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Abstract

Transformations can help small sample likelihood/Bayesian inference by improving the ap-
proximate normality of the likelihood/posterior. In this article we investigate when one can
expect an improvement for a one-dimensional random function (Gaussian process) model.
The log transformation of the range parameter is compared with an alternative (the logexp)
for the family of Power Exponential correlations. Formulasare developed for measuring non-
normality based on Sprott (1973). The effect of transformations on non-normality is evaluated
analytically and by simulations. Results show that, on average, the log transformation im-
proves approximate normality for the Squared Exponential (Gaussian) correlation function,
but this is not always the case for the other members of the Power Exponential family.
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1 Introduction
Asymptotic normality results for likelihood and Bayesian inference are considered highly valuable
and a wide range of statistical models have been thoroughly explored from this perspective. Small
sample normality, on the other hand, has received relatively less attention. But in practice, small
sample results are often more relevant than large sample results.

This is especially true for the random function models used in computer experiments (Sacks,
Welch, Mitchell and Wynn 1989), where sample sizes are routinely small relative to the dimen-
sionality of the problem because of the excessive computational cost of obtaining data. Hence, the
lack of small sample focus is even more puzzling in this research area. Theory is lagging behind
current practice, since from the practitioners’ point of view the crucial question is how to make the
most of a limited number of data points. But theoretical arguments are usually based on asymp-
totics (Stein 1999; Zhang and Zimmerman 2005), providing little guidance for small samples.

The goal of this paper is to begin addressing this gap by a systematic exploration of one of
the simplest cases when essentially everything boils down to just one parameter. This is only the
first step toward exploring higher-dimensional problems and most of our results are only applica-
ble to the one-dimensional case (except Section 4). The inspiration for this work came from the
thesis of Karuri (2005), who observed that the log transformation improved posterior approximate
normality for one- and two-dimensional examples and demonstrated its usefulness for integration
and prediction. Our focus is on the likelihood, which can also be interpreted as an unnormalized
posterior for a uniform prior.

The main contribution of this paper is the application of thetheory in Sprott (1973) to quantify
the effect of transformations on approximate normality of the likelihood/posterior for small sam-
ple sizes without resorting to asymptotics. The main findingis that in the one-dimensional case
with the Squared Exponential correlation, the previously noticed usefulness of the log transforma-
tion for some data sets by Karuri (2005) holds in general for the class of data described by the
model: on average, the log transformation improves approximate small sample normality of the
likelihood/posterior.

This is useful for both likelihood and Bayesian inference. Likelihood inference often uses the
observed or expected Fisher information as a measure of standard error; hence, its validity de-
pends entirely on the approximate normality of the likelihood. Bayesian inference is based on the
posterior distribution. If that can be approximated well bya normal distribution, that can greatly
simplify the implementation, as shown in Nagy, Loeppky and Welch (2007). The reader is referred
to that paper for understanding how the model can be used for prediction in the context of com-
puter experiments. Here we just briefly outline the prediction formulas for the model to give some
intuition for the roles of the different model parameters.

We consider a simple one-dimensional special case of the statistical formulation in Sacks et al.
(1989) to model a deterministic responseY as a function of some variablex:

Y (x) = Z(x),

wherex is real andZ(x) is a real-valued random function (Gaussian stochastic process) with

E(Z(x)) = 0 and Cov(Z(w), Z(x)) = σ2 R(w, x),

whereσ2 is the process variance andR(w, x) is the correlation. Our procedure can be applied to
any single parameter correlation function, as long as it is three times differentiable with respect
to the correlation parameter, denotedθ. In this paper, we use the Power Exponential family of
correlations:

R(w, x) = exp {−θ|w − x|p} , (1)
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whereθ ∈ (0, ∞) andp ∈ (0, 2]. For simplicity, we treatp as fixed and known, leaving the range
parameterθ the only unknown in the correlation function. Of special interest to us is the Squared
Exponential (Gaussian) correlation function withp = 2 that is used to model smooth functions.

