
The University of British Columbia
Department of Statistics
Technical Report #230

Fast Bayesian Inference for Gaussian Process Models

Béla Nagy, Jason L. Loeppky, and William J. Welch

Department of Statistics

The University of British Columbia

333-6356 Agricultural Road

Vancouver, BC, V6T 1Z2, Canada

June 14, 2007

Abstract

In many engineering and science disciplines, deterministic computer models or codes are used
to simulate complex physical processes. The computer code mathematically describes the rela-
tionship between several input variables and one or more output variables. Often the computer
models in question can be computationally demanding. Thus,direct evaluation of the code
for optimization or validation is not possible in general. The general strategy employed is to
build a statistical model to act as a surrogate to the true underlying response surface. The
approach taken here is to model the computer model as a Gaussian process with a parametric
covariance function. The parameters are estimated from available data attained by running the
computer code at chosen design sites. In many cases the uncertainty due to the estimation of
these parameters is ignored. It is well known that ignoring this uncertainty can lead to variance
estimates of predictions that are smaller than they should be. Bayesian methods can be used to
account for parameter uncertainty and can lead to valid assessments of prediction uncertainty.
However, Bayesian methods can be computationally expensive and difficult to implement as
a black box. In this article a fast Bayesian method is presented that is both computationally
efficient and easily implemented as a black box. Simulation results show that the proposed fast
Bayesian method achieves remarkably accurate uncertaintyestimates. This is particularly true
when the dimensionality of the input space exceeds five.

1

1 Introduction
Computer models have been used with great success throughout the sciences and engineering dis-
ciplines, for example in climate modeling, aviation, semiconductor design, nuclear safety, etc.
Implemented as computer programs, deterministic models calculate an outputy for a given input
vectorx. Depending on the complexity of the underlying mathematical model, this can be expen-
sive computationally, creating a need for faster approximations. A common approach is to build a
statistical model to approximate the output of the computercode. This has become known as the
field of “computer experiments” in statistics, using Gaussian process (GP) models as computation-
ally cheap surrogates (Sacks, Welch, Mitchell and Wynn 1989). Trading off accuracy for speed is
acceptable as long as we can measure how much the surrogate’sprediction of the response might
deviate from the real one. However, quantifying that uncertainty has been an ongoing challenge.

In this paper we are dealing only with the prediction uncertainty that is inherent in the GP
model. Of course, there are other sources of uncertainty. For example, such a simple statistical
model may be an oversimplification of the complex original model. But that is outside of the scope
of this investigation. Our focus is on prediction within theclass of functions defined by the GP
model. Quantifying prediction uncertainty means computing a prediction band about the predictor.
For example, it is well-known that the plugin prediction variance formula underestimates the true
uncertainty because it does not incorporate the variability due to estimating the model parameters.
This leads to overly optimistic prediction bands about the predictor. A comprehensive treatment of
this issue and a literature review was provided by Abt (1999).

Bayesian methods can deal with parameter uncertainty by treating them as random variables
instead of fixed, unknown quantities, e.g. as in Handcock andStein (1993). However, in practice,
the cost of taking a fully Bayesian approach can be prohibitive, since non-specialists are typically
unable to perform the required careful design and fine-tuning. Furthermore, there is a risk that the
results will be wrong or inconclusive or just simply too slow. Iterative algorithms, such as Markov
chain Monte Carlo (MCMC) may take a long time to converge and there is no definitive test to
detect convergence. It is also desirable for a method to be a “black box”, so that the user does not
need to know its inner workings. Unfortunately, the need fordata-specific hand tuning makes this
an impossible dream. Our proposed solution is a fast black box Bayesian method that does not use
MCMC.

2 Main results and conclusions
According to the results of this paper, Table 1 summarizes how three different methods solve the
prediction uncertainty problem. As already mentioned, theplugin method in the first row of Ta-
ble 1 does not take account of parameter uncertainty, but is computationally convenient. The Fast
Bayesian Inference (FBI) in the second row successfully combines the desirable characteristics of
the other two well-established methods. It is Bayesian in motivation, but the implementation is just
an extension of the plugin that requires little additional computation to take account of parameter

Method Computationally Efficient Black Box Potentially Valid
Traditional (plugin) Yes Yes No
Fast Bayesian (FBI) Yes Yes Yes
Slow Bayesian (MCMC) No No Yes

Table 1: Comparing three solutions of the prediction uncertainty problem.

2

uncertainty and makes the inference potentially valid. Hence, run times for the first two methods
are not significantly different, since both are dominated bythe optimization procedure used for the
maximum likelihood estimation.

The third method in Table 1 uses Markov chain Monte Carlo (MCMC) that can be inefficient
computationally and in general, has no satisfactory black box implementation. Of particular con-
cern is the fact that there is no definitive test to tell whether it has converged or not. Hence,
implementations tend to be wasteful by running much longer chains than necessary to ensure con-
vergence, rather than taking the risk of too short chains compromising validity. The interested
reader can find many excellent texts about MCMC, for example Gilks, Richardson and Spiegelhal-
ter (1998) or Robert and Casella (1999).

