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Abstract. In this technical report, we review the Bayesian melding model, proposed by

Fuentes and Raftery (2005). We give technical details about using Gibbs sampling algorithm

to fit the model and critically assess the model through various simulation studies and

applications of combing ozone measurements with simulated ozone levels from deterministic

model AQM.

keywords: Bayesian melding, Bayesian hierarchical model, deterministic model, MCMC,

non-stationary spatial process.

1 Introduction

This report explores through simulation studies and applications, the use of a method

called “melding” for combining the output from deterministic models (“simulated data” or

“modeling output”) with measurements from sites that monitor spatial processes. We also

refer to measurements as observations or observed values in the rest of this report. The

melding method as proposed by Fuentes and Raftery (2005) and used by them for sulfur

dioxide, one of the five criteria pollutants regulated in the US by the National Ambient

Air Quality Standards or NAAQS. However, our application concerns ozone, another of the

criteria pollutants whose standards are currently under review by the US Environmental

Protection Agency. More precisely, we explore melding as a tool for modeling hourly,

daily and weekly ozone concentrations over the eastern and central United States. That

challenging application provides us with a critical assessment of the method.

This report presents that assessment along along with a detailed description of its im-
1Department of Statistics, U. of British Columbia. Email: zliu@stat.ubc.ca
2British Columbia Cancer Research Centre. Email: nle@bccrc.ca
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plementation as incorporated in our purpose-built online software that could be used to

replicate our findings or model other environmental processes that resemble the ozone field

we study. Since the problem of combining statistical and deterministic models is the sub-

ject of considerable current interest, this report may be well have implications in a much

broader context than the one of concern here.

Deterministic models have long been used in climate and environmental studies, one ex-

ample being the Regional Climate Model described in Caya et al. (1995). Another example,

the MAQSIP (Multiscale Air Quality Simulation Platform) model is described in Odman

and Ingram (1996). The chemical transport model (CTM) called GEOS-CHEM, which

models hourly ozone fields like the one of interest in this report, is suggested in the current

review of NAAQS for ozone as a method for estimating ozone’s policy relevant background

(PRB) level (Garner et al. (2005)). The PRB level, a baseline for the NAAQS, is the ozone

concentration that would obtain if there were no anthropogenic sources of ozone in North

America. Since the PRB cannot be measured, it has to be modeled. Moreover the model

generates useful byproducts such as estimates of the fraction of the ozone field from the

vertical transport of stratospheric ozone to the troposphere.

The models above are called deterministic because repeated runs with fixed inputs yield

the same output and lacking randomness, they differ from statistical models. However,

unlike statistical models, they do attempt to capture the fundamental dynamic processes

that govern the phenomenon of interest. The complexity of the equations that describe such

dynamics can render analytic solution impossible and force the use of numerical models,

typically with lots of complicated computer code and slow running times.

Deterministic models have a number of advantages. First and foremost they, unlike

statistical models, do incorporate prior knowledge about the underlying processes. Since

their parameters and inputs are adjustable, they enable scenario analysis under hypothetical

changes to an existing regime, say as a result of abatement strategies. Run on a computer,

they enable experiments to be run when real experiments would not be feasible due to ethical
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or other constraints. Such experiments can enable the study of input - output relationships

and possibly suggest optimal control settings for use in the real phenomenon they represent.

However, concerns inevitably arise in the application of deterministic models. First the

much quoted remark George Box made about statistical models, that “all are wrong, but

some are useful” also applies to these models. Thus in applications, two fundamental issues

arise. How wrong and how useful? They in turn point to the need for some kind of model

validation or assessment. Kasibhatla and Chameides (2000); Hogrefe et al. (2001b,a) address

these issues in meteorological and environmental science contexts by using traditional scatter

plots and least squares analyses of observed values and modeling output. Guttorp and

Walden (1987) exam these issues within a statistical framework. Of particular relevance to

this report is the work of Fuentes et al. (2003); Fuentes and Raftery (2002, 2005), in which

the melding approach is used to combine observed and modeling output while respecting

their intrinsic differences. The combination highlights the discrepancies and similarities

between the values to be assessed. Moreover this method can be used in other ways such

as predicting of the phenomenon of interest using both observed and model output values.

Another Bayesian approach is taken by Sanso and Guenni (2002) who like Fuentes et al.

(2003); Fuentes and Raftery (2002, 2005), postulates a “true underlying process” but unlike

them is specifically concerned with rainfall and uses a truncated model for the relationship

between the true underlying process and the data. In our application, melding is used to

combine real ozone measurements and modeling output from a deterministic model. Section

5 presents more details about this deterministic model.

This report is organized as follows. Section 2 gives some background about stationary

and non-stationary spatial covariance. This section also includes details about a class of

non-stationary spatial model proposed by Fuentes and Smith (2001). Section 3 describes

melding in detail along with its extension to ensembles of multiple deterministic models

and measuring devices. Section 4 describes the results of an extensive simulation study

that analyzes melding’s performance under a variety of conditions, investigates various
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issues and discovers possible improvements in the estimation of the covariance parameters.

Section 5 applies melding to the ozone air pollution data in the eastern and central USA

considered by Kasibhatla and Chameides (2000).
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2 Stationary and Non-Stationary Spatial Covariance

2.1 Definition and Estimation of The Variogram

Suppose we have a real-valued random process {Z(s) : s ∈ D}, which is observed at

locations {si : i = 1, ..., n} over a geographic region D ⊂ <d, d being a positive integer. The

random process {Z} is defined as second order stationarity if it satisfies for all s

E(Z(s + h)− Z(s)) = 0,

Var(Z(s + h)) = V ar(Z(s)),

Cov(Z(s + h), Z(s)) = C(h),

where C(·) is a covariance function. In other words, the correlation between responses

at two locations depends only on their degree of separation. In addition, the first and

second order moments of the random process Z(s) are the same for all s. Furthermore,

if C(h) = C(||h||), where ||h|| is the length of h, the covariance function C(·) is called

isotropic. Another very important quantity used in spatial statistics, the variogram, is

related to the spatial covariance between two locations. We have

Var(Z(s + h)− Z(s)) = 2γ(h),

2γ(h) being known as a variogram. The so-called semi-variogram refers to γ(h).

The classical estimator of the variogram proposed by Matheron (1962) is obtained by

using the method of moments. The estimator is

2γ̂(h) =
1

|N(h)|
∑

N(h)

(Z(si)− Z(sj))2, (1)

where the sum is over N(h) = {(i, j) : h− δ ≤ |si − sj | ≤ h} and |N(h)| is the number of

distinct elements in N(h). Although unbiased, this classical estimator is highly affected by
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outliers due to the squared term in the summation. Hawkins and Cressie (1984) presented

a more robust estimator

2γ̄(h) =
{ 1
|N(h)|

∑
N(h) |Z(si)− Z(sj)|1/2}4

0.457 + 0.494
|N(h)|

. (2)

From our definition of the semi-variogram, it is clear that γ(0) = 0. However, more generally

γ(h) → τ > 0 maybe allowed as h → 0, in which case τ is the called nugget effect

by Matheron (1962). One of the sources of the nugget effect is measurement error and

commonly measurements are assumed to be the ground truth Z(s) plus some measurement

error. The book by Cressie (1993) gives more details about the nugget effect.