The likelihood is a function of the two unknowns:

L(σ2, θ) ∝
1

(σ2)
n

2 |R|
1

2

exp

{

−
yT R−1y

2σ2

}

, (2)

wheren is the sample size,y is the data, andR is then×n correlation matrix that is a function ofθ.

The primary use of the model is to predict the response at a new, untriedx0. If in addition top,
θ andσ2 are also known, then the Best Linear Unbiased Predictor (BLUP) is given by

ŷ0(θ) = r(x0)
T R−1y,

with Mean Squared Error

MSEŷ0
(σ2, θ) = σ2

(

1 − r(x0)
T R−1r(x0)

)

,

wherer(x0) is a vector of correlations between the newx0 and the original design points (that is a
function of the range parameterθ). Thusθ exerts its influence on the BLUP and its Mean Squared
Error through the correlation vectorr(x0) and the correlation matrixR.

In contrast, the dependence onσ2 is much simpler. It is a factor in the MSE formula, but the
BLUP itself is independent ofσ2. This has important implications when the parameters are un-
known. It is easier to deal with uncertainty inσ2 than inθ because the predictor is not affected by
σ2 and the MSE is simply proportional toσ2.

This suggests a convenient simplification: if we could eliminateσ2 analytically, then we could
focus on studying the dependence onθ, which is the “interesting” variable in these models. For-
tunately, this is easy to do by either “profiling” or “integrating”, as shown in Section 4. Either
way, the result is the one-parameter likelihood functionL(θ), that is used for subsequent calcu-
lations. Having eliminatedσ2, we can callL(θ) the “profile likelihood” or the “integrated likeli-
hood” or just simply the “likelihood” for short, and the log of this function the “log-likelihood”:
l(θ) = log L(θ).

This paper is about the shape ofl(θ) andL(θ). Specifically, we are interested in quantifying
how well l(θ) can be approximated by a quadratic function, which is equivalent to measuring how
closeL(θ) is to a normal density function (up to a scale). We also want toknow whether a trans-
formation of the parameterθ can bring the likelihood closer to normality.

For example, Figure 1 illustrates how much the log transformation can improve approximate
normality, especially when the sample size is small (n = 3 in this case). On the original scale (left),
the contour plot of the two-parameter likelihood (2) is highly non-normal, having a banana-shaped
peak around the Maximum Likelihood Estimate (MLE) and a sharp ridge along the axes, marked
by the dashed line. Below the contour plot, the one-parameter version of this dashed line is also
highly non-normal. This is the profile likelihoodL(θ) that can be obtained by maximizing (2) over
all σ2 givenθ. We can see that the normal approximation ofL(θ) based on the mode at the MLE
of θ (dotted curve) is a poor approximation of the profile likelihood (dashed curve).

On the log scale (right), the contours are more ellipsoidal,suggesting less non-normality. Be-
low that, the difference is even more striking for the profilelikelihood (dashed) that is virtually
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Figure 1: The log transformation improved approximate normality of the likelihood for this exam-
ple with p = 2 and only three data points (n = 3). The top two plots are for the two-parameter
likelihood (2) and the bottom two for the one-parameter profile likelihood (with σ2 eliminated).
The ridges of the contours are marked by the dashed lines, reaching their apex at the MLE. Below
the contour plots, these dashed lines are plotted as functions of the range parameter, representing
the profile likelihood function (that is the likelihood maximized over allσ2 givenθ). In addition
to the profile likelihoods (dashed curves), their normal approximation is also shown for compari-
son (dotted curves). These are unnormalized normal densityfunctions centered on the MLE of the
range parameter with variance set to the negative inverse ofthe second derivative of the profile like-
lihood at the MLE. On the log scale, the profile likelihood (dashed) and its normal approximation
(dotted) are so close that the difference is difficult to notice.
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indistinguishable from its normal approximation (dotted)over the domain oflog θ shown (corre-
sponding to the domain ofθ on the left). At the first look it may not be apparent that thereare two
separate lines in this plot (one dashed and one dotted) that overlap almost perfectly.

