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Abstract

Transformations can help small sample likelihood/Bayesiderence by improving the ap-
proximate normality of the likelihood/posterior. In thigtiale we investigate when one can
expect an improvement for a one-dimensional random functi®éaussian process) model.
The log transformation of the range parameter is compardd an alternative (the logexp)
for the family of Power Exponential correlations. Formuéas developed for measuring non-
normality based on Sprott (1973). The effect of transforamst on non-normality is evaluated
analytically and by simulations. Results show that, on ayey the log transformation im-
proves approximate normality for the Squared Exponentdussian) correlation function,
but this is not always the case for the other members of theePBwponential family.



1 Introduction

Asymptotic normality results for likelihood and Bayesiafidrence are considered highly valuable
and a wide range of statistical models have been thorougiplpeed from this perspective. Small
sample normality, on the other hand, has received relgtiesks attention. But in practice, small
sample results are often more relevant than large sampléses

This is especially true for the random function models usedamputer experiments (Sacks,
Welch, Mitchell and Wynn 1989), where sample sizes are nelitismall relative to the dimen-
sionality of the problem because of the excessive comuunaltcost of obtaining data. Hence, the
lack of small sample focus is even more puzzling in this redearea. Theory is lagging behind
current practice, since from the practitioners’ point cgwithe crucial question is how to make the
most of a limited number of data points. But theoretical angats are usually based on asymp-
totics (Stein 1999; Zhang and Zimmerman 2005), providititglguidance for small samples.

The goal of this paper is to begin addressing this gap by @sic exploration of one of
the simplest cases when essentially everything boils dowast one parameter. This is only the
first step toward exploring higher-dimensional problemd arost of our results are only applica-
ble to the one-dimensional case (except Section 4). Theratgm for this work came from the
thesis of Karuri (2005), who observed that the log transtdram improved posterior approximate
normality for one- and two-dimensional examples and dernates its usefulness for integration
and prediction. Our focus is on the likelihood, which carodie interpreted as an unnormalized
posterior for a uniform prior.

The main contribution of this paper is the application oftteory in Sprott (1973) to quantify
the effect of transformations on approximate normalityhedf tikelihood/posterior for small sam-
ple sizes without resorting to asymptotics. The main findsthat in the one-dimensional case
with the Squared Exponential correlation, the previousliiaed usefulness of the log transforma-
tion for some data sets by Karuri (2005) holds in general lier ¢class of data described by the
model: on average, the log transformation improves apprate small sample normality of the
likelihood/posterior.

This is useful for both likelihood and Bayesian inferencéelihood inference often uses the
observed or expected Fisher information as a measure odiatérerror; hence, its validity de-
pends entirely on the approximate normality of the liketidoBayesian inference is based on the
posterior distribution. If that can be approximated welldoypormal distribution, that can greatly
simplify the implementation, as shown in Nagy, Loeppky arelal' (2007). The reader is referred
to that paper for understanding how the model can be usedréaligtion in the context of com-
puter experiments. Here we just briefly outline the preditfiormulas for the model to give some
intuition for the roles of the different model parameters.

We consider a simple one-dimensional special case of thistgtal formulation in Sacks et al.
(1989) to model a deterministic responises a function of some variabie

Yi(z) = Z(x),
wherez is real andZ(z) is a real-valued random function (Gaussian stochastiogss)avith
E(Z(z)) = 0 and Cov(Z(w), Z(x)) = o R(w, z),

whereo? is the process variance at{w, z) is the correlation. Our procedure can be applied to
any single parameter correlation function, as long as ihied times differentiable with respect
to the correlation parameter, denotéd In this paper, we use the Power Exponential family of
correlations:

R(w, z) = exp {—0lw — z|"'}, 1)
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whered € (0, co) andp € (0, 2|. For simplicity, we treap as fixed and known, leaving the range
parametep the only unknown in the correlation function. Of speciakimst to us is the Squared
Exponential (Gaussian) correlation function wjth= 2 that is used to model smooth functions.