The covariance function only needs to ensure the covariance matrix it generates is posi-

tive definite and symmetric. In the book Stein (1999), Bochner’s theorem specifies that the

positive definite covariance functions are those which are Fourier transforms of non-negative

Borel measures. One commonly used covariance function proposed by Matern (1960) has

the following form:

Cθ(d) =
σ

2ν−1Γ(ν)
(2ν1/2|d|/ρ)νKν(2ν1/2|d|/ρ),

d being the distance between any two locations. For convenience, we let θ = (σ, ρ, ν). Here

σ, the sill parameter, represents the variance of random process Z(s) while ρ, the range

parameter, determines how fast the correlation decreases when distance d increases and

ν, the smoothing parameter controls the smoothness of the covariance function. Kν is the

modified Bessel function of type III as described by Abramowitz and Stegun (1972). Matern

covariance functions have the advantage of flexibility. Certain choices of the smoothing

parameter ν reduce it to simple well known covariance functions. For example, νs = 1/2

gives the so-called exponential covariance function,

Cθ(d) =





σ exp(−|d|/ρ) if |d| > 0;

σ + τ if |d| = 0.
(3)
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The nugget parameter is τ . It is obvious that the covariance functions defined above

are only suitable for stationary random fields because we assume the covariance Cθ(d) is

only a function of the distance d. However, in many cases, it is not reasonable to assume

second order stationarity. In recent years, the non-stationarity problem has received a

substantial amount of attention. One of the earliest and most important papers is due to

Sampson and Guttorp (1992), who obtain a semi- parametric estimate of the non-stationary

spatial covariance function by transforming the original geographical map into another, the

deformed plane. However that deformation method relies on repeated measurements to give

an empirical estimate of the variogram, a serious limitation in the context of geostatistics,

for example, where typically just one realization of a space - time process is available. Haas

(1995, 1998) circumvents that problem with a moving windows method as does Higdon et al.

(1999) with a convolution approach although these methods may require data from a large

number of monitoring sites to be effective. The paper of Gelfand et al. (2004) considers

the non-stationarity problem for a multivariate case. Fuentes and Smith (2001) propose a

class of non-stationary spatial models used in Fuentes et al. (2003), Fuentes and Raftery

(2002), Fuentes and Raftery (2005). This approach’s appeal derives not only from its its

circumvention of the need for replicate measurements but as well, from its simple intuitive,

easy to understand formulation as well as the ease with which it can be implemented. The

next subsection presents more detail and discusses the method.

2.2 A Class of Non-stationary Spatial Models

This subsection presents more detail of the non-stationary covariance model proposed by

Fuentes and Smith (2001). It assumes the existence at a number of locations of latent,

independent, stationary random processes that need not have any physical meaning. The

observed non-stationary process is represented as a weighted average or convolution of these

latent processes. Each latent random process has its own covariance parameters which

vary from one latent process (location) to another. The weight attached to each of the

8



stationary processes in the representation of the observed non-stationary process depends

on its location. So the covariance of the process between any two locations depends not

only on their distance d but also on their locations. The rest of this section gives a detailed

account of the non-stationary model of Fuentes and Smith (2001). We include it to enable

us to introduce the detailed MCMC algorithm used to fit this model in Section 3.2.

Suppose the latent stationary processes are Zi, i = 1, · · ·,K, with Cov(Zi(s), Zj(s)) = 0

for i 6= j. Then the observed process Z(s) can be expressed as

Z(s) =
K∑

i=1

Zi(s)wi(s),
K∑

i=1

wi = 1

in which wi is the weight attached to stationary process Zi. The above equation can be

extended to an integral by replacing the weight with a kernel function as follows:

Z(x) =
∫

D
K(x− s)Zθ(s)(x)ds,

where K(X − s) is a kernel function. So, the weight of latent process Zθ(s) depends on the

location difference vector between x and s. The spatial covariance parameter vector of the

latent stationary process {Zθ(s)} is θ(s) depending on its center location s. That is why

these latent stationary processes are called “locally stationary”.

Since the covariance between Zθ(s)(x1) and Zθ(s)(x2) is

Cov
(
Zθ(s)(x1), Zθ(s)(x2)

)
= Cθ(s)(x1 − x2),

the covariance between Z(x1) and Z(x2) in the non-stationary process Z can be expressed

as a convolution of the local covariance Cθ(s)(x1 − x2):

C(Z(x1), Z(x2)) =
∫

D
K(x1 − s)K(x2 − s)Cθ(s)(x1 − x2)ds. (4)

The kernel function can be any of the form K(u) = 1
h2 K0(u

h), K0 being any non-negative
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function with integral 1. A particularly convenient choice and the one we select in our

application, is the quadratic weight function

K0(u) =
3
4
(1− u2

1)+
3
4
(1− u2

2)+,

with u = (u1, u2) and in general, a+ = max{0, a} for any scalar valued quantity a. The

bandwidth parameter h can be any positive scalar valued quantity subject to certain restric-

tions explained later in this subsection. Also in Subsection 4.4, a simulation is carried out

to examine the effect of different choices of the bandwidth h on prediction and parameter

estimation.

Our choice of the kernel function implies that for a given pair of locations x1 and x2,

only the local stationary process whose center location s is within circles with origins x1,

x2 and radius h will have an effect on their covariance.

In the paper by Fuentes and Smith (2001), the integral (4) is approximated by an

average. First, the center locations sm, m = 1, · · ·,M of those latent stationary processes

are chosen as points on a regular grid over the map. The kernel integral (4) is then replaced

by

CM (x1,x2; θ) = M−1
M∑

m=1

K(x1 − sm)K(x2 − sm)Cθ(sm)(x1 − x2). (5)

In the non-stationary model, the parameter θ of the latent stationary processes is a function

of its center location s. This function can be smooth but instead Fuentes and Smith

(2001) assume an additive “ANOVA” type model for θ in terms of center locations s. The

stationary points are points of a regular grid over the map. For example, for the exponential

covariance function, with just two parameters, the sill σ and the range ρ, the “ANOVA”
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forms would be:

σi,j = α + ri + cj + εi,j i = 1, · · ·, n1

ρi,j = α
′
+ r

′
i + c

′
j + ε

′
i,j j = 1, · · ·, n2

µσ = (α, r1, · · ·, rn1 , c1, · · ·, cn2) (6)

µρ = (α
′
, r
′
1, · · ·, r

′
n1

, c
′
1, · · ·, c

′
n2

)

εi,j ∼ N(0,Σ(τσ, ησ))

ε
′
i,j ∼ N(0,Σ(τρ, ηρ)).

In the above model, n1 and n2 are the numbers of points in the horizontal and vertical

directions respectively. As well, ri and cj are main effects of center location’s longitude

and latitude on σ. The main effects of the center location’s longitude and latitude on ρ are

r
′
i and c

′
j . In this hierarchical model, σ and ρ might well have normal prior distributions.