This example is for thep = 2 special case when the log transformation is expected to reduce
non-normality. This is demonstrated both empirically in Section 2 and theoretically in Section 3.
(Other values ofp between0 and2 are also explored in Section 3, but the results are less clear-cut).

The log transformation is an intuitively natural choice formapping a positive parameter to the
whole real line when small values not too far from zero predominate. An extra benefit for the
Power Exponential family is that it can unify the treatment of slightly different forms: although we
use form (1) exclusively, our results readily translate to other forms, such as

exp {−(θ|w − x|)p} or exp

{

−

(

|w − x|

θ

)p}

since the only difference on the log scale is just a constant scaling factor ofp or −p that does not
affect normality/non-normality.

As an alternative to the log, we also explore the logexp transformation that is defined as
log(exp(θ) − 1). This is inspired by theρ = e−θ parameterization used in computer experi-
ments, for example Linkletter, Bingham, Hengartner, Higdon and Ye (2006). One way to trans-
form ρ ∈ (0, 1) to facilitate approximate normality is by using the logit function to map it to the
real line. That leads to the logexp transformation for the original range parameterθ:

logit(1 − ρ) = log

(

1 − ρ

ρ

)

= log

(

1

ρ
− 1

)

= log(exp(θ) − 1).

The following two sections describe two measures of non-normality based on Sprott (1973).
Section 2 includes a simulation study forp = 2. Section 3 also explores three other choices in
addition to thep = 2 case:p = 0.5, 1, and1.5. Sincep is given,θ is the only unknown parameter
in the model to transform. The process varianceσ2 is treated as a nuisance parameter and two op-
tions are presented for its elimination in Section 4. Finally, Section 5 outlines upcoming follow-up
work and future research.

2 Observed Non-Normality

Let l(θ) denote the (one-parameter) log-likelihood,θ̂ the Maximum Likelihood Estimate (MLE)
of θ, l′′′(θ̂) the third-derivative of the log-likelihood at the MLE, and−l′′(θ̂) the “observed” infor-
mation. Then the Observed Non-Normality (ONN) measure (Sprott 1973) is defined as follows:

ONN for θ = | l′′′(θ̂) (−l′′(θ̂))−
3

2 |.

If the likelihoodL(θ) is proportional to a normal density function, thenl(θ) is quadratic andl′′′(θ̂)
is zero, making the ONN zero as well. Otherwise, the magnitude of the third derivative (standard-
ized by the second) measures the deviation from normality.

Although Sprott (1973) originally proposed the measures for likelihoods, the extension to pos-
teriors is immediate by employing a uniform prior:l(θ) becomes the log-posterior (up to an addi-
tive constant) and̂θ becomes the Maximum Posterior Likelihood Estimate (MPLE) or maximum
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Figure 2: The log transformation reduced Observed Non-Normality in most cases forp = 2 for all
nine combinations ofθ andn. The horizontal and vertical coordinates are the ONN on the original
scale and on the log scale, respectively. Each individual dot represents a successful realization.
The total number of successful realizations are indicated on the top of each plot, followed by how
many of them had their ONN reduced by the log transformation.The gray diagonal is the dividing
line between those cases that had their ONN reduced and thosethat did not. Most are under the
diagonal, which means reduced Observed Non-Normality: ONNfor log θ < ONN for θ. (It is
evident thatn = 9 data points can already be too many forθ = 0.2, since out of the 10,000
simulated data sets, computations succeeded in only 8,211 cases. It is well-known that there is a
certain limit on the sample size whenp = 2, especially for such a smallθ. Failure rates were much
lower for the other combinations ofθ andn). The design was equally spaced on the[0, 1] interval:
{ i/(n − 1) | i = 0, . . . , n − 1 }.
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a posteriori (MAP). A Bayesian interpretation is provided in Section 4, after discussing how to
eliminateσ2 to get a likelihood/posterior that is a function of only the range parameter.