The likelihood is a function of the two unknowns:

T -1
y'R y}’ )

1
L(c?, 0 _ -
(o7, 8) o (62)% |R|z eXp{ 202

wheren is the sample sizg,is the data, and is then x n correlation matrix that is a function 6t

The primary use of the model is to predict the response at aungwedz,. If in addition top,
6 ando? are also known, then the Best Linear Unbiased Predictor (BLi given by

9o(0) = T(xo)TR_lya

with Mean Squared Error
MSEQO(UZ, 0) = o° (1 — r(xo)TR_lr(xo)),

wherer(z) is a vector of correlations between the neyand the original design points (that is a
function of the range paramet@). Thus# exerts its influence on the BLUP and its Mean Squared
Error through the correlation vecto(z,) and the correlation matrix.

In contrast, the dependence @his much simpler. It is a factor in the MSE formula, but the
BLUP itself is independent of?. This has important implications when the parameters are un
known. It is easier to deal with uncertaintydt than ing because the predictor is not affected by
o? and the MSE is simply proportional te'.

This suggests a convenient simplification: if we could eliates? analytically, then we could
focus on studying the dependenceénwhich is the “interesting” variable in these models. For-
tunately, this is easy to do by either “profiling” or “integirag”, as shown in Section 4. Either
way, the result is the one-parameter likelihood functigi@), that is used for subsequent calcu-
lations. Having eliminated?, we can callL(9) the “profile likelihood” or the “integrated likeli-
hood” or just simply the “likelihood” for short, and the lod this function the “log-likelihood”:
1(0) = log L(0).

This paper is about the shapelof) and L(#). Specifically, we are interested in quantifying
how well[(#) can be approximated by a quadratic function, which is edemntao measuring how
closeL(#) is to a normal density function (up to a scale). We also wakihtonv whether a trans-
formation of the parametércan bring the likelihood closer to normality.

For example, Figure 1 illustrates how much the log transairom can improve approximate
normality, especially when the sample size is smaHH 3 in this case). On the original scale (left),
the contour plot of the two-parameter likelihood (2) is Highon-normal, having a banana-shaped
peak around the Maximum Likelihood Estimate (MLE) and a phiatge along the axes, marked
by the dashed line. Below the contour plot, the one-paranvetsion of this dashed line is also
highly non-normal. This is the profile likelihoad(6) that can be obtained by maximizing (2) over
all 0% givend. We can see that the normal approximation.¢f) based on the mode at the MLE
of 6 (dotted curve) is a poor approximation of the profile likeldd (dashed curve).

On the log scale (right), the contours are more ellipsoisiagigesting less non-normality. Be-
low that, the difference is even more striking for the profilelihood (dashed) that is virtually
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Figure 1. The log transformation improved approximate rality of the likelihood for this exam-
ple with p = 2 and only three data points (= 3). The top two plots are for the two-parameter
likelihood (2) and the bottom two for the one-parameter pedfkelihood (with o2 eliminated).
The ridges of the contours are marked by the dashed lineshireatheir apex at the MLE. Below
the contour plots, these dashed lines are plotted as fursctibthe range parameter, representing
the profile likelihood function (that is the likelihood maxized over allo? given#). In addition

to the profile likelihoods (dashed curves), their normalragpnation is also shown for compari-
son (dotted curves). These are unnormalized normal defiusitgions centered on the MLE of the
range parameter with variance set to the negative inverseafecond derivative of the profile like-
lihood at the MLE. On the log scale, the profile likelihoodgdad) and its normal approximation
(dotted) are so close that the difference is difficult to ceti



indistinguishable from its normal approximation (dotteder the domain ofog ¢ shown (corre-
sponding to the domain @fon the left). At the first look it may not be apparent that thame two
separate lines in this plot (one dashed and one dotted) tkdap almost perfectly.

This example is for the = 2 special case when the log transformation is expected taceedu
non-normality. This is demonstrated both empirically irc&mn 2 and theoretically in Section 3.
(Other values o betweer)) and2 are also explored in Section 3, but the results are less-clegar

The log transformation is an intuitively natural choice foapping a positive parameter to the
whole real line when small values not too far from zero preoh@te. An extra benefit for the
Power Exponential family is that it can unify the treatmefglaghtly different forms: although we
use form (1) exclusively, our results readily translate tteeo forms, such as

exp {—(Olw — al)"} or exp{— (‘“’;x')p}

since the only difference on the log scale is just a constzalirgy factor ofp or —p that does not
affect normality/non-normality.