Then the hyper-parameters would be ri, r
′
i, cj , c

′
j and τσ, ησ, τρ, ηρ. Subsection 3.2 explores

an algorithm for fitting this non-stationary model.
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3 Melding

This section presents an alternative to Kriging, the classical approach to spatial interpola-

tion in the point-referenced data setting, a name given to it by Matheron (1963) in honor

of D.G. Krige, a South African mining engineer. Kriging, the best linear unbiased predictor

(BLUP), weights the available observations in accordance with the distance between the

locations where they are made and that of the response to be interpolated. These BLUP

weights are obtained by minimizing the variance of the interpolation error assuming the

spatial covariance is stationary and known. In practice, the spatial covariance function is

estimated empirically by (1) or (2). Its flexibility, simplicity and ease of computation have

made Kriging very popular and hence a valuable tool in situations where it is applicable.

The Kriging method is available in the R package ”geoR” developed by Ribeiro and Diggle

(2001), that we use to implement the method in our simulation studies and data analyses

later in this report.

However, Kriging relies on a known variogram to compute its weights, treating esti-

mated parameters as fixed. So the true uncertainty in interpolation is underestimated. The

simulation study in Section 4.1 demonstrates that disadvantage.

More importantly, grid cell data from a deterministic model will be on coarser scales

of resolution than the micro scale on which measurements are made. For example, the

deterministic MAQSIP model studied in this report output its hourly ozone concentration

data at a resolution 6×6 km2. The mismatch of scales leads to a need to re-calibrate the

simulated data when combining it with the data for interpolation. While this could be done

in an ad hoc fashion with Kriging, it is not designed to deal with that issue in a fundamental

way.

In contrast to Kriging, melding, the Bayesian method developed and studied by Fuentes

and Raftery (2005), Fuentes et al. (2003), as well as Fuentes and Raftery (2002), is designed

to do that. It combines measurements and deterministic modeling output in a Bayesian
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framework that enables deterministic model assessment and spatial prediction including

interpolation.

Melding links processes with responses on mismatched scales through an underlying

true process {Z(s) : s ∈ <D} called the “truth”, D being the dimension of the domain.

If the location s only has longitude and latitude then D = 2, while if the location also

has altitude then D = 3. The underlying true (latent) process, being unobservable, must

itself be estimated. Denote the measurement process by {Ẑ(s) : s ∈ <D}, and the deter-

ministic modeling output process by {Z̃(B)}, B being the grid cell. To match Z(s), we

also hypothesize the existence of deterministic modeling output process {Z̃(s) : s ∈ <D}
based on locations s. Of course, the purely conceptual process {Z̃(s)} does not actually

exist. Its purpose: to link the modeling output with the truth at the micro- scale, thereby

enabling its representation as an integral of {Z̃(s)}. The truth thus serves as the common

basis for both processes {Ẑ(s)} and {Z̃(s)}. Moreover, having overcome the mismatched

scales problem, we can “meld” {Ẑ(s)} with {Z̃(s)} via the true underlying process, hence

the name “melding”.

The Bayesian model has the following mathematical form:

Ẑ(s) = Z(s) + e(s)

Z(s) = µ(s) + ε(s)

Z(B) =
1
|B|

∫

B
Z(s)ds

Z̃(s) = a(s) + b(s)Z(s) + δ(s)

Z̃(B) =
1
|B|

∫

B
a(s)ds +

1
|B|

∫

B
b(s)Z(s)ds +

1
|B|

∫

B
δ(s)ds

µ(s) = X(s)β. (7)

In the above model, the measurements error and modeling output error are independent

of each other. The measurement errors, e(s), are independent and identically distributed,

having a normal distribution N(0, σ2
e). The modeling output errors, δ(s), are independent
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and identically distributed with a normal distribution N(0, σ2
δ ). The spatially correlated

residuals, ε(s), have zero mean and covariance matrix Σ(θ), where θ is the covariance

parameter vector. The number of locations is n. Z(B) and Z̃(B) are integrals of Z(s) and

Z̃(s) over grid cell B. We only observe realizations of process Ẑ(s) and Z̃(B) at measured

stations and modeling output for grid cells.

The mean of the true underlying process is µ(s) = X(s)β, where X(s) is a polynomial

function of the coordinates at location s and β is the corresponding coefficient vector. The

covariance matrix Σ(θ) is constructed with some covariance functions having a parame-

ters vector θ. (See the previous section for a detailed discussion of covariance functions

in stationary and non-stationary cases.) Throughout this report, we use the exponential

covariance function (3). However, the software we have developed and provided can use

either the Matern, Gaussian or exponential covariance function. In Bayesian melding Model

(7), measurement Ẑ(s) is modeled as the truth Z(s) plus measurement error e(s) and mod-

eling output Z̃(s), as Z(s) times a multiplicative calibration parameter b(s) plus additive

calibration parameter a(s) and random error δ(s). Here we use the term “calibration”, not

the more prejudicial term “bias” that would seriously misrepresent what the deterministic

models aim to do. For example, in the equations for climate models that are embraced by

our theory, simplifications are made that filter out micro - scale effects. It would be inappro-

priate (in fact, pejorative) to call their output biased since by symmetry, the observations

would also “biased”. Instead, being on different scales, neither is correctly calibrated with

respect to the other.

In general, we can assume that the calibration parameters are functions of the location

of s, namely b(s) and a(s) in the model specification, to take into account their variability

with respect to locations. For simplicity, we assume a and b are constants throughout the

rest of this chapter for derivation and in the simulation study. But later in the data analysis,

we assume a is a function of the coordinates of the location s and b still remains constant.

The reason to keep b constant is that a varies over space much more than b.
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Fuentes and Raftery (2005) suggest and we use a Monte Carlo method to approximate

the integrals in model (7). For example, we could sample L points s1,B, · · ·, sL,B within

grid cell B. From now on, we call these points “sampling points” to distinguish them from

stations. Then, Z(B) can be approximated by the average of the values of process evaluated

at the sampling points within B:

Z(B) ≈ 1
L

L∑

j=1

Z(sj,B). (8)

3.1 Bayesian Melding in Stationary Case

The Bayesian paradigm primarily seeks the posterior distribution of all the unknowns given

the data as a description of their uncertainty. These unknowns include the random error

variances σ2
e , σ

2
δ , coefficient vector β, the true underlying process Z, calibration parameters

a, b and covariance parameter vector θ. We use vector Z to stand for realizations of the

true underlying process at the stations and sampling points within grid cells. If we have

n stations and m grid cells, the dimension of Z is n + m × L. The dimensions of the

measurements Ẑ and modeling output Z̃ are n and m respectively. Let H = {X, Ẑ, Z̃}
represent all the data, where X is the covariate matrix in model (7).

