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Abstract

In many engineering and science disciplines, deterministmputer models or codes are used
to simulate complex physical processes. The computer catleamatically describes the rela-
tionship between several input variables and one or morgubwrariables. Often the computer
models in question can be computationally demanding. Thivsct evaluation of the code
for optimization or validation is not possible in generahelgeneral strategy employed is to
build a statistical model to act as a surrogate to the truestlyidg response surface. The
approach taken here is to model the computer model as a @ayssicess with a parametric
covariance function. The parameters are estimated froitahl@ data attained by running the
computer code at chosen design sites. In many cases thaaintyedue to the estimation of
these parameters is ignored. It is well known that ignoririg tincertainty can lead to variance
estimates of predictions that are smaller than they shaeildhyesian methods can be used to
account for parameter uncertainty and can lead to validsagsents of prediction uncertainty.
However, Bayesian methods can be computationally expermsid difficult to implement as
a black box. In this article a fast Bayesian method is preskttiat is both computationally
efficient and easily implemented as a black box. Simulatsults show that the proposed fast
Bayesian method achieves remarkably accurate unceresititpates. This is particularly true
when the dimensionality of the input space exceeds five.



1 Introduction

Computer models have been used with great success througleaciences and engineering dis-
ciplines, for example in climate modeling, aviation, seomductor design, nuclear safety, etc.
Implemented as computer programs, deterministic moddtsilede an outpuy for a given input
vectorz. Depending on the complexity of the underlying mathematiwadel, this can be expen-
sive computationally, creating a need for faster approtiona. A common approach is to build a
statistical model to approximate the output of the compabeie. This has become known as the
field of “computer experiments” in statistics, using Gaaesgirocess (GP) models as computation-
ally cheap surrogates (Sacks, Welch, Mitchell and Wynn 198€xding off accuracy for speed is
acceptable as long as we can measure how much the surrgga@istion of the response might
deviate from the real one. However, quantifying that uraiaty has been an ongoing challenge.

In this paper we are dealing only with the prediction undatyathat is inherent in the GP
model. Of course, there are other sources of uncertainty.ekample, such a simple statistical
model may be an oversimplification of the complex originald@lo But that is outside of the scope
of this investigation. Our focus is on prediction within tbkass of functions defined by the GP
model. Quantifying prediction uncertainty means compyérprediction band about the predictor.
For example, it is well-known that the plugin predictionigguce formula underestimates the true
uncertainty because it does not incorporate the variglallie to estimating the model parameters.
This leads to overly optimistic prediction bands about tredlctor. A comprehensive treatment of
this issue and a literature review was provided by Abt (1999)

Bayesian methods can deal with parameter uncertainty byingethem as random variables
instead of fixed, unknown quantities, e.g. as in HandcockSteth (1993). However, in practice,
the cost of taking a fully Bayesian approach can be prokiisince non-specialists are typically
unable to perform the required careful design and fine-ginkurthermore, there is a risk that the
results will be wrong or inconclusive or just simply too sldterative algorithms, such as Markov
chain Monte Carlo (MCMC) may take a long time to converge dretd is no definitive test to
detect convergence. It is also desirable for a method to lideaK box”, so that the user does not
need to know its inner workings. Unfortunately, the needdata-specific hand tuning makes this
an impossible dream. Our proposed solution is a fast blaglBayesian method that does not use
MCMC.

2 Main results and conclusions

According to the results of this paper, Table 1 summarizes thoee different methods solve the
prediction uncertainty problem. As already mentioned,ghegin method in the first row of Ta-
ble 1 does not take account of parameter uncertainty, buingoatationally convenient. The Fast
Bayesian Inference (FBI) in the second row successfullylioas the desirable characteristics of
the other two well-established methods. It is Bayesian itivaton, but the implementation is just
an extension of the plugin that requires little additionainputation to take account of parameter

Method Computationally Efficient Black Box| Potentially Valid
Traditional (plugin) Yes Yes No
Fast Bayesian (FBI) Yes Yes Yes
Slow Bayesian (MCMC No No Yes

Table 1: Comparing three solutions of the prediction uraety problem.
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uncertainty and makes the inference potentially valid. ¢¢emun times for the first two methods
are not significantly different, since both are dominatedh&/optimization procedure used for the
maximum likelihood estimation.