As an alternative to the log, we also explore the logexp faansation that is defined as
log(exp(f) — 1). This is inspired by they = e~? parameterization used in computer experi-
ments, for example Linkletter, Bingham, Hengartner, Higémd Ye (2006). One way to trans-
form p € (0, 1) to facilitate approximate normality is by using the logihfiion to map it to the
real line. That leads to the logexp transformation for thigioal range parametek

logit(1 — p) = log (1%”) — log (% - 1) — log(exp(6) — 1).

The following two sections describe two measures of nomvadity based on Sprott (1973).
Section 2 includes a simulation study for= 2. Section 3 also explores three other choices in
addition to thep = 2 case:p = 0.5, 1, and1.5. Sincep is given,d is the only unknown parameter
in the model to transform. The process varianéés treated as a nuisance parameter and two op-
tions are presented for its elimination in Section 4. Finalection 5 outlines upcoming follow-up
work and future research.

2 Observed Non-Normality

Let /(#) denote the (one-parameter) log-likelihoddthe Maximum Likelihood Estimate (MLE)

~ ~

of 8, I"(0) the third-derivative of the log-likelihood at the MLE, ard”(#) the “observed” infor-
mation. Then the Observed Non-Normality (ONN) measured®p973) is defined as follows:

ONN for 6 = [ 1"(6) (—=1"(6))"% |.

~

If the likelihood L(#) is proportional to a normal density function, thE#) is quadratic and” (6)
is zero, making the ONN zero as well. Otherwise, the mageitfdhe third derivative (standard-
ized by the second) measures the deviation from normality.

Although Sprott (1973) originally proposed the measuresikelihoods, the extension to pos-
teriors is immediate by employing a uniform prid(f) becomes the log-posterior (up to an addi-

tive constant) and becomes the Maximum Posterior Likelihood Estimate (MPLEnaximum
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Figure 2: The log transformation reduced Observed Non-Nditynin most cases fags = 2 for all
nine combinations of andn. The horizontal and vertical coordinates are the ONN on tiggral
scale and on the log scale, respectively. Each individuatejaresents a successful realization.
The total number of successful realizations are indicatethe top of each plot, followed by how
many of them had their ONN reduced by the log transformafidre gray diagonal is the dividing
line between those cases that had their ONN reduced and tiaisdid not. Most are under the
diagonal, which means reduced Observed Non-Normality: GbdiNog 6 < ONN for 6. (It is
evident thatn = 9 data points can already be too many for= 0.2, since out of the 10,000
simulated data sets, computations succeeded in only 8@k c It is well-known that there is a
certain limit on the sample size when= 2, especially for such a smdll Failure rates were much
lower for the other combinations éfandn). The design was equally spaced on fthel] interval:

{i/n—1)]i=0,....,n—1}



a posteriori (MAP). A Bayesian interpretation is providedSection 4, after discussing how to
eliminates? to get a likelihood/posterior that is a function of only tlEmge parameter.

A simulation study was conducted to evaluate the effect efltiy transformation on non-
normality for p = 2 under a wide variety of settings. Figure 2 shows how many gimen-
normality was reduced by the log transformation f6r 000 simulated data sets from the random
function model (realizations of the Gaussian process) iioe possible combinations of the trde
and the sample size. The layout of the figures follows th& x 3 factorial design for the three
levels of the range parameter from an extremely high carelgd = 0.2) to an extremely low
(9 = 20) and for the three levels of the sample size from smak-(3) to large ¢ = 9).

For all nine combinations, Observed Non-Normality was wtlin most cases, since most
realizations lie below the diagonal, where the ONN on theslogje (vertical axis) is less than the
ONN on the original scale (horizontal axis). The counts afueged ONN (out of the total num-
ber of cases that could be computed for that particular coatlun ofd andn) are shown on the
top of each plot. This suggests that the log transformatifofhis much more likely to decrease
non-normality of the originalL(¢) than to increase it, according to this measure. Furtherntioee
smaller the sample size, the greater and the more likelyetheation.

Going back to Figure 1, now we can quantify the non-normaiftihe profile likelihood before
and after the log transformation. Before, the ONNdas 4.97, but after, the ONN fotog 6 is only
0.04. This is consistent with the reductions seensict 3 in Figure 2.