By using the above notation, the joint distribution of all the unknowns and available

data can be decomposed as follows:

p(Ẑ, Z̃, Z, β,θ, a, b, σ2
e , σ

2
δ )

= p(Ẑ|Z, σ2
e)p(Z̃|Z, a, b, σ2

δ )p(Z|β, θ)p(σ2
e , σ

2
δ ,β, θ)

= ΦΣ1(Ẑ −A0Z)ΦΣ2(Z̃ − a− bA1Z)ΦΣ3(Z −Xβ)p(σ2
e)p(σ2

δ )p(β)p(θ). (9)

Note that given Z, Ẑ and Z̃ are independent. In (9), ΦΣ(µ) stands for the multivari-

ate normal density with mean vector µ and covariance matrix Σ. We take the compo-

nents of (β,θ, σ2
e , σ

2
σ) to have independent prior distributions, that is, p(σ2

e , σ
2
σ, β, θ) =
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p(σ2
e)p(σ2

σ)p(β)p(θ). The matrices A0 and A1 are

A0 =




1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 1 0 . . . 0




n×(mL+n)

;

and

A1 =




0 . . . 0 1
L . . . 1

L . . . 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...

0 . . . 0 0 . . . 0 . . . 1
L . . . 1

L




m×(mL+n)

.

In matrix A0 the first n columns form an identity matrix and all other elements are all zero.

In matrix A1, the elements in row i are 1
L from column n + 1 + (i− 1)×L to n + 1 + i×L

and all other elements are all zero. We get (9) by using the approximation (8). Σ1 = σ2
eI

is the covariance matrix of measurement error vector e = [e(s1), · · ·, e(sn)]t, Σ2 = σ2
δI, the

covariance matrix of δ = [δ(B1), · · ·, δ(Bn)]t and Σ3 = Σ(θ), the covariance matrix of Z

while I is the identity matrix.

The density of the joint conditional distribution for (Ẑ, Z̃, Z|β, θ, a, b, σ2
e , σ

2
δ ) is

p(Ẑ, Z̃, Z|β, θ, a, b, σ2
e , σ

2
δ )

∝ exp
{
−1

2

[(
Ẑ −A0Z

)T
Σ−1

1

(
Ẑ −A0Z

)

+
(
Z̃ − a− bA1Z

)T
Σ−1

2

(
Z̃ − a− bA1Z

)

+ (Z − µ)T Σ−1
3 (Z − µ)

]}

= exp
{
−1

2

[
−ZT

(
AT

0 Σ−1
1 Ẑ + bAT

1 Σ−1
2 (Z̃ − a) + Σ−1

3 µ
)

−
(
Ẑ

T
Σ−1

1 A0 + b(Z̃ − a)Σ−1
2 A1 + µTΣ−1

3

)
Z

+ Zt
(
AT

0 Σ−1
1 A0 + b2AT

1 Σ−1
2 A1 + Σ−1

3

)
Z

]}
+ C, (10)

where µ = Xβ is the mean vector of Z and C has the other terms without Z.
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As is well known, the normal prior distribution is conjugate to the normal sampling

distribution. The full conditional distribution of Z conditional on all the other unknown

parameters and available data is also a normal with mean vector µ̃ and variance matrix Σ̃.

So, the full conditional distribution of Z must be

p
(
Z|β, θ, σ2

e , σ
2
δ , a, b, H

) ∝ exp
{
−1

2

[
ZTΣ̃

−1
Z − µ̃TΣ̃

−1
Z

]}
. (11)

But what are µ̃ and Σ̃ ? By matching the terms containing Z and Zt in (11) and (10),

we identify the required µ̃ and Σ̃ for the full conditional distribution of Z as the following:

Z|(β,θ, σ2
e , σ

2
δ , a, b, H) ∼ MVN(µ̃, Σ̃);

Σ̃
−1

= (At
0Σ

−1
1 A0 + b2At

1Σ
−1
2 A1 + Σ−1

3 );

µ̃ = Σ̃
(
At

0Σ
−1
1 Ẑ + bAt

1Σ
−1
2 (Z̃ − a) + Σ−1

3 µ
)

. (12)

If the prior for β were p(β) ∼ MVN(β0,F ), then we could claim the full conditional

distribution of β would be

β|(θ, Z, other parameters) ∼ NVN(Bb,B), (13)

where B−1 = XtΣ−1
3 X + F−1 and b = XtΣ−1

3 Z + F−1β0. The proof of that claim now

follows.

Given Σ−1
3 and Z, β is independent of other parameters. So the full conditional distri-

bution of β is

p(β|Z,Σ3) ∝ p(Z|β,Σ−1
3 )p(β)

∝ exp{−1
2

[
(Z −Xβ)tΣ−1

3 (Z −Xβ) + (β − β0)
tF−1(β − β0)

]}.

We can find the mean and variance of p(β|Z,Σ(θ)) by an approach of Lindley and Smith
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(1972); Smith (1973).

For the exponential covariance function, the two components σ and ρ of θ are indepen-

dent with inverse gamma and gamma prior distributions respectively. The inverse gamma

distribution has the density function,

p(x; α, γ) =
1

Γ(α)γα

1
xα+1

e−1/(γx),

α > 0 and γ > 0 being the shape and scale parameters, respectively.

The full conditional posterior density function of θ, given the other variables and the

data is

p(θ|β, Z) ∝ p(θ)|Σ3|−
1
2 exp

[
−1

2
(Z −Xβ)tΣ−1

3 (Z −Xβ)
]

, (14)

where p(θ) is the prior density for θ. In general, we have Σ3 = σg(ρ, C), where C is the

Euclidean distance matrix between the stations and sampling points and g(·) is the spatial

correlation function. Then the full conditional distribution of θ can be written as

p(θ|β, Z) ∝ p(σ)p(ρ)|σg(ρ, C)|− 1
2 exp

[
−1

2
(Z −Xβ)t(σg(ρ,C))−1(Z −Xβ)

]
. (15)

From (15) the conjugacy of the inverse gamma as σ’s prior becomes apparent. With an

exponential correlation structure, the spatial correlation matrix is g(ρ, C) = exp(−C/ρ)

and so (15) can be written as

p(θ|β,Z) ∝ p(ρ)σ−α−1−n/2|e−C
ρ |− 1

2 exp
[
− 1

σ

(
1
γ

+
1
2
(Z −Xβ)t(e−

C
ρ )−1(Z −Xβ)

)]
.

Thus the full conditional distribution of σ also has an inverse gamma with parameter

α̃ = α + n/2

γ̃ =
(

1
γ

+
1
2
(Z −Xβ)t(e−

C
ρ )−1(Z −Xβ)

)−1

.

18



However ρ does not have a standard full conditional distribution, forcing us to use Metropolis-

Hasting algorithm proposed by Hasting (1970) to sample ρ from (15) with σ fixed.