The third method in Table 1 uses Markov chain Monte Carlo (M©Nhat can be inefficient
computationally and in general, has no satisfactory blamkimplementation. Of particular con-
cern is the fact that there is no definitive test to tell whetihdias converged or not. Hence,
implementations tend to be wasteful by running much longeaires than necessary to ensure con-
vergence, rather than taking the risk of too short chainspromising validity. The interested
reader can find many excellent texts about MCMC, for examjdkesCRichardson and Spiegelhal-
ter (1998) or Robert and Casella (1999).

The FBI satisfies all three evaluation criteria: it is congtigtnally efficient, it can be imple-
mented as a black box, and it can potentially provide valedpmtion uncertainty assessments.
Moreover, simulations suggest that validity can improvehesnumber of dimensions increases
(best if higher than five). This is a highly unusual featurattis the opposite of the “curse of
dimensionality” (an expression commonly used to descrieernibrating performance with in-
creasing dimensionality). Before presenting detailedifigs in Section 4, we briefly summarize
why each of the three criteria in Table 1 is important.

Computationally EfficienEfficiency is important, because eventually the curse ofedision-
ality impacts computation. Run times can quickly exceedtwsaractical as the dimensionality of
the input space grows. This is especially critical in contppetindustries, where shrinking design
cycles create unrelenting pressure for ever faster praesdurhe FBI improves the validity of
the plugin method while retaining its computational comjile This way the FBI is able to take
advantage of the Bayesian idea of incorporating parametegrtainty without paying the usual
Bayesian price in escalating the computational burden.

Black BoxUnless the method is a black box, its adoption will be seyerestricted. Re-
searchers or highly qualified professionals may use it feirtbwn purposes, but non-specialists
cannot be expected to read research papers or to tinker aitftes code and the impact on the
economy is likely to stay negligible. The FBI can be readilyamnated, completely eliminating
the need for problem-specific coding or tuning. This will blesthe end user to harvest the bene-
fits of the Bayesian approach without having to hire a Bayestatistician or computer scientist
specializing in Gaussian processes.

Potentially ValidStatisticians frequently argue that a point estimate isegsewithout a corre-
sponding standard error or confidence interval. A valid(1—«)% confidence interval is expected
to cover the true value approximatelg0(1 — «)% of the time over repeated realizations, where
« can take any value between zero and one. For example, 95&tyaives us confidence that
on average we are right 19 times out of 20. However, in the kitimns of Section 4, the true
coverage was significantly less than the nominal when ugiagtediction variance formula for
the plugin, making the inference invalid. In terms of valjdthe FBI outperformed the pluginin a
wide range of experimental setups. More importantly, irsthoases that are of practical interest, it
achieves remarkably accurate uncertainty assessmeritsisTenvery desirable property from the
decision makers’ perspective because it will enable theattéeh correct confidence levels to the
predictions.

The Gaussian process model is described in the next segétitan.that Section 4 compares the
validity of the three inference methods with details of tkeessments in Section 5. Finally, Sec-
tion 6 reviews related work and Section 7 provides a summadysaiggestions for future research.



3 The Gaussian process model

Equation (1) in Sacks et al. (1989) gave the following modeld deterministic computer code
y(@):

k
Y(2) = ) Bfi() + Z(@)

that is the sum of a regression model and a GP madel) with mean zero. However, the re-
gression component often can be replaced by a constant meenitbed altogether (Chen 1996;
Steinberg and Bursztyn 2004), because of the flexibilityhef $stochastic process that can easily
take on the features of the underlying function. Thus we rhttdecomputer codeg(x) as if it is

a realization of a Gaussian stochastic procégs) on the d-dimensional vecto:

Y(z) = Z(x).
Setting all thed’s to zero leaves only the parameters that play a role in thrar@ance function:
Cov(Z(w), Z(x)) = 0 R(w, =),

wherec? is the process variance aitiw, x) is the correlation between two configurations of the
input vectorw andx:

d
R(w, @) = [T exp {~i(w; — 2:)?},

where the positivé; range parameters control how variable the process is intecpkar dimen-
sion. This is the Squared Exponential or Gaussian corogidtinction that is frequently used in
computer experiments to model the output of determinigirojguter code.