A simulation study was conducted to evaluate the effect of the log transformation on non-
normality for p = 2 under a wide variety of settings. Figure 2 shows how many times non-
normality was reduced by the log transformation for10, 000 simulated data sets from the random
function model (realizations of the Gaussian process) for nine possible combinations of the trueθ
and the sample sizen. The layout of the figures follows the3 × 3 factorial design for the three
levels of the range parameter from an extremely high correlation (θ = 0.2) to an extremely low
(θ = 20) and for the three levels of the sample size from small (n = 3) to large (n = 9).

For all nine combinations, Observed Non-Normality was reduced in most cases, since most
realizations lie below the diagonal, where the ONN on the logscale (vertical axis) is less than the
ONN on the original scale (horizontal axis). The counts of reduced ONN (out of the total num-
ber of cases that could be computed for that particular combination ofθ andn) are shown on the
top of each plot. This suggests that the log transformation of θ is much more likely to decrease
non-normality of the originalL(θ) than to increase it, according to this measure. Furthermore, the
smaller the sample size, the greater and the more likely the reduction.

Going back to Figure 1, now we can quantify the non-normalityof the profile likelihood before
and after the log transformation. Before, the ONN forθ is 4.97, but after, the ONN forlog θ is only
0.04. This is consistent with the reductions seen forn = 3 in Figure 2.

For this simulation, two ONNs were computed separately for each data set (before and after
the log transformation). However, this is not necessary, since each can be obtained from the other.
This relationship is explained in the next section and then used for Sprott’s second measure that is
more convenient than the ONN, because it can be calculated analytically without any simulations
of actual data sets.

3 Expected Non-Normality
Sprott’s second measure is the Expected Non-Normality (ENN) that follows from the first by re-
placing the third and second derivatives with their expectations, so thatEl′′′(θ̂) is standardized by
the “expected” Fisher information:

ENN for θ = | El′′′(θ̂) (−El′′(θ̂))−
3

2 |.

This measure is more appropriate when one wishes to considera family of possible likelihoods
without conditioning on any particular data set. Hence, therest of our results are based on the
ENN instead of the ONN. Sprott (1973) also provided a formulathat quantifies the effect of a
transformationφ on non-normality, whereφ is a twice differentiable function ofθ. After applying
theφ transformation, the ENN becomes

ENN for φ(θ) =

∣

∣

∣

∣

∣

El′′′(θ̂) (−El′′(θ̂))−
3

2 +
3 φ′′(θ̂)

φ′(θ̂) (−El′′(θ̂))
1

2

∣

∣

∣

∣

∣

,

where the first term inside the absolute value is the same as before in the definition of the ENN for
θ and the second term is the effect of the transformationφ. An analogous relationship holds for the
ONN (without the expectations). Note that the presence of the second derivative in the numerator
implies invariance with respect to linear transformations.
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Given a functionφ and a value for̂θ, this formula enables one to visualize the difference in the
Expected Non-Normality due to the transformationφ. Comparisons are shown in Figures 3 and 4
for the log and the logexp, respectively. The same equally spaced design was used again, identical
to the one used for the simulations. Also, the sample sizes were 3, 6, and9, as before, to facilitate
comparisons. An extra large sample sizen = 12 was also added.

The simplest of these plots is the log transformation forp = 2 in Figure 3. For each of the
four sample sizes, there is a line segment representing the ENN for θ̂ ∈ [0.2, 20] (i.e. over the
same range that was used for the trueθ in the simulation study). This shows increasing ENN as a
function ofθ̂ both on the original scale (horizontally) and on the log scale (vertically). Forn = 12,
we can see a short fat segment close to the origin, indicatingrelatively low ENN on both scales.
As the sample size falls, we can observe a shift to the right (growing ENN on the original scale)
and also increasing segment length (growing ENN on the log scale), so that the end of the thinnest
segment forn = 3 is off the plot for large values of̂θ close to20.