The FBI satisfies all three evaluation criteria: it is computationally efficient, it can be imple-
mented as a black box, and it can potentially provide valid prediction uncertainty assessments.
Moreover, simulations suggest that validity can improve asthe number of dimensions increases
(best if higher than five). This is a highly unusual feature that is the opposite of the “curse of
dimensionality” (an expression commonly used to describe deteriorating performance with in-
creasing dimensionality). Before presenting detailed findings in Section 4, we briefly summarize
why each of the three criteria in Table 1 is important.

Computationally EfficientEfficiency is important, because eventually the curse of dimension-
ality impacts computation. Run times can quickly exceed what is practical as the dimensionality of
the input space grows. This is especially critical in competitive industries, where shrinking design
cycles create unrelenting pressure for ever faster procedures. The FBI improves the validity of
the plugin method while retaining its computational complexity. This way the FBI is able to take
advantage of the Bayesian idea of incorporating parameter uncertainty without paying the usual
Bayesian price in escalating the computational burden.

Black BoxUnless the method is a black box, its adoption will be severely restricted. Re-
searchers or highly qualified professionals may use it for their own purposes, but non-specialists
cannot be expected to read research papers or to tinker with source code and the impact on the
economy is likely to stay negligible. The FBI can be readily automated, completely eliminating
the need for problem-specific coding or tuning. This will enable the end user to harvest the bene-
fits of the Bayesian approach without having to hire a Bayesian statistician or computer scientist
specializing in Gaussian processes.

Potentially ValidStatisticians frequently argue that a point estimate is useless without a corre-
sponding standard error or confidence interval. A valid100(1−α)% confidence interval is expected
to cover the true value approximately100(1 − α)% of the time over repeated realizations, where
α can take any value between zero and one. For example, 95% validity gives us confidence that
on average we are right 19 times out of 20. However, in the simulations of Section 4, the true
coverage was significantly less than the nominal when using the prediction variance formula for
the plugin, making the inference invalid. In terms of validity, the FBI outperformed the plugin in a
wide range of experimental setups. More importantly, in those cases that are of practical interest, it
achieves remarkably accurate uncertainty assessments. This is a very desirable property from the
decision makers’ perspective because it will enable them toattach correct confidence levels to the
predictions.

The Gaussian process model is described in the next section.After that Section 4 compares the
validity of the three inference methods with details of the assessments in Section 5. Finally, Sec-
tion 6 reviews related work and Section 7 provides a summary and suggestions for future research.

3

3 The Gaussian process model
Equation (1) in Sacks et al. (1989) gave the following model for a deterministic computer code
y(x):

Y (x) =

k
∑

j=1

βjfj(x) + Z(x),

that is the sum of a regression model and a GP modelZ(x) with mean zero. However, the re-
gression component often can be replaced by a constant mean or omitted altogether (Chen 1996;
Steinberg and Bursztyn 2004), because of the flexibility of the stochastic process that can easily
take on the features of the underlying function. Thus we model the computer codey(x) as if it is
a realization of a Gaussian stochastic processZ(x) on the d-dimensional vectorx:

Y (x) = Z(x).

Setting all theβ’s to zero leaves only the parameters that play a role in the covariance function:

Cov(Z(w), Z(x)) = σ2 R(w, x),

whereσ2 is the process variance andR(w, x) is the correlation between two configurations of the
input vector,w andx:

R(w, x) =

d
∏

i=1

exp
{

−θi(wi − xi)
2
}

,

where the positiveθi range parameters control how variable the process is in a particular dimen-
sion. This is the Squared Exponential or Gaussian correlation function that is frequently used in
computer experiments to model the output of deterministic computer code.

The likelihood is a function ofσ2 and thed-dimensional vector of range parametersθ:

L(σ2, θ) ∝
1

(σ2)
n

2 |R|
1

2

exp

{

−
yT R−1y

2σ2

}

, (1)

wherey is the data vector of lengthn andR is then×n design correlation matrix that is a function
of θ. If θ is known, then the Best Linear Unbiased Predictor (BLUP) of the response at a newx0

is
ŷ0(θ) = r(x0)

T R−1y, (2)

wherer(x0) is a vector of correlations between the newx0 and the design points (a function ofθ).

Furthermore, ifσ2 is also known, then the Mean Squared Error of the BLUP is

MSEŷ0
(σ2, θ) = σ2

(

1 − r(x0)
T R−1r(x0)

)

, (3)

and these two formulas enable one to construct valid normality-based point-wise prediction bands
(having a perfect match between the nominal and the true coverage at all levels under this model).
However, that validity is dependent on the assumption that all parameters are known.

But in practice, usually none of the parameters are known. Instead, they have to be estimated
by maximizing (1) to get the estimateŝσ2 and θ̂. When we plug in̂σ2 in place ofσ2 and θ̂ in
place ofθ in (2) and (3), we lose validity in the sense that the estimator of (3) based on̂σ2 andθ̂
is biased to be too small relative to the true mean squared error given by (3) based onσ2 andθ.
This problem is well known in both the computer experiments and the geostatistics literature (see
the review in Abt (1999) for more details).