If σ2
e and σ2

δ have inverse gamma priors with parameters (shape=α1,scale=1/λ1) and

(shape=α2,scale=1/λ2) respectively, the full conditional distributions of σ2
e and σ2

δ become

σ2
δ |(a, b, Z̃, Z) ∼ IG

(
shape = α1 + m/2, scale = (λ1 +

1
2
λ̃)−1

)

with λ̃ = (Z̃ − a− bA1Z)t(Z̃ − a− bA1Z) and

σ2
e |(Ẑ, Z2) ∼ IG

(
shape = α2 + n/2, scale = (λ2 +

1
2
γ)−1

)

with γ = (Ẑ −A0Z)t(Ẑ −A0Z). (16)

Letting the prior for a, b be




a

b


 ∼ MVN(β̄, F̄ )

yields the full conditional distribution of the calibration parameters a, b as




a

b


 |Z̃, A1Z,Σ2 ∼ MVN(B̄C̄, B̄),

where

B̄ =




1t

(A1Z)t


 (Σ2)−1

(
1, A1Z

)
+ F̄

−1

and

C̄ =




1t

(A1Z)t


 (Σ2)−1

(
1, Z̃

)
+ F̄

−1
β̄.

We define 1 to be an column vector having the same dimension as Z̃.
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3.2 Bayesian Melding in the Non-stationary Case

The previous subsection presents the full conditional distributions of all the parameters for

a stationary true underlying process distribution. The full conditional distributions are the

same for the non-stationary case except for the spatial covariance parameters (σ and ρ).

In Model (6), the priors for the “main-effects” (α, ri, cj and α
′
, r

′
i, c

′
j) are independent

multivariate normal distributions with means µσ and µρ.

Fuentes and Smith (2001) propose the non-stationary Model (6) without giving much

detail about fitting the model. In this subsection, we derive the full conditional distribution

of σ, µσ, τσ and ησ. For that purpose we let Y be the design matrix in Model (6). The

parameters associated with the sill include σ, µσ, τσ and ησ, while those associated with the

range include ρ, µρ, τρ and ηρ. Because the full conditional distribution of the parameters

associated with the sill are analogous to those associated with the ranges, we only give the

derivation of the full conditional distributions of parameters associated with the former. In

that derivation, H represents all the other parameters as well as the available data. The

full conditional distribution of σ is the following:

p(σ|H) ∝ |Σ(σ, ρ)|− 1
2 |Σ(τσ, ησ)|− 1

2 exp{−1
2

[
(Z −Xβ)tΣ(σ, ρ)−1(Z −Xβ)

]}

exp{−1
2

[
(σ − Y µσ)tΣ(τσ, ησ)−1(σ − Y µσ)

]},

where Σ(σ, ρ), the spatial covariance matrix of Z and Σ(τσ, ησ) is the spatial covariance

of the vector σ for the latent stationary processes. In the non-stationary case, the full

conditional distribution of σ is no longer a standard distribution, necessitating use of the

Metropolis-Hasting algorithm to update σ as a block.

Since µσ has a normal prior with mean βσ and variance matrix F σ, its full conditional
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distribution is

µσ|σ ∼ MVN(Bb, B)

B−1 = Y tΣ(τσ, ησ)−1Y + F−1
σ

b = Y tΣ(τσ, ησ)−1σ + F−1
σ βσ.

The full conditional distribution of τσ is

p(τσ|Z, ησ) ∝ p(τσ, ησ)|Σ(τσ, ησ)|− 1
2 exp

[
−1

2
(σ − Y µσ)tΣ(τσ, ησ)−1(σ − Y µσ)

]
.

Our Gibbs sampling algorithm must include Metropolis-Hasting steps to sample from the

full conditional distributions whenever they cannot be specified in a closed form.

3.3 MCMC Algorithm

To sample from the posterior distribution of the parameters in the melding Model (7), we

use the Gibbs sampling algorithm proposed by Gelfand and Smith (1990) as implemented

by Fuentes and Raftery (2005). First, we choose some arbitrary initial values for θ, β as

θ(1), β(1). Then, the Gibbs sampling is implemented in the following three stages.

• Stage 1: Given all the other parameters and the available data, realizations of the

true underlying process {Z(s)} are updated at n stations and L sampling points

within each of the m grid cells. In this stage, a random sample of Z is generated by

using (12).

• Stage 2: First θ = (σ, ρ) is updated given β and Z obtained in Stage 1. Second, β

given θ and Z is updated by (13). Updating β and σ is easy because their full condi-

tional distributions are multivariate normal and inverse gamma respectively. However,

the full conditional distribution of ρ does not have a closed form, so we have to use

Metropolis-Hasting algorithm to update it.
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• Stage 3: In this stage, σ2
e , σ

2
δ and a, b are easily updated given all the other parameters

since their full conditional distributions are either normal or inverse gamma. So, it is

easy to update them.

The above Gibbs sampling algorithm is nearly identical for the stationary and non-

stationary cases, the only difference being in the updating of θ in Stage 2.

3.4 Spatial Prediction

This subsection indicates how melding can be used to predict realizations of the underlying

process at unmonitored sites using the available data.

Denote by Zu, realizations of the true underlying process at the unmonitored sites of

interest. Finding the interpolation procedure entails finding the posterior distribution of

Zu|Zg, Zg being realizations of the true underlying process at monitoring stations and

sampling points within grid cells. Observe that E(Zg) = µg and E(Zu) = µu. Thus the

conditional mean and variance of Zu|Zg, β, θ are

E(Zu|Zg, β,θ) = µu + ΣugΣ−1
g (Zg − µg), and

V ar(Zu|Zg, β,θ) = Σu −ΣugΣ−1
g Σgu.

The covariance matrix of Zu is Σu and the covariance matrix between Zu and Zg is Σug.

Let Σgu denote the transpose of Σug. In the melding model (7), we have Ẑ(s) = Z(s)+e(s).

So, the conditional mean and variance of Ẑu|Zg, β,θ are

E(Ẑu|Zg, β,θ) = µu + ΣugΣ−1
g (Zg − µg), and

V ar(Ẑu|Zg, β,θ) = Σu −ΣugΣ−1
g Σgu + σ2

eI,

in which the dimension of the identity matrix I is the number of stations to be predicted.
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The marginal distribution of Ẑu|Ẑ, Z̃ is

p(Ẑu|Ẑ, Z̃) =
∫

p(Zu|φ)p(φ|Ẑ, Z̃)dφ, (17)

in which φ stands for all the other parameters such as Zg, β and θ that can be approximated

by

p(Ẑu|Zg) ≈ 1
n

n∑

i=1

p(Ẑu|Zg, φ
i),

where φi(i = 1, · · ·, n) is the i-th MCMC sample of all the parameters.

3.5 Extension to Ensembles

Previous sections consider the problem of combining measurements from monitoring sites

made with a single instrument with output from just one deterministic model. In fact,

melding can be extended to combine data from ensembles of measuring instruments and

of deterministic models. For simplicity we consider the case of just a single measuring in-

strument and multiple deterministic models although the extension to incorporate multiple

measuring instruments will be obvious.