For this simulation, two ONNs were computed separately fmhedata set (before and after
the log transformation). However, this is not necessangeseach can be obtained from the other.
This relationship is explained in the next section and theeduor Sprott's second measure that is
more convenient than the ONN, because it can be calculadgtaally without any simulations
of actual data sets.

3 Expected Non-Normality

Sprott’s second measure is the Expected Non-Normality (Etkdblt follows from the first by re-

~

placing the third and second derivatives with their expiats, so that~i” (0) is standardized by
the “expected” Fisher information:

ENNfor § = | EI"(6) (—El"(6))"? |.

This measure is more appropriate when one wishes to conasitemily of possible likelihoods
without conditioning on any particular data set. Hence, réébst of our results are based on the
ENN instead of the ONN. Sprott (1973) also provided a fornthiat quantifies the effect of a
transformationp on non-normality, where is a twice differentiable function df. After applying
the ¢ transformation, the ENN becomes

3¢"(0)
¢ () (—El"(9))*
where the first term inside the absolute value is the samefagshia the definition of the ENN for
6 and the second term is the effect of the transformatioAn analogous relationship holds for the

ONN (without the expectations). Note that the presence@tttond derivative in the numerator
implies invariance with respect to linear transformations

ENN for ¢(0) = Elm(é) (_Elu(é))_% n
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Given a functionp and a value fo#, this formula enables one to visualize the difference in the
Expected Non-Normality due to the transformatianComparisons are shown in Figures 3 and 4
for the log and the logexp, respectively. The same equaligag design was used again, identical
to the one used for the simulations. Also, the sample sizes 3yé, and9, as before, to facilitate
comparisons. An extra large sample size- 12 was also added.

The simplest of these plots is the log transformationgfoe 2 in Figure 3. For each of the

four sample sizes, there is a line segment representing kit fer 6 € (0.2, 20] (i.e. over the
same range that was used for the tfua the simulation study). This shows increasing ENN as a

function of# both on the original scale (horizontally) and on the log s¢aértically). Forn = 12,
we can see a short fat segment close to the origin, indicagiagively low ENN on both scales.
As the sample size falls, we can observe a shift to the rigloinopng ENN on the original scale)
and also increasing segment length (growing ENN on the latg¥cso that the end of the thinnest

segment forn = 3 is off the plot for large values df close t020.

What is unique about this plot, compared to all the othersigufes 3 and 4, is that it shows
a clear advantage of the log transformation with respedi¢cBNN measure: the ENN faog 0

is always less than the ENN férfor all # values computed betweé2 and20. Moreover, the
difference is always substantial, since none of the linesecalose to the gray diagonal in the
middle that marks the line where the ENN is the same on both.akhis is what makes the log
transformation special for the = 2 case. One way to interpret this result in words is to say that
the log transformation is “expected” to reduce non-nortgdéir p = 2. This is consistent with the
results of the simulation study in the previous section tisd the ONN. Figure 2 for the ONN
and the plot fop = 2 in Figure 3 for the ENN can be compared directly since theescéffom0

to 5) are the same on both axes.

Continuing thep = 2 case, Figure 4 suggests that the logexp is also expecteduogeon-

normality, but not as much as the log. The major disadvamagee logexp is that a& increases,
the curves approach the diagonal, meaning vanishing nedsctFigure 5 makes the comparison
between the log and the logexp more explicit by plotting omeadly against the other. The= 2
case is again very clear: the ENN for the log is less than thbl EdY the logexp, since the area
above the diagonal is never breached.

In summary, the ENN-based analysis of fhe- 2 case shows that both transformations are
expected to reduce non-normality and that the expectecttieths of the log are greater than that
of the logexp. However, these simple conclusions cannoktemded to other values pfbetween
0 and2. To illustrate, Figures 3, 4, and 5 also have plotsifer 0.5, 1, and1.5. Looking at these
cases in each figure leads to the following observations:

e Figure 3: The log transformation is expected to reduce nanmality for small sample sizes.
However, this is not necessarily true for large samples,hasva by then = 12 curve
breaching the area above the diagonalfer 0.5, 1, and1.5.

e Figure 4: The logexp transformation is expected to reducenarmality with no exceptions.
But reductions are negligible for largewhen the curves lie close to the diagonal.

e Figure 5: For largd), the expected reductions of the log are greater than thateobgexp.

