(x). Then:

(i) The risk function of δmle is given by

R(θ, δmle) = 1 + u(m+ θ) + u(m− θ). (A.3)

(ii) The risk function of δch is given by

R(θ, δch) = 1 + u(m− ε+ θ) + u(m− ε− θ). (A.4)
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Lemma A.3 Let g(x) = u′(x) = 2xΦ(−x). Then g′(x) = 2(Φ(−x)− xφ(x)), g′′(x) =

2(x2 − 2)φ(x) and the following properties of these functions hold:

(i) g′′(x) ≥ 0 if and only if |x| ≥ √
2 and g′′(x) → 0 as x→ ±∞;

(ii) g′(x) increases in x if and only if |x| > √
2; g′(x) attains its maximum at x = −√2

and its minimum at x =
√

2 and g′(0) = 1. There is one unique root η0 of

g′(x) = 0, η0 ∈ (0,
√

2), g′(x) → 2 as x→ −∞ and g′(x) → 0 as x→ +∞.

(iii) g(x) has the same sign as x for x ∈ (−∞,+∞); g(x) increases in x if x < η0 and

decreases otherwise; g(x) attains its maximum at x = η0 and the unique root of

g(x) = 0 is x = 0; g(x) → −∞ as x→ −∞ and g(x) → 0 as x→ +∞.

Lemma A.4 Let h(x, θ) = g(x + θ) + g(x− θ), where (see the lemmas A.2 and A.3)

g(x) = u′(x) = 2xΦ(−x) and u(x) = x2Φ(−x)− Φ(−x)− xφ(x). Then

(i) For fixed ε ∈ (0,m),

min
θ∈[m−ε,m]

h(m− ε, θ) = h(m− ε,m) = g(2m− ε) + g(ε)− 2ε.

(ii) Let ψ(x) = g(2m− x) + g(x)− 2x for x ∈ [0,m]. Then ψ′(x) < 0, ψ(0) > 0 and

ψ(m) < 0, so there exists a unique root ε′ ∈ (0,m) of ψ(x) = 0 with ψ(x) > 0 for

0 ≤ x < ε′ and ψ(x) < 0 for ε′ < x ≤ m.

Proof of Lemma A.4

(i) Consider

∂

∂θ
h(m− ε, θ) = g′(m− ε+ θ)− g′(m− ε− θ).
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For θ ∈ (m−ε,m], we have m−ε+θ > 0 and m−ε−θ < 0. So (see Lemma A.3)

g′(m− ε + θ) < g′(0) = 1 and g′(m− ε− θ) > g′(0) = 1. Hence g′(m− ε + θ)−
g′(m− ε− θ) < 0 and so ∂

∂θ
h(m− ε, θ) < 0. In other words, h(m− ε, θ) decreases

as θ increases in (m− ε,m], which implies that

min
θ∈[m−ε,m]

h(m− ε, θ) = h(m− ε,m).

(ii) Note that h(m−ε,m) = g(2m−ε)+g(ε)−2ε = ψ(ε). Since ψ′(x) = −2−g′(2m−
x) + g′(x), with (see Lemma A.3) g′(2m − x) > g′(

√
2) > −1 and g′(x) < 1, we

have ψ′(x) < 0 for x ∈ [0,m].

♥

Proof of Theorem 2.4

As noted in Section 2.4.2, it is sufficient to prove that δch dominates δmle on (m− ε,m]

for 0 < ε ≤ ε′.

Let

∆(θ, ε) = R(θ, δmle)−R(θ, δch),

then, by Lemma A.2,

∂

∂ε
∆(θ, ε) = − ∂

∂ε
[u(m− ε+ θ) + u(m− ε− θ)]

= u′(m− ε+ θ) + u′(m− ε− θ)

= g(m− ε+ θ) + g(m− ε− θ)

= h(m− ε, θ),

where h(x, θ) and g(x) are defined in Lemma A.4.
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Then by Lemma A.4 (i), we have

min
θ∈(m−ε,m]

h(m− ε, θ) = h(m− ε,m) = ψ(ε) > 0,

for ε ∈ (0, ε′), where ε′ is given by (ii) in Lemma A.4, implying that, for 0 ≤ ε ≤ ε′,

∂

∂ε
∆(θ, ε) ≥ h(m− ε,m) = ψ(ε) ≥ 0.

But, ∆(m− ε, ε) > 0 for all ε ∈ (0,m], which proves the theorem. ♥

3) Proof of Theorem 2.5

By Lemma A.2

∆o(θ,m) = R(θ, δmle)−R(θ, δo) = u(m+ θ) + u(m− θ) + 1− θ2.

So, it needs to be shown that u(2m)+1/2−m2 = 0 has a unique positive root m1 and

that

u(m+ θ) + u(m− θ) + 1− θ2





≥ 0 for all θ ∈ [0,m]

> 0 for some θ ∈ [0,m]

if and only if 0 < m ≤ m1.

First note that (see Lemma A.3)

∆o(0,m) = 2u(m) + 1 > 0 for m > 0.