The likelihood is a function of? and thed-dimensional vector of range parametérs
1 y"R 1y }
L(c*, 0) x ————— ex {— , 1
( ) (02)2 |R|2 P 202 M

wherey is the data vector of lengthhandR is then x n design correlation matrix that is a function
of 6. If 8 is known, then the Best Linear Unbiased Predictor (BLUPhefresponse at a newy,

is
J0(0) = r(zo)" Ry, (2)
wherer(xy) is a vector of correlations between the newand the design points (a function @.

Furthermore, if-? is also known, then the Mean Squared Error of the BLUP is
MSE;,(0°, 0) = ¢ (1 — r(zo)" R™"r(z0)) 3)

and these two formulas enable one to construct valid notyalaéised point-wise prediction bands
(having a perfect match between the nominal and the truerageeat all levels under this model).
However, that validity is dependent on the assumption thaeaameters are known.

But in practice, usually none of the parameters are knowstehld, they have to be estimated
by maximizing (1) to get the estimatég andd. When we plug in5? in place ofs? and@ in
place off in (2) and (3), we lose validity in the sense that the estimat¢3) based o> andf
is biased to be too small relative to the true mean squared given by (3) based on? andé.

This problem is well known in both the computer experimemd the geostatistics literature (see
the review in Abt (1999) for more details).



4 Simulation results

Much to our surprise, we witnessed that the potential vglid the FBI improved as we increased
the number of dimensions. To dramatize that improvemerthisisection we present the lowest
(d = 1) and the highestd( = 10) dimensional case. (Complete results can be found in the Ap-
pendix for all d = 1, ..., 10, showing progressively improving validity from = 1, ..., 5,
plateauing at near perfection fat= 6, ..., 10)

Starting with a one-dimensional example, Figure 1 plotdiie coverage probabilities (on the
vertical axis) versus the nominal coverage (on the horalaxis) of the prediction bands from 1%
coverage to 99% coverage on both axes. The solid black csifee the traditional plugin method,
the dashed one is for the FBI, and the dotted one is for the MCM€ gray diagonal represents
the “optimal” or “perfectly valid” solution of the prediain uncertainty problem (i.e. the ideal
method would achieve a perfect match between the nominaraed¢overages, providing a curve
matching this diagonal).

Around the 1% mark all three curves are indeed very closedaltagonal and that means that
if one wanted a 1% prediction band, then any method would bd.velowever, in practice, we
are typically more interested in the high end (90% or grgateor example, the end points of the
three curves in the top-right corner are for the 99% nomiwoalficlence level. Clearly, we are not
getting 99% coverage. The true coverage probability (CHR9ds for all methods. However, the
CPs of the two Bayesian methods are closer to the requirednab89% coverage than the CP of
the plugin (a finding that was consistently replicated irdathensions).

The simulation in Figure 1 usetl= 2 for the range parameter amd= 10 data points.
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Figure 1: Coverage probabilities féat= 2, n = 10,andd = 1.
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Figure 2: One-dimensional simulation results.
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Figure 3:10-dimensional simulation results.
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Choosingn = 10 for d = 1 follows the recommendation of Sacks (e.g. Chapman, Welch,
Bowman, Sacks and Walsh (1994)), who observed that ideaflysample size should be at least
10 times the number of dimensions. However, that is not aviegsible, so in addition to the rule
of thumbn = 10 d, we also explored = 10 d/2 andn = 10d/4 forall d =1, ..., 10 (even
though10 d/4 is much too small to be useful in practice).

Settingd to 2 is a “reasonable” choice, in a sense that numbers ar@unelquently arise in
applications. We also tried two extreme cases to see hovhtke thethods compare outside that
“reasonable” domaind = 0.2 andfd = 20. In fact, setting) to 0.2 already pushes the limits of
the standard double precision representation in the oné tgse: numerical difficulties arise be-
cause the high correlations in the< n correlation matrix (all close to one) make it ill-conditiedh
(nearly singular). Hence, computations failed for the 0.2, n = 10 case ford = 1.