What is unique about this plot, compared to all the others in Figures 3 and 4, is that it shows
a clear advantage of the log transformation with respect to the ENN measure: the ENN forlog θ

is always less than the ENN forθ for all θ̂ values computed between0.2 and20. Moreover, the
difference is always substantial, since none of the lines come close to the gray diagonal in the
middle that marks the line where the ENN is the same on both axes. This is what makes the log
transformation special for thep = 2 case. One way to interpret this result in words is to say that
the log transformation is “expected” to reduce non-normality for p = 2. This is consistent with the
results of the simulation study in the previous section thatused the ONN. Figure 2 for the ONN
and the plot forp = 2 in Figure 3 for the ENN can be compared directly since the scales (from0
to 5) are the same on both axes.

Continuing thep = 2 case, Figure 4 suggests that the logexp is also expected to reduce non-
normality, but not as much as the log. The major disadvantageof the logexp is that aŝθ increases,
the curves approach the diagonal, meaning vanishing reductions. Figure 5 makes the comparison
between the log and the logexp more explicit by plotting one directly against the other. Thep = 2
case is again very clear: the ENN for the log is less than the ENN for the logexp, since the area
above the diagonal is never breached.

In summary, the ENN-based analysis of thep = 2 case shows that both transformations are
expected to reduce non-normality and that the expected reductions of the log are greater than that
of the logexp. However, these simple conclusions cannot be extended to other values ofp between
0 and2. To illustrate, Figures 3, 4, and 5 also have plots forp = 0.5, 1, and1.5. Looking at these
cases in each figure leads to the following observations:

• Figure 3: The log transformation is expected to reduce non-normality for small sample sizes.
However, this is not necessarily true for large samples, as shown by then = 12 curve
breaching the area above the diagonal forp = 0.5, 1, and1.5.

• Figure 4: The logexp transformation is expected to reduce non-normality with no exceptions.
But reductions are negligible for largêθ when the curves lie close to the diagonal.

• Figure 5: For largêθ, the expected reductions of the log are greater than that of the logexp.
However, for small̂θ, the logexp can achieve smaller ENN than the log, as indicated by
portions of the curves above the diagonal forp 6= 2.
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Figure 3: The effect of the log transformation on Expected Non-Normality: The horizontal and
vertical coordinates are the ENN on the original scale and onthe log scale, respectively. The
gray diagonal is the dividing line between those cases that had their ENN reduced by the log
transformation and those that did not. For each of the four sample sizesn = 3, 6, 9, 12, both ENN
measures were calculated for selectedθ̂ values between0.2 and20 (some of which could not be
computed because of numerical issues for smallθ̂ and largen). The resulting curves are plotted
with their thickness proportional to the sample size. Expected Non-Normality was reduced by the
log transformation forp = 2. However, forp = 0.5, 1, and1.5, the thickest curve forn = 12
crosses over the diagonal for someθ̂ values somewhere between0.2 and20 (which means that for
those cases, the ENN forlog θ became greater than the original ENN forθ).
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Figure 4: The effect of the logexp transformation on Expected Non-Normality: The horizontal and
vertical coordinates are the ENN on the original scale and onthe logexp scale, respectively. For
each of the four sample sizesn = 3, 6, 9, 12, both ENN measures were calculated for selected
θ̂ values between0.2 and20 (some of which could not be computed because of numerical issues
for small θ̂ and largen). The resulting curves are plotted with their thickness proportional to the
sample size. The area above the gray diagonal is completely empty for all four values ofp, which
means that the logexp transformation helps normality. However, asθ̂ increases, all curves approach
the diagonal, which means that differences quickly become negligible and for largêθ the ENN for
logexpθ ≈ ENN for θ.
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Figure 5: The Expected Non-Normality of the log vs. the logexp transformation: The horizontal
and vertical coordinates are the ENN on the logexp scale and on the log scale, respectively. For
each of the four sample sizesn = 3, 6, 9, 12, both ENN measures were calculated for selected
θ̂ values between0.2 and20 (some of which could not be computed because of numerical issues
for small θ̂ and largen). The resulting curves are plotted with their thickness proportional to the
sample size. Expected Non-Normality was reduced more by thelog transformation than the logexp
in all cases forp = 2. But for p = 0.5, 1, and1.5, curves starting above the diagonal atθ̂ = 0.2
indicate that the logexp leads to lower ENN than the log for small θ̂ up to some threshold where
the curves cross over the diagonal and the relationship reverses and then the logexp leads to higher
ENN than the log for all̂θ above that threshold.
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4 Eliminating the process varianceσ2