To extend Model (7), suppose Z̃1, · · ·, Z̃p are output from an ensemble of p deterministic

models. To ensure a non-singular spatial covariance matrix, suppose no overlap between the

monitoring sites and sampling points within each grid cell for all the different deterministic

models. For simplicity, we assume the number of sampling points within each grid cell is

the same, L, for all the deterministic models although extension to differing numbers is

straightforward. We also assume each deterministic model has modeling output on m grid

cells. Then the dimension of Z is n + p×m×L. As in (9), the joint posterior distribution

23



can be decomposed as follows:

p(Ẑ, Z̃1, · · ·, Z̃p, Z, β, θ, a1, · · ·, ap, b1, · · ··, bp, σ
2
e , σ

2
δ,1, · · ·, σ2

δ,p)

= p(Ẑ|Z, σ2
e)

p∏

i=1

p(Z̃i|Z, ai, bi, σ
2
δ,i)p(Z|β, θ)p(σ2

e , σ
2
δ,1, · · ·, σ2

δ,p, β,θ)

= ΦΣ0(Ẑ −Z0)
p∏

i=1

ΦΣi(Z̃i − ai − biAiZ)p(σ2
δ,i)ΦΣ(θ)(Z −Xβ)p(σ2

e)p(θ)p(β).

Deterministic model i has calibration parameters ai and bi, modeling output error variance

parameter σ2
δ,i. The covariance matrix of measurement error e is Σ0 = σ2

eI and the co-

variance matrix of the modeling output error vector δi of the i-th deterministic model is

Σi = σ2
δ,iI. The dimension of matrix A0 is n × (n + p × m × L) and that of matrix Ai

(i = 1, · · ·, p) is m × (n + p ×m × L). The first n columns of matrix A0 form an identity

matrix and the remaining elements are all 0. Row j of matrix Ai (i = 1, · · ·, p) has elements

1
L from column n + 1 + (i − 1) ×m × L + (j − 1) × L to n + 1 + (i − 1) ×m × L + j × L

and all other elements are zero.

The density of the conditional distribution of (Ẑ, Z̃1, · · ·, Z̃p, Z) given

(β, θ, a1, · · ·, ap, b1, · · ·, bp, σ
2
e , σ

2
δ,1, · · ·, σ2

δ,p) is

p(Ẑ, Z̃1, · · ·, Z̃p, Z)|β, θ, a1, · · ·, ap, b1, · · ·, bp, σ
2
e , σ

2
δ,1, · · ·, σ2

δ,p)

∝ exp
{
−1

2

[(
Ẑ −A0Z

)T
Σ−1

1

(
Ẑ −A0Z

)

+
p∑

i=1

(
Z̃i − ai − biAiZ

)T
Σ−1

i

(
Z̃i − ai − biAiZ

)

+ (Z − µ)T Σ−1 (Z − µ)
]}

= exp

{
−1

2

[
−ZT

(
AT

0 Σ−1
0 Ẑ +

p∑

i=1

biA
t
iΣ

−1
i (Z̃i − ai) + Σ−1µ

)

−
(

Ẑ
t
Σ−1

0 A0 +
p∑

i=1

bi(Z̃i − ai)Σ−1
i Ai + µtΣ−1

)
Z

+ Zt

(
AT

1 Σ−1
1 A1 +

p∑

i=1

b2
i A

t
iΣ

−1
i Ai + Σ−1

)
Z

]}
+ C, (18)

24



µ and Σ being the mean and variance of Z, C, the other terms without Z .

Like (12), the full conditional distribution of Z is the following.

Z| other parameters and all data ∼ MVN(µ̃, Σ̃)

Σ̃
−1

= (At
0Σ

−1
0 A0 +

p∑

i=1

b2
i A

t
iΣ

−1
i Ai + Σ−1)

µ̃ = Σ̃

(
At

0Σ
−1
0 Ẑ +

p∑

i=1

biA
t
iΣ

−1
i (Z̃i − ai) + Σ−1µ

)
.

The prior distribution of (ai, bi), i = 1, · · ·, p, is




ai

bi


 ∼ MVN(β̄i, F̄ ).

Their full conditional distribution is




ai

bi


 |Z̃i, Z,Σi ∼ MVN(B̄C̄, B̄),

where

B̄ =




1t

(AiZ)t


 (Σi)−1

(
1, AiZ

)
+ F̄

−1
i

and

C̄ =




1t

(AiZ)t


 (Σi)−1

(
1, Z̃i

)
+ F̄

−1
i β̄i.

3.6 Reversible Jump MCMC

Previous sections assume a known degree in the polynomial representing the mean function

µ(s) = X(s)β. In other words, the coefficient vector β has known dimension. Green

(1995) proposes the reversible jump MCMC to allow the dimension of β to be an unknown
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parameter. For the melding model, we let k be β’s dimension and ηk = (βk, θ). The

reversible jump MCMC allows k to vary, while the dimension of all other parameters are

fixed. The objective: to sample from the joint posterior distribution of k and ηk, that is,

p(k, ηk|data). To achieve that, we first find the full joint conditional distribution of k and

ηk. Given Z, that full conditional distribution is

p(k, ηk|Z) ∝ p(Z,ηk, k) = p(Z|k, ηk)p(ηk|k)p(k),

p(k) being the prior distribution of the dimension k and p(ηk|k), the prior distribution of ηk

given k. Suppose initially the dimension of β is p (p > 0). Then the next iteration has two

possible outcomes for k: increase the dimension by one (a “birth”) or decrease it by one (a

“death”). The probability of a “birth” or “death” is 1/2. The jump scheme can be quite

arbitrarily but we make the above choice because we favor “birth” or “death” equally. After

choosing either “birth” or “death”, we accept/reject the jump with probability α/(1− α),

the specification of α, being explained below. If we reject the jump, then we stay with the

current dimension p; otherwise, the dimension k will be either p + 1 or p− 1. In the same

iteration, the next step updates the parameters η given k as in the fixed dimensional case.

By using the formulas provided in Green (1995), the acceptance probabilities of “birth” and

“death” are the following.

• “Birth”. To jump from the previous dimension k = p to a new dimension k∗ = p + 1,

we need to propose one extra coefficient βnew for one extra covariate. That extra

coefficient βnew is proposed by a proposal distribution with density q(·). Because

βnew is proposed independently of other coefficients the Jacobian of transforming

from β to β∗ is 1. So, the new coefficient vector is β∗ = (β, βnew) and the acceptance

probability of k∗ = p + 1 is

α = min{1,
p(k∗)p(β∗|k∗)p(Z|k∗, β∗)

p(k)p(β|k)p(Z|k, β)q(βnew)
}.
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• “Death”. To jump from the previous dimension k = p to a new dimension k∗ = p− 1,

we need to delete one coefficient from the coefficient vector. We choose to delete the

last coefficient of the vector β. The reason is that we arrange the covariates from

lower order of the coordinates to higher order and usually the higher order of the

coordinates are more likely to be insignificant than lower ones. Again, the Jacobin is

1 and the acceptance probability of k∗ = p− 1 is

α = min{1,
p(k∗)p(β∗|k∗)p(Z|k∗,β∗)q(βp)

p(k)p(β|k)p(Z|k,β)
}.

After choosing dimension k, we update all other parameters by using Gibbs sampling as in

the fixed dimension case. In Subsection 4.3, we conduct a simulation to see how well the

reversible jump MCMC works when incorporated into the Bayesian melding model.