Further, with g(x) = u′(x) = 2xΦ(−x),

∂

∂θ
∆o(θ,m) = g(m+ θ)− g(m− θ)− 2θ
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and
∂2

∂θ2
∆o(θ,m) = g′(m+ θ) + g′(m− θ)− 2,

so that
∂

∂θ
∆o(θ,m)|θ=0 = 0 for all m > 0

and (see Lemma A.3)

∂2

∂θ2
∆o(θ,m)|θ=0 < 0, for all 0 ≤ θ ≤ m,m > 0

implying that ∆o(θ,m) is, for each m > 0, decreasing in θ ∈ [0,m].

A necessary and sufficient condition for δo to dominate δmle for a given m > 0 is

therefore that ∆o(m,m) ≥ 0. But

∆o(m,m) = u(2m) + u(0) + 1−m2 = u(2m) + 1/2−m2

and this function has the following properties:

1) ∆o(0, 0) = u(0) + 1/2 = 0;

2)
d

dm
∆o(m,m) = 2(g(2m)−m) = 2m(4Φ(−2m)− 1).

So

d

dm
∆(m,m)





>

=

<





0 ⇐⇒ m





<

=

>





1

2
Φ−1

(
3

4

)
.

Further ∆o(
√

2/2,
√

2/2) = u(
√

2) < 0 and thus there exists a unique m1 > 0 with

∆o(m1,m1) = 0 and ∆o(m,m) > 0 for 0 < m < m1,

which, together with the fact that ∆o(θ,m) is decreasing in θ for θ ∈ [0,m], proves the

result. Numerically, we found m1 ' 0.5204372. ♥
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4) Proof of Theorem 2.6

It is sufficient to prove that, for each fixed x ∈ (0,m), δm(x)−x→ 0 as m→∞. This

implies that δmle(x)− x converges to 0 almost surely as m→∞, so it is now sufficient

to prove, for each δm that, for fixed x ∈ (0,m), δm(x)− x→ 0 or δm(x)− δmle(x) → 0

as m→∞.

a) Proof for δmr(x)− δmle(x):

For x ∈ (0,m), δmr(x) differs from δmle(x) if and only if 0 < x < ξ(m), so it suffices

to show that ξ(m) →∞ as m→∞. But this can be seen as follows. Since ξ(m)

is the unique positive root of u(x) = x−m tanh(mx), we have u(ξ(m)) = 0, that

is, ξ(m) = m tanh(mξ(m)). Hence,

m− ξ(m) = m−m tanh(mξ(m)) =
2m exp (−2mξ(m))

1 + exp(−2mξ(m))

→ 0, as m→∞. ♥

b) Proof for δch(x)− δmle(x):

We know that, for fixed x ∈ (0,m), δmle(x) and δch(x) differ from each other if

and only if x ∈ (m − ε,m] where ε ∈ (0, ε′) with ε′ the unique root of ψ(x) =

g(2m−x)+g(x)−2x = 0 and ψ(x) can also be written as ψ(x) = g(2m−x)+g(−x).
(see Theorem 2.4).

By the definition of ε′ we have that g(2m− ε′) + g(−ε′) = 0. Since 0 < ε′ < m <

2m, 2m− ε′ →∞ as m→∞, implying that

g(−ε′) = −2(2m− ε′)Φ(−(2m− ε′)) → 0 as m→∞.

Consequenty, as m → ∞, we have g(−ε′) → 0, which is equivalent to ε′ → 0 by
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the definition of g(x). Hence, for x ∈ (m− ε,m],

δmle(x)− δch(x) = m− (m− ε) = ε < ε′ → 0 as m→∞. ♥

c) Proof for δP(x)− x:

As m→∞,
∫ m−x
−m−x zφ(z)dz → ∫∞

−∞ zφ(z)dz = 0, while Φ(m−x)−Φ(−m−x) → 1,

hence, δP(x)− x→ 0 as m→∞. ♥

d) Proof for δB(x)− x :

The difference between x and δB(x) is given by

x− δB(x) =
1−m− 1

8

m
ψm


1−m− 1

8

m
x


 .

As m→∞, we have
1−m− 1

8

m
→ 0.

Further

ψm


1−m− 1

8

m
x


 → 0,

because (see the definition of ψm(x) in Section 2.7) for fixed x > 0 and large

enough m,
1−m− 1

8

m
x ≤ 1− 1

m1/4

so that

ψm


1−m− 1

8

m
x


 = π tan


π

2

1−m− 1
8

m
x


 → 0 as m→∞. ♥

28



B Appendix: Graphs for Section 3
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Figure 1: Comparisons of risk functions for δmle, δcs.2, δmr, δch and δP, at m = 0.5.
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Figure 2: Comparisons of risk functions for δmle, δcs.2, δmr, δch and δP, at m = 0.8.
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Figure 3: Comparisons of risk functions for δmle, δcs.2, δmr, δch and δP, at m = 1.
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Figure 4: Comparisons of risk functions for δmle, δcs.2, δcs.3, δmr, δch and δP, at m = 1.5.
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Figure 5: Comparisons of risk functions for δmle, δcs.2, δmr, δch and δP, at m = 1.8.
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Figure 6: Comparisons of risk functions for δmle, δcs.2, δmr, δch and δP, at m = 3.
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Figure 7: Comparisons of risk functions for δmle, δcs.2, δmr, δch, δP and δB, at m = 5.
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Figure 8: Comparisons of risk functions for δmle, δcs.2, δmr, δch, δP and δB, at m = 10.

36