This section formally defines the one-parameter likelihoodfunctionL(θ). Here we can be more
general than the rest of the paper, since the only assumptionneeded aboutθ is that it is a parameter
of the correlation matrixR. (For example, this enables generalizations to higher dimensions when
θ is a vector).

Two possible ways are presented to deal with the nuisance parameterσ2: “maximizing out” to
get the profile likelihood and “integrating out” to get the integrated likelihood (see Berger, Liseo
and Wolpert (1999) for a general discussion of these methods). While profiling is common in
likelihood-based settings, Bayesians are usually more comfortable with integrating. Although in
this case the sameL(θ) function is obtained both ways, interpretations can still differ depending
on the underlying framework.

4.1 Profile likelihood
For a fixedθ, L(σ2, θ) in equation (2) has a unique maximum at

σ̂2(θ) =
yTR−1y

n
.

This is easily obtained by differentiatingL(σ2, θ) with respect toσ2 or by observing that

σ2 | θ, y ∼ IG

(

n

2
− 1,

yT R−1y

2

)

and using theβ/(α + 1) formula for the mode of an Inverse Gamma distributionIG(α, β) with
density function

f( x | α, β ) =
βα exp

{

−β

x

}

Γ(α) xα+1
.

Plugging inσ̂2(θ) into (2) yields the profile likelihood:

L(θ) = L(σ̂2(θ), θ) ∝
1

(σ̂2(θ))
n

2 |R|
1

2

exp

{

−
yT R−1y

2σ̂2(θ)

}

∝ (yTR−1y)−
n

2 |R|−
1

2 .

Now the maximum likelihood estimation can be done usingL(θ) instead of the originalL(σ2, θ),
reducing the dimensionality of the required numerical optimization by one.

4.2 Integrated likelihood

Bayesians prefer to put a prior distribution onσ2 before eliminating it. According to Berger,
De Oliveira and Sansó (2001), the most common choice is that of Handcock and Stein (1993),
who used the improper prior1/σ2 for σ2 > 0. This can be interpreted as a relative weight function
giving prior weights inversely proportional to the magnitude, encouragingσ2 to be close to zero.
(On the log scale, this becomes the uniform prior forlog σ2).

The 1/σ2 prior can also be used as a joint prior for all the model parameters, by putting a
uniform prior on some parameterization ofθ. Note that the only role ofθ in this section is that
the correlation matrixR depends on it. Hence, all arguments in this section are independent of the
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actual correlation structure encapsulated inR and the actual parameterization represented by (the
possibly multivariate)θ, including any transformations ofθ.

For example, in the one-dimensional case using the originalparameterization for a positive
θ, the1/σ2 joint prior is obtained by multiplying together the1/σ2 prior for σ2 and a constant1
prior for θ (assuming independence ofσ2 andθ). Since both priors are improper, their product is
improper, too. A well-known disadvantage of such simple priors is that they can lead to improper
posteriors (Berger et al. 2001).

We update the prior by multiplying with the likelihood (2) toget the posterior:

1

σ2
L(σ2, θ) ∝

1

(σ2)
n

2
+1 |R|

1

2

exp

{

−
yT R−1y

2σ2

}

and notice that

σ2 | θ, y ∼ IG

(

n

2
,

yTR−1y

2

)

which means thatσ2 can be integrated out from the posterior to get the marginal posterior ofθ:

∫

∞

0

1

(σ2)
n

2
+1 |R|

1

2

exp

{

−
yT R−1y

2σ2

}

dσ2 =
Γ
(

n
2

)

(

yT R−1y

2

)
n

2

|R|
1

2

∝ (yTR−1y)−
n

2 |R|−
1

2 .