The discussion above shows how to use the reversible jump MCMC algorithm to choose

the dimension of β. That algorithm can also be used to choose the dimension of coefficients

of the additive calibration a(s). If we let a(s) = Y (s)βa, Y (s) being the polynomial

function of the coordinate at location s, then we can use reversible jump MCMC to choose

the dimension of coefficients βa. The detailed algorithm is very similar to the above when

reversible jump MCMC is applied to choose the dimension of β. The current software does

not include the reversible jump MCMC to choose the dimension of coefficients βa, but we

are planning to incorporate that into the software in the near future.

3.7 Melding Software

We write the melding program in R which is developed by R Development Core Team (2006).

The melding program is online at http://enviro.stat.ubc.ca/melding/meldingcode.zip. The

code for stationary melding model is in the directory “mcmc” and the code for stationary

melding model incorporating the reversible jump MCMC is in the directory “rjmcmc”. We

will soon upload the code for the non-stationary melding model.
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The subdirectory “debug” in directory “mcmc” is used to debug the R programs. That

directory includes the file “simudata.s” simulating the measurements and modeling outputs,

“mcmc.s”, the main function to implement the MCMC algorithm, “update.s”, various func-

tions to sample parameters from their full conditional distributions. The description of the

main function “melding” in file “mcmc.s” is the following.

Dependence: R≥2.3.0 and packages “MASS”.

Usage: melding(m1,m2,nm,sam.sloc,sam.sloc1,ton,burnin,zhat,Zbtilde,degree,cov.model)

Arguments:

• nm: number of sampling points in each grid cell of the modeling output.

• sam.sloc: coordinates of the sampling points and the monitoring stations. It should

be a (m2× nm + m1)× 2 matrix. The first m2× nm rows are the coordinates of the

sampling points in grid cells. The last m1 rows are the coordinates of the monitoring

stations.

• sam.sloc1: coordinates of the unmonitored stations where the measurements are to

be predicted.

• ton: number of MCMC iterations in the Gibbs sampling.

• burnin: the “burn-in” period of the Gibbs sampling.

• zhat: the measurements vector.

• Zbtilde: the modeling outputs vector.

• degree: degree of the polynomial function f(·) for the mean µ(s) = f(s)β and the

following options are allowed:

0 the mean is assumed constant across space.

1 the mean is assumed to be a first order polynomial on the coordinates: µ(s) =

β0 + β1s1 + β2s2.

28



2 the mean is assumed to be a second order polynomial on the coordinates: µ(s) =

β0 + β1s1 + β2s2 + β3s
2
1 + β4s

2
2 + beta5s1s2.

• cov.model: a string with the name of the correlation function. The options are one of

the following three functions:

“exponential”: exp(−d/rho), d is the distance and rho is the range parameter.

“Gaussian”: exp(−d2/rho), d is the distance and rho is the range parameter.

“Matern”: (2(ν− 1)Γ(ν))(− 1)(d/ρ)νKν(d/ρ). ν is the smoothing parameter and

Kν(·) denotes the modified Bessel function of the third kind of order ν.

The function “melding” will return a list of the following objects:

• “beta.est”: posterior mean of the coefficient vector β.

• “beta.est.sd”: posterior standard deviation of the coefficient vector β.

• “theta.est”: posterior mean of the spatial correlation vector θ.

• “theta.est.sd”: posterior standard deviation of the spatial correlation vector θ.

• “prediction”: posterior mean of the spatial prediction.

• “pred.q1”: 5% quantile of the posterior distribution of the spatial prediction.

• “pred.q2”: 95% quantile of the posterior distribution of the spatial prediction.

• “ab.est”: posterior mean of the additive and multiplicative parameters a and b.

• “ab.est.sd”: posterior standard deviation of the additive and multiplicative parameters

a and b.

• “sigmae.est”: posterior mean of the measurement error variance parameter σ2
e .

• “sigmae.est.sd”: posterior standard deviation of the measurement error variance pa-

rameter σ2
e .
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• “sigmad.est”: posterior mean of the modeling output error variance parameter σ2
δ .

• “sigmad.est.sd”: posterior standard deviation of the modeling output error variance

parameter σ2
δ .

The description of various functions in file “update.s” is the following.

• “updatebeta(...)”: generate MCMC sample from the full conditional distribution of

β. The arguments of this function include

y: the realizations of the true underlying process {Z(s)} at monitored stations

and sampling points within grid cells.

x: the covariate matrix at monitored stations and sampling points within grid

cells.

prior.mean: prior mean of the coefficient vector β.

prior.var.solve: inverse of the prior variance matrix of the coefficient vector β.

sigma.solve: inverse of the spatial covariance matrix of true underlying process

{Z}.

• “updatetheta(...)”: generate MCMC sample from the full conditional distribution of

θ.The arguments of this function include

diff: the residuals of the true underlying process.

theta: the values of the covariance parameters theta from the previous MCMC

iteration.

Distance: the Euclidean distance matrix between all the locations including mon-

itored stations and sampling points within grid cells.

n: number of monitored stations and sampling points within grid cells.

cov.model: one of the three possible choices for the covariance function: “expo-

nential”, “Gaussian” and “matern”.
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• “updatesigma(...)”: generate MCMC sample from the full conditional distribution of

σ2
δ and σ2

e . The arguments of this function include

zhat: the measurements vector.

Zbtilde: the modeling outputs vector.

nm: number of sampling points in each grid cell of the modeling output; n:

number of monitored stations and sampling points within grid cells; m2: number of

grid cells.

a: additive bias parameter a; b: multiplicative bias parameter b.

A2: matrix A1 as described in Subsection 3.1.

• “updateab(...)”:generate MCMC sample from the full conditional distribution of a

and b. The arguments of this function include

Zbtilde: same as in the function “updatesigma(...)”. ,y,ab0,fb.solve,nm,m2,A2.

sigmad: the output error variance parameter σ2
δ .

y: same as in the function “updatesigma(...)”.

n,m2,A2: same as in the function updatesigma(...).

• “updatezs(...)”: generate MCMC sample from the full conditional distribution of Z.

The arguments of this function include

X: the covariate matrix at monitored stations and sampling points within grid

cells.

zhat, Zbtilde, nm,m2: same as in the function “updatesigma(...)”.

sigmad, sigmae: the output error variance parameter σ2
δ and measurement error

variance parameter σ2
e .

sigma3.solve: inverse of the spatial covariance matrix of true underlying process

{Z}.
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Reversible Jump MCMC is used to do the variable selection in a Bayesian framework.

It is functioning similar to the step-wise regression in classical framework. All the function

in ”update.s” are the same as in melding model described above. In the function ”rjmeld-

ing(...)”, we do not specify the ”degree”, which is estimated by the reversible jump MCMC.

The function ”rjmeding(...)” only returns the dimension of the coefficient β in the mean of

underlying true process.
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4 Simulation Studies

This section presents an extensive simulation study of melding under a variety of scenarios

that assess the method while checking the R code developed. We begin with the stationary

melding model, one deterministic model and one measuring instrument. Then we move on

to the case with an ensemble of deterministic models. We include a simulation study that

incorporates a reversible jump MCMC into the Bayesian melding model. In addition, studies

are devoted to several other issues such as how the estimation of covariance parameters can

be improved by better monitored site layouts and the effect of choosing bandwidth h in

non-stationary melding model.