However, for small, the logexp can achieve smaller ENN than the log, as indicate
portions of the curves above the diagonalfcg 2.



log transformation for p = 0.5 log transformation forp =1
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Figure 3: The effect of the log transformation on Expecteahmrmality: The horizontal and
vertical coordinates are the ENN on the original scale andhenlog scale, respectively. The
gray diagonal is the dividing line between those cases thdttheir ENN reduced by the log
transformation and those that did not. For each of the fompa sizes: = 3, 6, 9, 12, both ENN
measures were calculated for selecfiehlues between.2 and20 (some of which could not be
computed because of numerical issues for sihalhd largen). The resulting curves are plotted
with their thickness proportional to the sample size. Exggdon-Normality was reduced by the
log transformation fop = 2. However, forp = 0.5, 1, and1.5, the thickest curve fon = 12
crosses over the diagonal for somealues somewhere betweere and20 (which means that for
those cases, the ENN farg # became greater than the original ENN &)r



logexp transformation for p = 0.5
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Figure 4: The effect of the logexp transformation on Expéd&ien-Normality: The horizontal and
vertical coordinates are the ENN on the original scale antherlogexp scale, respectively. For
each of the four sample sizes= 3, 6, 9, 12, both ENN measures were calculated for selected
6 values betweef.2 and20 (some of which could not be computed because of numerioasss
for smalld and largen). The resulting curves are plotted with their thicknessportional to the
sample size. The area above the gray diagonal is completedyyefor all four values op, which
means that the logexp transformation helps normality. Henas increases, all curves approach
the diagonal, which means that differences quickly becoeggigible and for largé the ENN for
logexpd ~ ENN for 6.
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log vs. logexp for p = 0.5 log vs. logexp forp=1
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Figure 5: The Expected Non-Normality of the log vs. the Iqggé&ansformation: The horizontal
and vertical coordinates are the ENN on the logexp scale artielog scale, respectively. For
each of the four sample sizes= 3, 6, 9, 12, both ENN measures were calculated for selected
6 values betweef.2 and20 (some of which could not be computed because of numerioasss
for smalld and largen). The resulting curves are plotted with their thicknessportional to the
sample size. Expected Non-Normality was reduced more bptheansformation than the logexp
in all cases fop = 2. But forp = 0.5, 1, and1.5, curves starting above the diagonabat: 0.2
indicate that the logexp leads to lower ENN than the log foalsmup to some threshold where
the curves cross over the diagonal and the relationshipseseand then the logexp leads to higher
ENN than the log for alf above that threshold.
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4 Eliminating the process variances?

This section formally defines the one-parameter likelihbotttion L(#). Here we can be more
general than the rest of the paper, since the only assummeieted aboutis that it is a parameter
of the correlation matrib. (For example, this enables generalizations to higher dgioas when
0 is a vector).

Two possible ways are presented to deal with the nuisanea@ers?: “maximizing out” to
get the profile likelihood and “integrating out” to get thedagrated likelihood (see Berger, Liseo
and Wolpert (1999) for a general discussion of these mejhodshile profiling is common in
likelihood-based settings, Bayesians are usually morefadatole with integrating. Although in
this case the sami(f) function is obtained both ways, interpretations can stffed depending
on the underlying framework.

4.1 Profile likelihood
For afixedd, L(o?, 6)in equation (2) has a unique maximum at

Tp-1
&) = L5 Y

n

This is easily obtained by differentiating o2, #) with respect tar? or by observing that

TR—l
21y~ (o VY
o” |0,y 02 T

and using the?/(« + 1) formula for the mode of an Inverse Gamma distributi@i(«, 5) with
density function
g exp {2

F(Oé) rotl

Plugging ing?(0) into (2) yields the profile likelihood:

flzla, ) =

— (52 ~ 1 ox _yTR_ly (TR % -1
LO) = L0, 0) o o e { <l o (TR R

Now the maximum likelihood estimation can be done udir@) instead of the original(o?, 6),
reducing the dimensionality of the required numerical m@ation by one.