4

4 Simulation results
Much to our surprise, we witnessed that the potential validity of the FBI improved as we increased
the number of dimensions. To dramatize that improvement, inthis section we present the lowest
(d = 1) and the highest (d = 10) dimensional case. (Complete results can be found in the Ap-
pendix for all d = 1, . . . , 10, showing progressively improving validity fromd = 1, . . . , 5,
plateauing at near perfection ford = 6, . . . , 10).

Starting with a one-dimensional example, Figure 1 plots thetrue coverage probabilities (on the
vertical axis) versus the nominal coverage (on the horizontal axis) of the prediction bands from 1%
coverage to 99% coverage on both axes. The solid black curve is for the traditional plugin method,
the dashed one is for the FBI, and the dotted one is for the MCMC. The gray diagonal represents
the “optimal” or “perfectly valid” solution of the prediction uncertainty problem (i.e. the ideal
method would achieve a perfect match between the nominal andtrue coverages, providing a curve
matching this diagonal).

Around the 1% mark all three curves are indeed very close to the diagonal and that means that
if one wanted a 1% prediction band, then any method would be valid. However, in practice, we
are typically more interested in the high end (90% or greater). For example, the end points of the
three curves in the top-right corner are for the 99% nominal confidence level. Clearly, we are not
getting 99% coverage. The true coverage probability (CP) isless for all methods. However, the
CPs of the two Bayesian methods are closer to the required nominal 99% coverage than the CP of
the plugin (a finding that was consistently replicated in alldimensions).

The simulation in Figure 1 usedθ = 2 for the range parameter andn = 10 data points.

Nominal coverage

T
ru

e
co

ve
ra

ge

1% 50% 99%

1%
50

%
99

% 999 realizations

plugin
FBI
MCMC

Figure 1: Coverage probabilities forθ = 2, n = 10, and d = 1 .

5

Nominal coverage
T

ru
e

co
ve

ra
ge

0 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge
1000 realizations

plugin
FBI
MCMC

Nominal coverage
T

ru
e

co
ve

ra
ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge
1000 realizations

plugin
FBI
MCMC

Nominal coverage
T

ru
e

co
ve

ra
ge

1000 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 1

n
=

 3

n
=

 5

 n

 =
 1

0

Figure 2: One-dimensional simulation results.

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

993 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

988 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

995 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 10

n
=

 2
5

 n
 =

 5
0

 n
 =

 1
00

Figure 3:10-dimensional simulation results.

6

Choosingn = 10 for d = 1 follows the recommendation of Sacks (e.g. Chapman, Welch,
Bowman, Sacks and Walsh (1994)), who observed that ideally,the sample size should be at least
10 times the number of dimensions. However, that is not always feasible, so in addition to the rule
of thumbn = 10 d, we also exploredn = 10 d/2 andn = 10 d/4 for all d = 1, . . . , 10 (even
though10 d/4 is much too small to be useful in practice).

Settingθ to 2 is a “reasonable” choice, in a sense that numbers around2 frequently arise in
applications. We also tried two extreme cases to see how the three methods compare outside that
“reasonable” domain:θ = 0.2 andθ = 20. In fact, settingθ to 0.2 already pushes the limits of
the standard double precision representation in the one input case: numerical difficulties arise be-
cause the high correlations in then×n correlation matrix (all close to one) make it ill-conditioned
(nearly singular). Hence, computations failed for theθ = 0.2, n = 10 case ford = 1.

All the other combinations of the three levels ofθ andn for d = 1 are summarized in Figure 2.
Note that the simulation in the top-left corner was the only case that completely failed ford = 1.
Also note that the plot next to that (in the middle of the top row) is just a shrunk version of Figure
1, that is based on999 realizations because one of the realizations (out of the total 1, 000) had to be
excluded because of numerical difficulties. For the rest, computations were successfully completed
for all 1, 000 simulated data sets (realizations of the GP), as indicated by the realization count in
the top-left corner of each plot. (Calculations of the CPs were always restricted to the “successful”
subset of the1, 000 realizations and all failures were excluded).

Figure 3 summarizes the simulations ford = 10. Compared tod = 1, the difference is as-
tonishing: overall, the Bayesian methods’ validity improved dramatically by increasingd, but the
plugin’s showed much slower change. Perhaps the most surprising10-dimensional result is that
the Bayesian methods achieved almost perfect prediction uncertainty assessments at all coverage
levels (from 1% to 99%) in seven cases out of nine. The two exceptions are forθ = 0.2 with
n = 50 andn = 25, where the FBI tends to become too conservative leading to over-coverage,
while the MCMC results in significant under-coverage. Similar patterns can be seen for the other
values ofd > 5. Complete results and implementation details can be found in the Appendix.

5 Methods

5.1 Plugin
The plugin method is straightforward and we have already described it in Section 3. To compare it
with the other two methods, here we are presenting it as an algorithm that has two steps: estimation
and prediction.

1. Obtain the Maximum Likelihood Estimates (MLEs) of the parameters:̂σ2 andθ̂.

2. For prediction, plug in the MLEs into equations (2) and (3)as if they were the true parame-
ters.

5.2 Fast Bayesian Inference
Bayesian analysis starts with a prior distribution on the model parameters. We recommend the
uniform prior on the log scale for both the process variance and the range parameters. This has
several advantages, although the propriety of the posterior is not guaranteed (Berger, De Oliveira
and Sansó 2001).