All the other combinations of the three levelstotind n for d = 1 are summarized in Figure 2.
Note that the simulation in the top-left corner was the ordgecthat completely failed fat = 1.
Also note that the plot next to that (in the middle of the tow)@s just a shrunk version of Figure
1, that is based 0999 realizations because one of the realizations (out of tted 10000) had to be
excluded because of numerical difficulties. For the respmatations were successfully completed
for all 1,000 simulated data sets (realizations of the GP), as indicagetidrealization count in
the top-left corner of each plot. (Calculations of the CPsanadways restricted to the “successful”
subset of thd, 000 realizations and all failures were excluded).

Figure 3 summarizes the simulations tbr= 10. Compared tal = 1, the difference is as-
tonishing: overall, the Bayesian methods’ validity impedwdramatically by increasing but the
plugin’s showed much slower change. Perhaps the most sinpifi0-dimensional result is that
the Bayesian methods achieved almost perfect predictioartainty assessments at all coverage
levels (from 1% to 99%) in seven cases out of nine. The two Eiaes are ford = 0.2 with
n = 50 andn = 25, where the FBI tends to become too conservative leading ¢o-cwerage,
while the MCMC results in significant under-coverage. Sanpatterns can be seen for the other
values ofd > 5. Complete results and implementation details can be foutioe Appendix.

5 Methods
5.1 Plugin

The plugin method is straightforward and we have alreadgrilesd it in Section 3. To compare it
with the other two methods, here we are presenting it as amittign that has two steps: estimation
and prediction.

1. Obtain the Maximum Likelihood Estimates (MLEs) of thegraeters52 andé.

2. For prediction, plug in the MLEs into equations (2) and48)f they were the true parame-
ters.

5.2 Fast Bayesian Inference

Bayesian analysis starts with a prior distribution on thedelgparameters. We recommend the
uniform prior on the log scale for both the process varianog the range parameters. This has
several advantages, although the propriety of the postsrivot guaranteed (Berger, De Oliveira
and Sanso6 2001).



First of all, the uniform prior is the fastest of all priorsnee it does not need any computation
(the posterior is proportional to the likelihood). The sed@dvantage is that’ can be integrated
out analytically from (1) to get the integrated likelihodtht is a function of only:

L(6) o (y"R'y)"# |R| 2,
It is interesting to note that(8) = L(5%(0), 0), where

5%(0) = m, (4)

n

which means that (6) can also be viewed as the profile likelihood that is maximiaeer all o>
given@. Proofs can be found in Nagy, Loeppky and Welch (2007).

The third advantage is that the log transformationédarings the profile/integrated likelihood
closer to the normal distribution. This was shown by Nagylef2907) for the one-dimensional
case, and simulations suggested that the log transformegttuced non-normality in higher di-
mensions as well.

Using the notatiorr = (log#y, ..., logf,y)" = log @ for the transformed parameter vector and

0 = (exp7y, ..., exp7q)] = exp T for the inverse transformation, the new likelihood funatio
L(exp 7) tends to have a shape that is closer to a normal with respectfian the shape of the
original L(0) with respect td. Using a uniform prior for the transformed parameters mehas
this new likelihood function as a function efis also the (unnormalized) marginal posteriorfor

The fourth advantage is that the log transformation makesthmerical optimization of the
likelihood/posterior unconstrained: € R?. This is the first step of the Fast Bayesian Inference,
that can be summarized as follows:

1. Maximize the log-likelihood/log-posteridsg L(exp 7) to get the MLE ofr, denotedr.

2. Compute the Hessian (the matrix of second derivatives) denoted > .

3. Sample from the multivariate normal distribution+, —H;l) to obtain/ Monte Carlo
samples:7), ..., 7+,

4. Following standard Bayesian practice, the FBI predic@iven by the average:

1 M

’ (@)
— 3 "golexpr®),
M i=1

and its Mean Squared Error is given by the the variance deositipn formula:

M M | M 2
ZlMSEyO 2(exp ), exp T (.yo exp U MZgaexpr@)) ,

that is the average MSE of the plugin predictors plus the $angriance of those predictors. It is
instructive to compare this sequence to that of the plugithénprevious subsection. We can see
that the first steps are equivalent: both methods start katilog the MLE. After that the plugin
method jumps into the prediction phase right away assunmagthe value found at the mode is

8



the one best estimate of the truth.