4.2 Integrated likelihood

Bayesians prefer to put a prior distribution ol before eliminating it. According to Berger,
De Oliveira and Sanso (2001), the most common choice is theaadcock and Stein (1993),
who used the improper pridr/a? for o2 > 0. This can be interpreted as a relative weight function
giving prior weights inversely proportional to the magmuié) encouraging? to be close to zero.
(On the log scale, this becomes the uniform priorlfgro?).

The 1/0? prior can also be used as a joint prior for all the model patarse by putting a

uniform prior on some parameterization &f Note that the only role of in this section is that
the correlation matrix? depends on it. Hence, all arguments in this section are gmtgnt of the
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actual correlation structure encapsulatedriand the actual parameterization represented by (the
possibly multivariate), including any transformations éf

For example, in the one-dimensional case using the origiaedmeterization for a positive
0, the1/0? joint prior is obtained by multiplying together the o prior for o and a constant

prior for § (assuming independence @f and#). Since both priors are improper, their product is
improper, too. A well-known disadvantage of such simplegis that they can lead to improper
posteriors (Berger et al. 2001).

We update the prior by multiplying with the likelihood (2) ¢et the posterior:

T p—1
Lt x o {2
g

(0)371 |RI: 20°

and notice that

TR—l
210 0o 1™ YR
o” |0,y G<2, 5

which means that? can be integrated out from the posterior to get the margiosigsior ofd:

o 1 TR_I F z n 1
/ _— exp{—y 5 y} do? = (22 o« (y'R™'y)"2 |R| =.
o (622t |R|z 20 <yTRfly> 2 |R|%
2

Berger et al. (2001) refer to this as the integrated likedithoNote that up to a multiplicative con-
stant, this is the same as the profile likelihood functigfi) above. This is an interesting property
of this model; in general, the two different procedures leadifferent results.

5 Discussion

The main result of the paper is that on average, the log wwamsition improves approximate
normality for the Squared Exponential (Gaussian) conatatunction, but this is not necessar-
ily the case for other members of the Power Exponential fanWe have also provided general
procedures for measuring non-normality and for evaluatitegeffect of transformations on non-
normality in the one-dimensional case. The only requirerexs the differentiability of the cor-
relations and the transformations.

Finding the optimal (or even a satisfactory) transformatior normality for a particular co-
variance structure is still an open problem. We are working@pproximate methods inspired by
the “vanishing third derivative” of Anscombe (1964) thadfgimal for the criteria of Sprott (1973).

From a practical standpoint, one of the crucial researclstiues is how this will scale up to
higher dimensions. In a two-dimensional setting, KaruflQ®) presented examples of the log
transformation reducing skewness and making posteriore relipsoidal. We are currently in-
vestigating a multivariate generalization of Sprott’s s@@&s by Kass and Slate (1994), using the
same profile/integrated likelihood as in the previous secdtihat has the same form, independently
of the dimensionality of)).

It is important to reiterate that these are small sample@pprate normality results, not large
sample or asymptotic results. The distinction is essergiate that is exactly what makes them
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relevant in practice. For example, typically, we have onlyrated number of runs from a compu-
tationally expensive computer model (it may take days onaveeks to obtain each data point).
On the other hand, even if we had large samples, they woudth aftrn out to be uncomputable
because of the ill-conditioning of the correlation matesjpecially for the Squared Exponential).

But that does not mean that we cannot make use of asymptotiwdsefor inference, since
validity depends on normality, not on the sample size. FamgXe, Wald confidence intervals
are based on a quadratic approximation of the profile loglilood. Hence, the more a trans-
formation reduces non-normality, the more accurate thed\&pproximation becomes. A nearly-
guadratic log-likelihood can also make the numerical ofation easier. For example, Newton’s
method and related quasi-Newton algorithms work best oiases that are well approximated by
a quadratic.

Markov chain Monte Carlo (MCMC) methods are also helped pyr@ximately normal pos-
teriors. Better yet, if we can replace the posterior withntemal approximation, then we can
sample from that directly (avoiding MCMC). This Fast Bayesinference (FBI) is the subject of
Nagy et al. (2007), demonstrating the usefulness of therbogsformation for achieving accurate
prediction uncertainty assessments.
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Appendix

This Appendix contains all formulas necessary to compuggXNN and the ENN. After intro-
ducing some notation and definitions, first, second, and therivatives are calculated for relevant
functions and matrices. Then two lemmas are given for egpects, followed by two theorems
for the ONN and the ENN.