7

First of all, the uniform prior is the fastest of all priors, since it does not need any computation
(the posterior is proportional to the likelihood). The second advantage is thatσ2 can be integrated
out analytically from (1) to get the integrated likelihood that is a function of onlyθ:

L(θ) ∝ (yT R−1y)−
n

2 |R|−
1

2 .

It is interesting to note thatL(θ) = L(σ̂2(θ), θ), where

σ̂2(θ) =
yT R−1y

n
, (4)

which means thatL(θ) can also be viewed as the profile likelihood that is maximizedover allσ2

givenθ. Proofs can be found in Nagy, Loeppky and Welch (2007).

The third advantage is that the log transformation forθ brings the profile/integrated likelihood
closer to the normal distribution. This was shown by Nagy et al. (2007) for the one-dimensional
case, and simulations suggested that the log transformation reduced non-normality in higher di-
mensions as well.

Using the notationτ = (log θ1, . . . , log θd)
T = log θ for the transformed parameter vector and

θ = (exp τ1, . . . , exp τd)
T = exp τ for the inverse transformation, the new likelihood function

L(exp τ) tends to have a shape that is closer to a normal with respect toτ than the shape of the
original L(θ) with respect toθ. Using a uniform prior for the transformed parameters meansthat
this new likelihood function as a function ofτ is also the (unnormalized) marginal posterior forτ .

The fourth advantage is that the log transformation makes the numerical optimization of the
likelihood/posterior unconstrained:τ ∈ R

d. This is the first step of the Fast Bayesian Inference,
that can be summarized as follows:

1. Maximize the log-likelihood/log-posteriorlog L(exp τ) to get the MLE ofτ , denoted̂τ .

2. Compute the Hessian (the matrix of second derivatives) atτ̂ , denotedHτ̂ .

3. Sample from the multivariate normal distributionN(τ̂ , −H−1

τ̂
) to obtainM Monte Carlo

samples:τ (1), . . . , τ (M).

4. Following standard Bayesian practice, the FBI predictoris given by the average:

1

M

M
∑

i=1

ŷ0(exp τ (i)),

and its Mean Squared Error is given by the the variance decomposition formula:

1

M

M
∑

i=1

MSEŷ0

(

σ̂2(exp τ (i)), exp τ (i)
)

+
1

M − 1

M
∑

j=1

(

ŷ0(exp τ (j)) −
1

M

M
∑

i=1

ŷ0(exp τ (i))

)2

,

that is the average MSE of the plugin predictors plus the sample variance of those predictors. It is
instructive to compare this sequence to that of the plugin inthe previous subsection. We can see
that the first steps are equivalent: both methods start by locating the MLE. After that the plugin
method jumps into the prediction phase right away assuming that the value found at the mode is

8

the one best estimate of the truth.

The FBI is more careful. In the second step it looks at the curvature at the mode to quantify the
uncertainty in the estimation of thepoint estimate. For example, if the surface is flat, that means
high uncertainty and the corresponding normal approximation in step 3 will have a high variance
reflecting that uncertainty.

In the final step, the FBI averages predictions based on the sample from that normal distribution
as if it was from the true posterior. Again, there is a part that is identical to the plugin method,
since for each sample point, equations (2) and (3) are used tocalculate the predictor and its Mean
Squared Error, respectively (also using (4) to estimateσ2 for a givenτ (i) in the sample). This
way the FBI will have many predictions to average (one for each sample point), while the plugin
method will have just one. Hence, the plugin can be viewed as aspecial case of the FBI with
sample size one.

5.3 Markov chain Monte Carlo
There are many possible ways of constructing an MCMC algorithm to sample from a distribu-
tion that is only known up to a scale. One of the simplest is theMetropolis random walk algo-
rithm (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 1953) that has been used success-
fully in many high-dimensional problems. To enable direct comparison with the FBI, everything
was done on the log scale using the sameτ -parameterization. Also, the first two moments of the
N(τ̂ , −H−1

τ̂
) normal approximation for the FBI were utilized to help the implementation in step

1 and step 3 of the algorithm, respectively:

1. Initializeτ (1) at τ̂ .

2. To select a direction for a random walk step, sample an integerj uniformly from 1, . . . , d.

3. Given the currentτ (i), setτ ∗ to τ (i) and then add to thejth coordinate ofτ ∗ a normal
random deviate with mean zero and standard deviation equal to three times the standard

error in thejth dimension, estimated from the Hessian:
√

−H−1

τ̂
(j, j).

4. Compute the acceptance ratio forτ ∗, givenτ (i):

α = min

{

1,
L(exp τ ∗)

L(exp τ (i))

}

.

5. Setτ (i+1) to τ ∗ with probabilityα and toτ (i) with probability1 − α.

6. Repeat steps 2–5 untili reaches the desired sample size.

When this algorithm works well, it constructs a Markov chainwhose stationary distribution is the
posterior distribution. The resulting sample then can be used for prediction exactly the same way
as the sample for the FBI (step 4 in Section 5.2). In other words, once the sampling is done, the
treatment of the samples are identical.