The FBI is more careful. In the second step it looks at theatune at the mode to quantify the
uncertainty in the estimation of th@oint estimate. For example, if the surface is flat, that means
high uncertainty and the corresponding normal approxiomaith step 3 will have a high variance
reflecting that uncertainty.

In the final step, the FBI averages predictions based on thplsdrom that normal distribution
as if it was from the true posterior. Again, there is a part ieadentical to the plugin method,
since for each sample point, equations (2) and (3) are useal¢alate the predictor and its Mean
Squared Error, respectively (also using (4) to estimetdor a givent in the sample). This
way the FBI will have many predictions to average (one fothesemple point), while the plugin
method will have just one. Hence, the plugin can be viewed sigegial case of the FBI with
sample size one.

5.3 Markov chain Monte Carlo

There are many possible ways of constructing an MCMC algarito sample from a distribu-
tion that is only known up to a scale. One of the simplest isMigtropolis random walk algo-
rithm (Metropolis, Rosenbluth, Rosenbluth, Teller andi@iel953) that has been used success-
fully in many high-dimensional problems. To enable diremtparison with the FBI, everything
was done on the log scale using the saragarameterization. Also, the first two moments of the

N(T, —H;l) normal approximation for the FBI were utilized to help theplementation in step
1 and step 3 of the algorithm, respectively:

1. Initializer™ at+.
2. To select a direction for a random walk step, sample agérteuniformly from 1, ..., d.

3. Given the current-®, setr* to 7 and then add to thgth coordinate ofr* a normal
random deviate with mean zero and standard deviation equillrée times the standard

error in thejth dimension, estimated from the Hessi :—H;l(j,j).

4. Compute the acceptance ratio fof, givenr(:

L(exp*) } ‘

= min{ 1, 2 )
(@ mln{ 7L<eXp’T(Z))

5. Setr(+Y to 7* with probability e and tor® with probability1 — .
6. Repeat steps 2-5 untiteaches the desired sample size.

When this algorithm works well, it constructs a Markov chaihose stationary distribution is the
posterior distribution. The resulting sample then can keglder prediction exactly the same way
as the sample for the FBI (step 4 in Section 5.2). In other wondce the sampling is done, the
treatment of the samples are identical.

But that does not mean that the samples are equivalent oasiniihe FBI draws an inde-
pendent, identically distributed (iid) sample from the mal approximation of the posterior. In
contrast, the MCMC algorithm constructs a dependent safnmhe the original posterior. That
immediately explains why the MCMC is so much slower than tB& Because the sample is not



iid, it needs a much larger sample size (exactly how large isgen question).

Another difference is that the FBI always samples from a prajensity function but that is
not guaranteed for the MCMC. Unlike its normal approximafithe original posterior may not be
proper (i.e. the integral is not finite) and in that case thea collected by the MCMC is mean-
ingless because the posterior is not proportional to angitiefunction. This fact alone should be
enough to deter anyone from using this method (or any otheMi@@lgorithm) in a black box
fashion.

But there are other reasons, too. For example, diagnosti€ &me not black box either. Among
other things, typically, one is expected to look at the trplogs after each run. But in our simu-
lation study there were almo89, 000 MCMC attempts in total. Clearly, we had to find a more
efficient way for evaluating success or failure.

We ended up with two arbitrary, but not very restrictive miim cut-off values for the “accep-
tance rate” and the “mean effective sample size” measuesialy allowed samples that met both
criteria. All other realizations were classified as faikignd not used in any further calculations
(see the Appendix for more details).

In summary, it is difficult to know to what extent the two crieedetected non-convergence or
any other pathology of the MCMC sample. Nevertheless, thestionable attempt at black box
MCMC showed fairly good overall validity. Relatively fewms had to be disqualified (usually less
than10 out of 1, 000), enabling head-to-head comparison with the FBI. Conaditily on the suc-
cess of the remaining (qualifying) runs, differences sestwben the MCMC and the FBI should
reflect the difference between the original posterior asth@rmal approximation.