Berger et al. (2001) refer to this as the integrated likelihood. Note that up to a multiplicative con-
stant, this is the same as the profile likelihood functionL(θ) above. This is an interesting property
of this model; in general, the two different procedures leadto different results.

5 Discussion
The main result of the paper is that on average, the log transformation improves approximate
normality for the Squared Exponential (Gaussian) correlation function, but this is not necessar-
ily the case for other members of the Power Exponential family. We have also provided general
procedures for measuring non-normality and for evaluatingthe effect of transformations on non-
normality in the one-dimensional case. The only requirement was the differentiability of the cor-
relations and the transformations.

Finding the optimal (or even a satisfactory) transformation for normality for a particular co-
variance structure is still an open problem. We are working on approximate methods inspired by
the “vanishing third derivative” of Anscombe (1964) that isoptimal for the criteria of Sprott (1973).

From a practical standpoint, one of the crucial research questions is how this will scale up to
higher dimensions. In a two-dimensional setting, Karuri (2005) presented examples of the log
transformation reducing skewness and making posteriors more ellipsoidal. We are currently in-
vestigating a multivariate generalization of Sprott’s measures by Kass and Slate (1994), using the
same profile/integrated likelihood as in the previous section (that has the same form, independently
of the dimensionality ofθ).

It is important to reiterate that these are small sample approximate normality results, not large
sample or asymptotic results. The distinction is essential, since that is exactly what makes them
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relevant in practice. For example, typically, we have only alimited number of runs from a compu-
tationally expensive computer model (it may take days or even weeks to obtain each data point).
On the other hand, even if we had large samples, they would often turn out to be uncomputable
because of the ill-conditioning of the correlation matrix (especially for the Squared Exponential).

But that does not mean that we cannot make use of asymptotic methods for inference, since
validity depends on normality, not on the sample size. For example, Wald confidence intervals
are based on a quadratic approximation of the profile log-likelihood. Hence, the more a trans-
formation reduces non-normality, the more accurate the Wald approximation becomes. A nearly-
quadratic log-likelihood can also make the numerical optimization easier. For example, Newton’s
method and related quasi-Newton algorithms work best on surfaces that are well approximated by
a quadratic.

Markov chain Monte Carlo (MCMC) methods are also helped by approximately normal pos-
teriors. Better yet, if we can replace the posterior with itsnormal approximation, then we can
sample from that directly (avoiding MCMC). This Fast Bayesian Inference (FBI) is the subject of
Nagy et al. (2007), demonstrating the usefulness of the log transformation for achieving accurate
prediction uncertainty assessments.
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Appendix

This Appendix contains all formulas necessary to compute the ONN and the ENN. After intro-
ducing some notation and definitions, first, second, and third derivatives are calculated for relevant
functions and matrices. Then two lemmas are given for expectations, followed by two theorems
for the ONN and the ENN.

Notation and Definitions
Let y denote the response vector having lengthn, mean zero, and covariance matrixσ2R,

whereσ2 is the process variance andR is the symmetric, positive definiten× n design correlation
matrix (that is a function of the parameterθ). Let G denote the inverse matrix ofR and define the
matricesF = GR′, S = GR′′, andT = GR′′′, whereR′, R′′, andR′′′ are the first, second, and
third derivatives ofR, respectively (with respect toθ). The trace of a matrix is denoted bytr(·).
For concise notation, we also definet(·) = tr(·)/n.

Taking the log ofL(θ) in Section 4, the log-likelihood is (up to an additive constant):

l(θ) = −
n

2
log

yTR−1y

n
−

1

2
log |R|.

The functionsg andh are used to simplify calculations:

g(θ) =
yT R−1y

n
and h(θ) = −

log |R|

n
.
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Suppressingθ from l(θ), g(θ), andh(θ) gives the following equation for the log-likelihood:

l =
n

2
(h − log g).