But that does not mean that the samples are equivalent or similar. The FBI draws an inde-
pendent, identically distributed (iid) sample from the normal approximation of the posterior. In
contrast, the MCMC algorithm constructs a dependent samplefrom the original posterior. That
immediately explains why the MCMC is so much slower than the FBI: because the sample is not

9

iid, it needs a much larger sample size (exactly how large is an open question).

Another difference is that the FBI always samples from a proper density function but that is
not guaranteed for the MCMC. Unlike its normal approximation, the original posterior may not be
proper (i.e. the integral is not finite) and in that case the sample collected by the MCMC is mean-
ingless because the posterior is not proportional to any density function. This fact alone should be
enough to deter anyone from using this method (or any other MCMC algorithm) in a black box
fashion.

But there are other reasons, too. For example, diagnostic tools are not black box either. Among
other things, typically, one is expected to look at the traceplots after each run. But in our simu-
lation study there were almost89, 000 MCMC attempts in total. Clearly, we had to find a more
efficient way for evaluating success or failure.

We ended up with two arbitrary, but not very restrictive minimum cut-off values for the “accep-
tance rate” and the “mean effective sample size” measures and only allowed samples that met both
criteria. All other realizations were classified as failures and not used in any further calculations
(see the Appendix for more details).

In summary, it is difficult to know to what extent the two criteria detected non-convergence or
any other pathology of the MCMC sample. Nevertheless, this questionable attempt at black box
MCMC showed fairly good overall validity. Relatively few runs had to be disqualified (usually less
than10 out of 1, 000), enabling head-to-head comparison with the FBI. Conditionally on the suc-
cess of the remaining (qualifying) runs, differences seen between the MCMC and the FBI should
reflect the difference between the original posterior and its normal approximation.

6 History and related work
Normal approximations based on posterior modes are certainly not new. The idea can be traced
back to Laplace (1774). However, it appears to be underutilized in this context. Williams and
Barber (1998) used the Laplace approximation for Gaussian process classification. Karuri (2005)
used the normal approximation for GP regression in one and two dimensions and observed that
on the log scale the posteriors were closer to normal. Nagy etal. (2007) showed that in the one-
dimensional case the log transformation improved approximate normality of the likelihood/posterior
when using the Squared Exponential (Gaussian) correlationfunction.

7 Discussion
Fast Bayesian Inference represents a middle ground betweentwo extremes. The traditional plugin
method is extreme because it makes inference based solely onthe estimate found at the mode,
ignoring the uncertainty around it (its sample size is one).At the other extreme, the slow Bayesian
method is inefficient because it ignores the mode and constructs a large dependent sample as it
explores every corner of the posterior by MCMC.

The FBI corrects the plugin’s deficiency by incorporating the parameter uncertainty around
the mode. Unlike the slow Bayesian method, the FBI does not need a huge sample (or burn-in),
because its sample is iid. This is the main advantage of sampling directly from the normal approx-
imation, instead of the original posterior that is only known up to a scale.

10

Using the uniform prior for the log transformed parameters has four advantages:

1. The prior needs no computation, since the likelihood is the unnormalized posterior.

2. The process variance can be integrated out to reduce dimensionality by one.

3. The log transformation reduces non-normality of the likelihood/posterior.

4. The log transformation enables the use of unconstrained optimization algorithms.

The latter two suggest that they can be combined in numerically stable situations for a fifth advan-
tage: a dramatic speed up of the numerical optimization by Newton’s method that can double the
number of correct digits at each iteration (quadratic convergence). When the log transformation
makes the likelihood/posterior nearly normal, then the log-likelihood/log-posterior becomes nearly
quadratic, and that is the kind of function that can be optimized very efficiently with Newton-type
algorithms. However, more work is needed to determine when this can be done reliably, because
often Newton’s method is not as robust as derivative-free optimizers.

In summary, the FBI presents a compelling solution to the prediction uncertainty problem by
combining the benefits of the other two alternatives and avoiding their drawbacks. It is compu-
tationally efficient, it can be implemented as a black box, and it can potentially provide valid
prediction uncertainty assessments.

In practice, it can save both time and money. That may includeboth software development
time/cost or run time/cost. What is perhaps the most important (and the most difficult to quantify)
is the effect of the more valid predictions that can lead to better decisions.

The FBI is also fast to implement, especially as an add-on to an existing implementation of the
plugin method, since it is a straight extension of that. It isour hope that we presented convincing
arguments to facilitate its adoption without delay. Why keep using the invalid plugin, when its
valid Bayesian upgrade is also fast and ready for production?

However, from the research perspective, much works remainsto be done. For example, the
greatest mystery is how the FBI becomes more valid as the dimensionality increases. One hy-
pothesis is that the log transformation does not work as wellin lower dimensions. To inspect this
possibility, we will expand our investigation to the familyof power transformations (Tukey 1957).

Finally, it is important to point out that when one expects the FBI to give valid predictions, one
needs to keep in mind the two fundamental limitations of our study. The first one is that all our
data came from the true Gaussian process model. But for real data, the assumption of a zero-mean
stationary Gaussian process (with the Gaussian correlation function) may be inadequate or totally
wrong and results will be entirely dependent on the real underlying function.