6 History and related work

Normal approximations based on posterior modes are cirtaot new. The idea can be traced
back to Laplace (1774). However, it appears to be undezatllin this context. Williams and
Barber (1998) used the Laplace approximation for Gausgiacegs classification. Karuri (2005)
used the normal approximation for GP regression in one awddiwiensions and observed that
on the log scale the posteriors were closer to normal. Nagy. €2007) showed that in the one-
dimensional case the log transformation improved apprakémormality of the likelihood/posterior
when using the Squared Exponential (Gaussian) correl&iction.

7 Discussion

Fast Bayesian Inference represents a middle ground betweesxtremes. The traditional plugin
method is extreme because it makes inference based solgéheogstimate found at the mode,
ignoring the uncertainty around it (its sample size is oA¢the other extreme, the slow Bayesian
method is inefficient because it ignores the mode and catsteularge dependent sample as it
explores every corner of the posterior by MCMC.

The FBI corrects the plugin’s deficiency by incorporating tparameter uncertainty around
the mode. Unlike the slow Bayesian method, the FBI does ned mehuge sample (or burn-in),
because its sample is iid. This is the main advantage of sagirectly from the normal approx-
imation, instead of the original posterior that is only kmoup to a scale.
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Using the uniform prior for the log transformed parameteaas four advantages:

1. The prior needs no computation, since the likelihoodésuthnormalized posterior.
2. The process variance can be integrated out to reduce diamgtiity by one.

3. The log transformation reduces non-normality of thelifk@d/posterior.

4. The log transformation enables the use of unconstraipgthization algorithms.

The latter two suggest that they can be combined in numéristalble situations for a fifth advan-
tage: a dramatic speed up of the numerical optimization bythie's method that can double the
number of correct digits at each iteration (quadratic cogerece). When the log transformation
makes the likelihood/posterior nearly normal, then thellkglihood/log-posterior becomes nearly
guadratic, and that is the kind of function that can be oedivery efficiently with Newton-type
algorithms. However, more work is needed to determine whendan be done reliably, because
often Newton’s method is not as robust as derivative-fraemopers.

In summary, the FBI presents a compelling solution to thelipteon uncertainty problem by
combining the benefits of the other two alternatives anddingitheir drawbacks. It is compu-
tationally efficient, it can be implemented as a black boxd @ncan potentially provide valid
prediction uncertainty assessments.

In practice, it can save both time and money. That may inchmté software development
time/cost or run time/cost. What is perhaps the most impofend the most difficult to quantify)
is the effect of the more valid predictions that can lead tibelbelecisions.

The FBI is also fast to implement, especially as an add-on &x&sting implementation of the
plugin method, since it is a straight extension of that. lus hope that we presented convincing
arguments to facilitate its adoption without delay. Why kersing the invalid plugin, when its
valid Bayesian upgrade is also fast and ready for produ@tion

However, from the research perspective, much works rentaife done. For example, the
greatest mystery is how the FBI becomes more valid as therdiimeality increases. One hy-
pothesis is that the log transformation does not work as métiwer dimensions. To inspect this
possibility, we will expand our investigation to the famdy power transformations (Tukey 1957).

Finally, it is important to point out that when one expects BBl to give valid predictions, one
needs to keep in mind the two fundamental limitations of dudg The first one is that all our
data came from the true Gaussian process model. But for a¢@l the assumption of a zero-mean
stationary Gaussian process (with the Gaussian correlatiaction) may be inadequate or totally
wrong and results will be entirely dependent on the real dyinhgy function.

The second serious limitation is that we studied the fretisieproperties of the prediction
bands in terms of coverage probabilities. Hence, validityniplied only over a long sequence of
identical trials, according to the classical frequentigerpretation. But in practice, most of the
time there is just one unique data set.

However, the use of this criterion is not limited to frequsts. It is not uncommon for
Bayesians to use it as a “sanity check” for their Bayesianlibte regions. For example, Ba-
yarri and Berger (2004) argue that “there is a sense in whssbmially everyone should ascribe to
frequentism” and provide the following version of the freqdist principle: “In repeated practical
use of a statistical procedure, the long-run average aet@iracy should not be less than (and
ideally should equal) the long-run average reported acgtira
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Appendix

The first part of the Appendix describes the simulation pdoce and explains why it is rele-
vant to current practice. Then a table is presented sumimgrize coverage probabilities for the
nominal 90%, 95%, and 99% levels. That is followed by 10 figdoe the the complete simulation
resultsind =1, ..., 10, whered is the dimensionality of the input space.