Formulas for Derivatives
Differentiating with respect toθ leads to the following formulas for the first, second, and third

derivatives of the log-likelihood:

l′ =
n

2

(

h′ −
g′

g

)

,

l′′ =
n

2

(

h′′ +

(

g′

g

)2

−
g′′

g

)

,

l′′′ =
n

2

(

h′′′ − 2

(

g′

g

)3

+ 3
g′g′′

g2
−

g′′′

g

)

,

whereh′ = −t(F ), h′′ = t(F 2 − S), h′′′ = −t(2F 3 − 3FS + T ),

and g′ = yTG′y/n, g′′ = yT G′′y/n, g′′′ = yTG′′′y/n ,

whereG′ = −FG, G′′ = (2F 2 − S)G, G′′′ = −(6F 3 − 3FS − 3SF + T )G.

Lemmas for Expectations

Lemma 1. For any symmetricn × n matrixQ

E yTQy = σ2 tr(QR).

Proof: E yTQy = E tr(yTQy) = E tr(QyyT ) = tr(QE yyT ) = tr(Qσ2R) = σ2 tr(QR),
where we used the fact thaty has mean zero and covariance matrixσ2R.

Lemma 2. For any symmetricn × n matrixQ

E
yTQy

yTGy
= t(QR).

Proof: Let z = C−1y for y ∼ N(0, σ2R), whereC is the lower-triangular Cholesky-factor
of the covariance matrixσ2R. Thenz ∼ N(0, In) and

CCT = σ2R ⇒ R = CCT/σ2 ⇒ R−1 = σ2
(

CT
)

−1
C−1.
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Substitutingy = Cz and G = σ2
(

CT
)

−1
C−1 we get:

E
yT Qy

yT Gy
= E

zT CT QCz

zT CT σ2(CT )−1C−1Cz
=

1

σ2
E

zT (CT QC)z

zT z
.

Conniffe and Spencer (2001) state that the expectation of a ratio of this form is the ratio of the
expectations for any quadratic form in the numerator. This is a consequence of the fact that the
ratio is independent of its denominator, a result attributed to Geary (1933). Hence we can apply
Lemma 1 separately to the numerator and the denominator:

E
yTQy

yTGy
=

E yTQy

E yT Gy
=

σ2 tr(QR)

σ2 tr(GR)
=

tr(QR)

tr(In)
=

tr(QR)

n
= t(QR).

Theorems for the ONN and the ENN

Theorem 1. l′′(θ̂) and l′′′(θ̂) for the Observed Non-Normality measure are:

l′′ =
n

2

(

h′′ + (h′)
2
−

g′′

g

)

and l′′′ =
n

2

(

h′′′ − 2 (h′)
3

+ 3 h′
g′′

g
−

g′′′

g

)

.

Proof: Whenθ = θ̂ (the MLE of θ), thenl′ = 0 and that implies thatg′/g = h′. Replacing
g′/g with h′ in the second and third derivative formulas forl gives the result.

Theorem 2. El′′(θ̂) and El′′′(θ̂) for the Expected Non-Normality measure are:

El′′ =
n

2

(

t2(F ) − t(F 2)
)

andEl′′′ =
n

2

(

2t3(F ) − 6t(F )t(F 2) + 3t(F )t(S) − 3t(FS) + 4t(F 3)
)

.

Proof: By the results of the previous theorem, the expectations are:

El′′ =
n

2

(

h′′ + (h′)
2
− E

g′′

g

)

and El′′′ =
n

2

(

h′′′ − 2 (h′)
3

+ 3 h′ E
g′′

g
− E

g′′′

g

)

.

Now Lemma 2 can be applied to the expectations of the ratios:

E
g′′

g
= E

yTG′′y

yTGy
= t(G′′R) and E

g′′′

g
= E

yTG′′′y

yTGy
= t(G′′′R).

Substituting the formulas forG′′, G′′′, andh′, h′′, h′′′ completes the proof.
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