The second serious limitation is that we studied the frequentist properties of the prediction
bands in terms of coverage probabilities. Hence, validity is implied only over a long sequence of
identical trials, according to the classical frequentist interpretation. But in practice, most of the
time there is just one unique data set.

However, the use of this criterion is not limited to frequentists. It is not uncommon for
Bayesians to use it as a “sanity check” for their Bayesian credible regions. For example, Ba-
yarri and Berger (2004) argue that “there is a sense in which essentially everyone should ascribe to
frequentism” and provide the following version of the frequentist principle: “In repeated practical
use of a statistical procedure, the long-run average actualaccuracy should not be less than (and
ideally should equal) the long-run average reported accuracy”.

11

Acknowledgments
This research was funded by the Natural Sciences and Engineering Research Council of Canada

and the National Program on Complex Data Structures of Canada. Computations were made using
WestGrid, which is funded in part by the Canada Foundation for Innovation, Alberta Innovation
and Science, BC Advanced Education, and the participating research institutions. WestGrid equip-
ment is provided by IBM, Hewlett Packard and SGI.

References
ABT, M. (1999). Estimating the prediction mean squared error inGaussian stochastic processes

with exponential correlation structure.Scandinavian Journal of Statistics, 26 563–578.

BAYARRI , M. J. and BERGER, J. O. (2004). The interplay of Bayesian and frequentist analysis.
Statistical Science, 19 58–80.

BERGER, J. O., DE OLIVEIRA , V. and SANSÓ, B. (2001). Objective Bayesian analysis of spa-
tially correlated data.Journal of the American Statistical Association, 96 1361–1374.

CARTER, C. K. and KOHN, R. (1994). On Gibbs sampling for state space models.Biometrika,
81 541–553.

CHAPMAN, W. L., WELCH, W. J., BOWMAN , K. P., SACKS, J. and WALSH, J. E. (1994). Artic
sea ice variability: Model sensitivities and a multidecadal simulation. Journal of Geophysical
Research, 99 919–936.

CHEN, X. (1996). Properties of Models for Computer Experiments. Ph.D. thesis, University of
Waterloo.

GILKS, W. R. E., RICHARDSON, S. E. and SPIEGELHALTER, D. J. E. (1998). Markov Chain
Monte Carlo in Practice. Chapman & Hall Ltd.

HANDCOCK, M. S. and STEIN, M. L. (1993). A Bayesian analysis of kriging.Technometrics, 35
403–410.

KARURI, S. W. (2005).Integration in Computer Experiments and Bayesian Analysis. Ph.D. thesis,
University of Waterloo.

LAPLACE, P. S. (1774). Memoir on the probability of the causes of events. Tome Sixième.
Mémoires de Mathématique et de Physique (English translation by S. M. Stigler 1986. Statist.
Sci., 1(19):364-378).

MCKAY, M. D., BECKMAN, R. J. and CONOVER, W. J. (1979). A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.Techno-
metrics, 21 239–245.

MEASE, D. and BINGHAM , D. (2006). Latin hyperrectangle sampling for computer experiments.
Technometrics, 48 467–477.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. and TELLER,
E. (1953). Equation of state calculations by fast computingmachines.Journal of Chemical
Physics, 21 1087–1091.

12

NAGY, B., LOEPPKY, J. L. and WELCH, W. J. (2007). Correlation parameterization in random
function models to improve normal approximation of the likelihood or posterior. Tech. Rep. 229,
Department of Statistics, The University of British Columbia. URL http://www.stat.
ubc.ca/Research/TechReports/techreports/229.pdf.

ROBERT, C. P. and CASELLA , G. (1999).Monte Carlo Statistical Methods. Springer-Verlag Inc.

SACKS, J., WELCH, W. J., MITCHELL, T. J. and WYNN , H. P. (1989). Design and analysis of
computer experiments (C/R: P423-435).Statistical Science, 4 409–423.

STEINBERG, D. M. and BURSZTYN, D. (2004). Data analytic tools for understanding random
field regression models.Technometrics, 46 411–420.

TUKEY, J. W. (1957). On the comparative anatomy of transformations. The Annals of Mathemat-
ical Statistics, 28 602–632.

WILLIAMS , C. K. I. and BARBER, D. (1998). Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 1342–1351.

Appendix

The first part of the Appendix describes the simulation procedure and explains why it is rele-
vant to current practice. Then a table is presented summarizing the coverage probabilities for the
nominal 90%, 95%, and 99% levels. That is followed by 10 figures for the the complete simulation
results ind = 1, . . . , 10, whered is the dimensionality of the input space.

The simulation plan can be viewed as a set of 10 statisticallydesigned experiments ford =
1, . . . , 10. For each experiment, the design was a3 × 3 full-factorial with 1, 000 replicates. The
two factors were the range parameterθ and the sample sizen, both at three levels (equally spaced
on the log scale):θ = 0.2, 2, 20 and n = 10 d/4, 10 d/2, 10 d (where10 d/4 was rounded up to
the nearest integer).