The simulation plan can be viewed as a set of 10 statisticksigned experiments fod =
1, ..., 10. For each experiment, the design was a 3 full-factorial with 1, 000 replicates. The
two factors were the range paramefeand the sample size, both at three levels (equally spaced
on the log scale)y = 0.2, 2, 20 andn = 10d/4, 10d/2, 10d (wherel0 d/4 was rounded up to
the nearest integer).

To obtain1, 000 replicates for a given combination 6fandn, the following four steps were
repeated (attempted) 000 times:

1. Select am point design by Latin hypercube samplirig the d-dimensional unit hypercube
0, 1]%.

2. Generate a realizatianof the Gaussian process over thdesign points by setting the range
parameter t@ in all dimensions and the process variance to one.

3. Samplel0 new points uniformly in the unit hypercubye, 1]¢ for prediction.

4. Compute the predictors for the three methods with themmezjuared errors for thi€) new
points from the datg.

1Although there are many improved variants of Latin hypees)le.g. Mease and Bingham (2006), the original
random version of McKay, Beckman and Conover (1979) was heeglbecause of the enormous number of realiza-
tions generated.
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This sequence was devised to represent a typical real woeltbsio. Latin hypercubes are the
design of choice for GP models (Sacks et al. 1989) for preghict new, untried inputs anywhere
in [0, 1]%. Note that step 2 or 4 could fail because of numerical isdeasling to an unsuccessful
realization (missing value) for that particular replicétet included in subsequent analysis). The
only case when this had a serious impact on results wag th€.2, n = 10 case in one dimension,
as already discussed in Section 4.

The Monte Carlo sample size for the FBI waé = 400, minus those sample points that
ran into numerical difficulties caused by the ill-conditiog of the correlation matrix. This hap-
pened mostly in lower-dimensional cases, especially is= 1. The MCMC sample size was
N = 100,000 (after 10,000 burn-in). Unlike the FBI sample, the MCMC sample did not suff
from numerical problems because problematic points woelcenbe accepted by the algorithm,
since the likelihood/posterior was set to zero whenevethelesky-decomposition of the corre-
lation matrix failed. An MCMC run was considered succesgfthe acceptance rate was at least
15% and the Mean Effective Sample Size (MESS) was at lea®@&@®. measures were calculated
after the burn-in phase.

The following formula was used for the MESS:

1000 1 -1
B bl
k=1

wherepy (i) is thekth sample autocorrelation in thith dimension (Carter and Kohn 1994).

d
1
MESS= =S N
SS d;

Another way to look at the ill-conditioning problem is to peot it back to the distribution
where the sample came from. For example, one could say tbdEBh did not sample from a
normal distribution, just a truncated normal with all nuically problematic areas having densi-
ties set to zero. One could similarly argue that the MCMC ditisample from the true posterior,
because it was truncated for numerical stability and themputable parts of the parameter space
were excluded.

Coverage probabilities were calculated by averaging tbidual CPs over all new points and
all successful realizations. A realization was considesactessful if all operations for all three
methods completed without error. It is straightforward tonpute an individual CP. Suppose that
we want to predict the outpuif, at a new, untried input,. Since the true model is known during
the simulation, we know that conditionally on the realizedadY; is normally distributed with
meany, and variancer?, wherey, ands? are given by equations (2) and (3), respectively.

Now suppose that after estimation, the predictor¥pmwas i; with mean squared error?.
This amounts to mis-specifying the distribution of the ramdvariableY, as N (1, o7) instead of
the trueN (ug, 02).

Then the CP of a normality-based0(1 — «)% prediction interval about; is
Py (M1—0'1 Zajp < Yo < 1+ o1 Za/z) =

— 01 Za/2 — Yy — + 01 Zay2 —
— P, (Ml 1 Za/2 — Mo < 2o Ho < H1 1 Za)2 Mo) _
0 0o 00

_ (I)<M1+01 Za/2—M0> B (I)<M1—<71 Za/2—Mo)

00 0o
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where P, denotes the true probability distributiof®, is the cumulative distribution function of
the standard normaV (0, 1), andz, /, satisfiesb(—z,/2) = a/2.