Notation and Definitions

Let y denote the response vector having lengthmean zero, and covariance mateixR,
whereo? is the process variance amtlis the symmetric, positive definite x n design correlation
matrix (that is a function of the paramet®r Let G denote the inverse matrix @t and define the
matricesF’ = GR', S = GR’, andT = GR", whereR’, R”, andR"" are the first, second, and
third derivatives ofR, respectively (with respect t). The trace of a matrix is denoted by(-).
For concise notation, we also defitle) = tr(-)/n.

Taking the log ofZ(#) in Section 4, the log-likelihood is (up to an additive coms}a

T p—-1 1
1(0) = —glogy Ry _ 510g\R|.

The functionsy andh are used to simplify calculations:

T p—1
o) = LY and ne) = = eIl

n n
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Suppressing from [(0), g(#), andh () gives the following equation for the log-likelihood:

[ = g(h — logg).

Formulas for Derivatives

Differentiating with respect té leads to the following formulas for the first, second, anddhi
derivatives of the log-likelihood:

3

3 11 "
" " g/ gg g
l:—h—2<—) +34L L)
g g g

wherel/ = —t(F), W' =t(F?—S), h" = —t(2F®—3FS+T),

[\]

and g/ — yTG’y/n, g// — yTG”y/n, g/// — yTG///y/n '
whereG! = —FG, G" = (2F*—-5)G, G" =—(6F3—3FS—3SF+T)G.

Lemmas for Expectations

Lemma 1. For any symmetria: x n matrix
Ey'Qy = o*tr(QR).

Proof: Ey"Qy = Etr(y"Qy) = Etr(Qyy") = tr(QEyy") = tr(Qo°R) = o’tr(QR),
where we used the fact thathas mean zero and covariance matri.

Lemma 2. For any symmetria: x n matrix

T
E zng = 1(QR).

Proof: Letz = C~'yfory ~ N(0, o*R), whereC is the lower-triangular Cholesky-factor
of the covariance matrix?R. Thenz ~ N(0, I,,) and

CCT = ¢’R = R=0CC"/o> = R =o*C")"C".
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Substitutingy = Cz and G = o2 (CT)_lC‘1 we get:

T T AT T (AT
yQy_E 2CTQCz B 1Ez(CQC’)z.

yT'Gy - ZTC'TUQ(CT)_lC—lCz o2 2T

Conniffe and Spencer (2001) state that the expectation afia of this form is the ratio of the
expectations for any quadratic form in the numerator. Thia consequence of the fact that the
ratio is independent of its denominator, a result attriute Geary (1933). Hence we can apply
Lemma 1 separately to the numerator and the denominator:

y'Qy _ Ey'Qy _ o’tr(QR) _ tr(QR) _ tr(QR) _
yIGy  Ey’Gy  o*tr(GR)  tr(l,) B

(QR).

Theorems for the ONN and the ENN

~ ~

Theorem 1. [”(#) and "' () for the Observed Non-Normality measure are:

" "

n > g n 3 9" g
l// — (h// _'_ h/ _ _) and l/// — (h/// - 2 h/ _'_ 3 h/ J _) )
: i 2 : (v Lt

Proof: When# = § (the MLE of#), then!’ = 0 and that implies thag’/g = h'. Replacing
¢'/g with b’ in the second and third derivative formulas fagives the result.

Theorem 2. EI”() and EI"(0) for the Expected Non-Normality measure are:
Bl = g (*(F) — t(F?)) andEl" = g (2L(F) — 6L(F)L(F?) + 3t(F)H(S) — 3U(FS) + 4t(F?)).

Proof: By the results of the previous theorem, the expectations are
" " n
BV =" (0w +w?-£2%) ad B =2 (1" -2y +3nEL - B2 ).
2 g 2 g g
Now Lemma 2 can be applied to the expectations of the ratios:

g// yTG//y " g/// yTG///y
EFEX— =F = t(G"R and F*— = F
g yT'Gy (G"R) g yT'Gy

— {(G"R).

Substituting the formulas fag”, G, andh’, h”, h" completes the proof.
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