To obtain1, 000 replicates for a given combination ofθ andn, the following four steps were
repeated (attempted)1, 000 times:

1. Select ann point design by Latin hypercube sampling1 in thed-dimensional unit hypercube
[0, 1]d.

2. Generate a realizationy of the Gaussian process over then design points by setting the range
parameter toθ in all dimensions and the process variance to one.

3. Sample10 new points uniformly in the unit hypercube[0, 1]d for prediction.

4. Compute the predictors for the three methods with their mean squared errors for the10 new
points from the datay.

1Although there are many improved variants of Latin hypercubes, e.g. Mease and Bingham (2006), the original
random version of McKay, Beckman and Conover (1979) was usedhere because of the enormous number of realiza-
tions generated.

13

This sequence was devised to represent a typical real world scenario. Latin hypercubes are the
design of choice for GP models (Sacks et al. 1989) for prediction at new, untried inputs anywhere
in [0, 1]d. Note that step 2 or 4 could fail because of numerical issues,leading to an unsuccessful
realization (missing value) for that particular replicate(not included in subsequent analysis). The
only case when this had a serious impact on results was theθ = 0.2, n = 10 case in one dimension,
as already discussed in Section 4.

The Monte Carlo sample size for the FBI wasM = 400, minus those sample points that
ran into numerical difficulties caused by the ill-conditioning of the correlation matrix. This hap-
pened mostly in lower-dimensional cases, especially ind = 1. The MCMC sample size was
N = 100, 000 (after10, 000 burn-in). Unlike the FBI sample, the MCMC sample did not suffer
from numerical problems because problematic points would never be accepted by the algorithm,
since the likelihood/posterior was set to zero whenever theCholesky-decomposition of the corre-
lation matrix failed. An MCMC run was considered successfulif the acceptance rate was at least
15% and the Mean Effective Sample Size (MESS) was at least 50.Both measures were calculated
after the burn-in phase.

The following formula was used for the MESS:

MESS =
1

d

d
∑

i=1

N

[

1 + 2

1000
∑

k=1

(

1 −
k

N

)

ρ̂k(i)

]

−1

,

whereρ̂k(i) is thekth sample autocorrelation in theith dimension (Carter and Kohn 1994).

Another way to look at the ill-conditioning problem is to project it back to the distribution
where the sample came from. For example, one could say that the FBI did not sample from a
normal distribution, just a truncated normal with all numerically problematic areas having densi-
ties set to zero. One could similarly argue that the MCMC did not sample from the true posterior,
because it was truncated for numerical stability and the uncomputable parts of the parameter space
were excluded.

Coverage probabilities were calculated by averaging the individual CPs over all new points and
all successful realizations. A realization was consideredsuccessful if all operations for all three
methods completed without error. It is straightforward to compute an individual CP. Suppose that
we want to predict the outputY0 at a new, untried inputx0. Since the true model is known during
the simulation, we know that conditionally on the realized data,Y0 is normally distributed with
meanµ0 and varianceσ2

0 , whereµ0 andσ2
0 are given by equations (2) and (3), respectively.

Now suppose that after estimation, the predictor forY0 wasµ1 with mean squared errorσ2
1.

This amounts to mis-specifying the distribution of the random variableY0 asN(µ1, σ
2
1) instead of

the trueN(µ0, σ
2
0).

Then the CP of a normality-based100(1 − α)% prediction interval aboutµ1 is

P0

(

µ1 − σ1 zα/2 < Y0 < µ1 + σ1 zα/2

)

=

= P0

(

µ1 − σ1 zα/2 − µ0

σ0
<

Y0 − µ0

σ0
<

µ1 + σ1 zα/2 − µ0

σ0

)

=

= Φ

(

µ1 + σ1 zα/2 − µ0

σ0

)

− Φ

(

µ1 − σ1 zα/2 − µ0

σ0

)

,

14

whereP0 denotes the true probability distribution,Φ is the cumulative distribution function of
the standard normalN(0, 1), andzα/2 satisfiesΦ(−zα/2) = α/2.

The following table is a summary of the CPs for the nominal 90%, 95%, and 99% confidence
levels. The two-digit numbers in the table are truncated percentages without the percent sign and
without the fractional parts (rounded down). The3 × 3 arrangement inside each cell follows the
layout of the plots by the three levels ofθ horizontally and the three levels ofn vertically.

90% 95% 99%
plugin FBI MCMC plugin FBI MCMC plugin FBI MCMC

72 76 85 85 89 94 78 82 90 89 93 96 85 89 95 94 96 98
d = 1 67 66 64 82 81 75 94 95 88 73 72 69 86 84 79 95 97 94 81 80 76 90 89 84 97 98 97