The following table is a summary of the CPs for the nominal 90%%, and 99% confidence
levels. The two-digit numbers in the table are truncatedgmiages without the percent sign and
without the fractional parts (rounded down). The 3 arrangement inside each cell follows the
layout of the plots by the three levels @horizontally and the three levels afvertically.

90% 95% 99%

plugin [ FBI | MCMC plugin | FBI | MCMC plugin | FBI | MCMC

7276 85 85 89 94 78 82 90 89 93 96 85 89 9594 96 98
d=1 6766 64| 828175| 949588| 737269| 8684 79| 9597 94| 818076| 9089 84| 97 98 97
615952| 858165| 9487 79| 666457| 878471| 9692 85| 737063| 9088 78| 98 96 90
808075| 878783| 888988| 878682 929288| 939393 949490| 9696 94| 97 97 97
d=2 717059| 848276| 898785| 787665| 898782| 939291| 8684 74| 9492 89| 96 96 96
504539| 76 76 68| 8285 78| 565044| 8081 74| 879084 645851| 8687 82| 919591
818174| 878783| 888888| 888781| 929289| 939393 9594 89| 9797 95| 9797 98
d=3 736857| 858278| 878485| 807564| 9087 85| 928991| 8884 73| 9594 92| 96 94 96
534544| 818278| 778481| 605150 858784| 829088 696058| 919391| 879594
838174| 888784| 898888| 898881| 939290| 9493 93| 96 9589| 9897 96| 98 97 98
d=14 7567 60| 868384| 878386| 827466| 918989| 928992| 9084 76| 96 95 96| 96 94 97
494344| 848581| 758583 554950 899087| 819089| 655859| 939594 | 87 96 95
838174| 888787| 888788| 898881 939292| 939293 969590| 9897 97| 98 97 98
d=25 746562| 868586| 858487| 817369| 919192| 909092|| 9083 78| 96 96 97| 95 95 98
504548| 888684 | 7284 84| 565154 929190| 789090(| 67 6264| 96 96 96| 84 96 96
838074| 888788| 888688| 898781| 939293| 9391 94| 969590| 9897 98| 98 96 98
d=206 746563| 878787| 828587 817270| 929292| 8891 93| 9083 80| 9797 97| 94 96 98
494649| 908885| 728585 565355 949391| 7891 91| 676365| 9797 97| 8596 97
847976| 898888| 888588| 908683| 949394| 9391 94| 9694 91| 9898 98| 98 96 98
d="17 7264 65| 86 8887| 818688 807273| 929393| 8791 93| 8983 82| 9798 98| 93 96 98
504751| 928886| 738686| 575457 959392| 799191 6864 67| 9898 97| 86 97 97
847976| 898889| 898689| 908683| 949394| 9491 94| 9794 91| 9898 98| 98 97 98
d=238 716466| 878988| 808688 797274| 9294 93| 8692 93| 8983 83| 979898| 9397 98
494851| 938886| 738686| 565558| 9693 92| 799292| 6766 68| 9898 97| 87 97 97
847877| 898989| 888689 908584 9494 94| 949294 9793 92| 9898 98| 98 97 98
d=29 716567| 888988| 798788| 797374| 9394 93| 8593 93| 8884 84| 9798 98| 9397 98
505052| 948887 | 748686| 575759| 979392| 809292 6968 69| 9998 97| 8897 97
847778| 898989| 888789 908584 9494 94| 949294 97 93 93| 9898 98| 98 97 98
d=10 1] 7066 68| 908988| 798888| 7874 75| 949493| 8593 93| 8884 85| 9898 98| 93 98 98
495054| 948887| 7587 87| 575761| 979393| 819292| 6869 72| 9998 98| 89 97 97

The following 10 figures compare the validity of the three hoels ford = 1, ..., 10, for all
combinations of the three levels éfand the three levels of. In addition to the gray diagonal in
the middle, three curves were plotted for the three metheld¢ing the true coverage probabilities
on the vertical axis (from 1% to 99%) to the nominal coveragéhe horizontal axis (from 1% to
99%). Plots are based on the realizations that were classifisuccessful, out af 000 attempts
in total. Counts for the number of realizations includedha final calculations are shown in the
top-left corner of each plot.
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