61 59 52 85 81 65 94 87 79 66 64 57 87 84 71 96 92 85 73 70 63 90 88 78 98 96 90
80 80 75 87 87 83 88 89 88 87 86 82 92 92 88 93 93 93 94 94 90 96 96 94 97 97 97

d = 2 71 70 59 84 82 76 89 87 85 78 76 65 89 87 82 93 92 91 86 84 74 94 92 89 96 96 96
50 45 39 76 76 68 82 85 78 56 50 44 80 81 74 87 90 84 64 58 51 86 87 82 91 95 91
81 81 74 87 87 83 88 88 88 88 87 81 92 92 89 93 93 93 95 94 89 97 97 95 97 97 98

d = 3 73 68 57 85 82 78 87 84 85 80 75 64 90 87 85 92 89 91 88 84 73 95 94 92 96 94 96
53 45 44 81 82 78 77 84 81 60 51 50 85 87 84 82 90 88 69 60 58 91 93 91 87 95 94
83 81 74 88 87 84 89 88 88 89 88 81 93 92 90 94 93 93 96 95 89 98 97 96 98 97 98

d = 4 75 67 60 86 83 84 87 83 86 82 74 66 91 89 89 92 89 92 90 84 76 96 95 96 96 94 97
49 43 44 84 85 81 75 85 83 55 49 50 89 90 87 81 90 89 65 58 59 93 95 94 87 96 95
83 81 74 88 87 87 88 87 88 89 88 81 93 92 92 93 92 93 96 95 90 98 97 97 98 97 98

d = 5 74 65 62 86 85 86 85 84 87 81 73 69 91 91 92 90 90 92 90 83 78 96 96 97 95 95 98
50 45 48 88 86 84 72 84 84 56 51 54 92 91 90 78 90 90 67 62 64 96 96 96 84 96 96
83 80 74 88 87 88 88 86 88 89 87 81 93 92 93 93 91 94 96 95 90 98 97 98 98 96 98

d = 6 74 65 63 87 87 87 82 85 87 81 72 70 92 92 92 88 91 93 90 83 80 97 97 97 94 96 98
49 46 49 90 88 85 72 85 85 56 53 55 94 93 91 78 91 91 67 63 65 97 97 97 85 96 97
84 79 76 89 88 88 88 85 88 90 86 83 94 93 94 93 91 94 96 94 91 98 98 98 98 96 98

d = 7 72 64 65 86 88 87 81 86 88 80 72 73 92 93 93 87 91 93 89 83 82 97 98 98 93 96 98
50 47 51 92 88 86 73 86 86 57 54 57 95 93 92 79 91 91 68 64 67 98 98 97 86 97 97
84 79 76 89 88 89 89 86 89 90 86 83 94 93 94 94 91 94 97 94 91 98 98 98 98 97 98

d = 8 71 64 66 87 89 88 80 86 88 79 72 74 92 94 93 86 92 93 89 83 83 97 98 98 93 97 98
49 48 51 93 88 86 73 86 86 56 55 58 96 93 92 79 92 92 67 66 68 98 98 97 87 97 97
84 78 77 89 89 89 88 86 89 90 85 84 94 94 94 94 92 94 97 93 92 98 98 98 98 97 98

d = 9 71 65 67 88 89 88 79 87 88 79 73 74 93 94 93 85 93 93 88 84 84 97 98 98 93 97 98
50 50 52 94 88 87 74 86 86 57 57 59 97 93 92 80 92 92 69 68 69 99 98 97 88 97 97
84 77 78 89 89 89 88 87 89 90 85 84 94 94 94 94 92 94 97 93 93 98 98 98 98 97 98

d = 10 70 66 68 90 89 88 79 88 88 78 74 75 94 94 93 85 93 93 88 84 85 98 98 98 93 98 98
49 50 54 94 88 87 75 87 87 57 57 61 97 93 93 81 92 92 68 69 72 99 98 98 89 97 97

The following 10 figures compare the validity of the three methods for d = 1, . . . , 10, for all
combinations of the three levels ofθ and the three levels ofn. In addition to the gray diagonal in
the middle, three curves were plotted for the three methods relating the true coverage probabilities
on the vertical axis (from 1% to 99%) to the nominal coverage on the horizontal axis (from 1% to
99%). Plots are based on the realizations that were classified as successful, out of1, 000 attempts
in total. Counts for the number of realizations included in the final calculations are shown in the
top-left corner of each plot.

15

Nominal coverage

T
ru

e
co

ve
ra

ge

0 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 1

n
=

 3

n
=

 5

 n

 =
 1

0

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

987 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

992 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

925 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 2

n
=

 5

n
=

 1
0

 n
 =

 2
0

16

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

993 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 3

n
=

 8

n
=

 1
5

 n
 =

 3
0

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 4

n
=

 1
0

 n
 =

 2
0

 n
 =

 4
0

17

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 5

n
=

 1
3

 n
 =

 2
5

 n
 =

 5
0

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 6

n
=

 1
5

 n
 =

 3
0

 n
 =

 6
0

18

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

998 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

998 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 7

n
=

 1
8

 n
 =

 3
5

 n
 =

 7
0

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

995 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

998 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 8

n
=

 2
0

 n
 =

 4
0

 n
 =

 8
0

19

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

996 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

983 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

998 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

999 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 9

n
=

 2
3

 n
 =

 4
5

 n
 =

 9
0

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

993 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

988 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

1000 realizations

plugin
FBI
MCMC

Nominal coverage

T
ru

e
co

ve
ra

ge

995 realizations

plugin
FBI
MCMC

θ = 0.2 θ = 2 θ = 20

d = 10

n
=

 2
5

 n
 =

 5
0

 n
 =

 1
00

20