4.1 A single deterministic model

This simulation, which assumes a stationary true underlying process, has two purposes.

First, it validates the MCMC algorithm for implementing the melding model. Second, it

compares the results of prediction using melding and Kriging.

Simulation settings

In the simulation, we have 20 monitored sites and 100 un-monitored sites whose responses

are to be predicted. The number of available grid cells increase from 0 to 50 through the

sequence of 0, 2, 10, 20, 30, 50. To reduce our computational burden, we only have one

sampling point within each grid cell. The coordinates of the available/unavailable stations

and sampling points within grid cells are generated uniformly on [−5, 5]× [−5, 5]. Figure 1

depicts the locations of sites (monitored and un-monitored) and sampling points. For each

combination of sites and sampling points, we generate 50 independent datasets.

The data generated for the 100 unmeasured stations will not be used in the MCMC

prediction but left for validation. As the number of grid cells increases, we investigate

changes in prediction accuracy and coverage probability for different prediction intervals at
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various credibility levels (95%, 90%, 80%, 70%, 60%, 40%).

In generating the data, we let the mean of the true underlying process be

E [Z(s)] = µ(s) = β0 + β1s1 + β2s2, (19)

s1, s2 being the coordinates of location s. We assume {Z(s)} has an exponential covariance

structure. At the same time, we give β a prior normal distribution with mean β0 = (1, 1, 1)

and diagonal covariance matrix with diagonal elements (100, 100, 100). The covariance

parameters σ and ρ have independent prior distributions; σ has an inverse gamma prior

distribution with shape = 2, scale = 0.2, while ρ has a gamma prior distribution with

shape = 3.5, scale = 2. The calibration parameters a and b have independent normal

prior distributions with means µa = 0, µb = 1 and variances σ2
a = 100, σ2

b = 100. The

random variables σ2
δ and σ2

e have identical and independent inverse gamma distributions

with shape = 3 and scale = 0.1.

Using the MCMC algorithm to sample from the joint posterior distribution of all pa-

rameters, we take 1000 Gibbs sampling iterations (the first 100 being for “burn-in”), which

is enough to ensure convergence as shown in Figure 3 and Figure 4. That is fortunate

since computational times are long and necessity for a longer series of iterations would

have greatly limited the scope of our simulation study. The software used in our study is

available online (http://enviro.stat.ubc.ca/melding/meldingcode.zip) to enable independent

verification of our findings.

Simulation Results

Tables 1, 2 and 3 present estimation results for the parameters. Table 4 presents the SSPE

(sum of squared prediction errors) for the 100 unmeasured stations. Our results lead to the

following over observations.

• The estimation of a, b and β are very close to their true values.
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Figure 1: Locations of 120 (20 monitored, 100 to be predicted) sites and points sampled
from up to 50 grid cells. Monitored sites (∆), sites with responses to be predicted: +, 1:
the first 2 points from grid cells, 2: 3-10 points, 3: 11-20 points, 4: 21-30 points, 5: 31-50
points.

• Based on Figure 2, which shows the true ozone values versus the melding prediction

in the case of 50 grid cells, we can see the melding predictions are quite close to the

true values.

• The estimates of the covariance parameters θ = (σ, ρ) are reasonably good. However,

the range parameter ρ proves much more difficult to estimate than the sill parameter

σ. The posterior distribution in Figure 5 shows ρ to be widely dispersed.

• Table 4 reveals a significant variation in the SSPE from one simulated dataset to

another.

• Table 4 shows that adding more grid cells decreases the average SSPE for the melding

model. The average is computed over 50 independent datasets. In each, the SSPE
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does not necessarily decrease in a monotonic fashion as the number of cells increases.

However, variation from the non-decreasing pattern in the SSPE may just be due

to the sampling variation between the generated datasets. Table 5 shows the SSPE

obtained by using the true values of the parameters in the predictor. In spite of that

advantage, the SSPE for even this predictor does not always decrease monotonically

as the number of grid cells increases. (See hours 4, 6, and 6, for example.)

• Table 6 shows that the empirical coverage probability for the melding predictor comes

close to the nominal level when we have a reasonably large number of cells (at least

10). However that is not the case when we have just 0 or 2 cells, not surprising given

the paucity of data in those situations. Kriging’s coverage probability turns out to be

much smaller than that for the melding predictor even when no simulated data are

available from the deterministic model (so that the two methods compete “head-on”).

That result would be anticipated since, as is well known, Kriging underestimates the

uncertainty in its spatial predictions.

• Figures 3, 4 and 5 show the MCMC samples from posterior distributions of a, b, β,

σ and ρ in the case of 50 grid cells. From these three figures, we can see the Markov

chain converges after a few iterations.

Table 1: Estimates of a and b with different numbers of modeling outputs available. The

true values are a = 5.0 and b = 2.5. Columns 2-5 are the averages of the posterior means

and standard deviations. The averages are computed over the 50 dataset generated in the

simulation study.

Number of cells ¯̂a s̄d
¯̂
b s̄d

2 5.61 4.14 2.49 0.22

10 5.11 1.40 2.50 0.09

20 5.24 1.02 2.50 0.08

30 5.12 0.82 2.50 0.07

50 5.15 0.63 2.50 0.06
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Table 2: Estimates of the coefficients β = (β0, β1, β2) with different numbers of modeling

outputs available. The true values are β0 = 2.50, β1 = 2.90 and β2 = 3.20. Columns 2-7

are the averages of posterior means and standard deviations. The averages are computed

over the 50 dataset generated in the simulation study.

Number of cells ¯̂
β0 s̄d

¯̂
β1 s̄d

¯̂
β2 s̄d

0 2.35 0.46 2.89 0.12 3.12 0.12

2 2.13 0.75 2.88 0.13 3.11 0.14

10 2.11 0.77 2.88 0.13 3.11 0.14

20 2.09 0.80 2.89 0.13 3.12 0.14

30 2.03 0.82 2.88 0.13 3.12 0.14

50 2.03 0.83 2.88 0.13 3.12 0.14

Improving covariance parameter estimates

Table 3 shows that although the posterior mean of ρ gets closer to the true value as the

number of grid cells increases from 0 to 50, the posterior standard deviation remains rela-

tively large even with 50 grid cells. That may well be due to insufficiently many sampling

points in close proximity to one another. In other words, we do not have enough informa-

tion about the small scale process variability needed to accurately estimate the variogram.

To explore that conjecture, we carry out a small simulation study with 20 monitoring sites

and 50 sampling points in grid cells as in the previous simulation. However, in contrast

to the previous case, we concentrate 25 sampling points in a very small region given by

[−0.05, 0.05]× [−0.05, 0.05]. Except for that variation, we generate these data in precisely

the same way as in the previous simulation. Table 7 shows the results for the estimators of

the covariance parameters. From that table, we can see that the standard error of estimator

for ρ is reduced significantly compared with the result in Table 3, thereby adding support

to our conjecture.
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Table 3: Estimates of the covariance parameters in θ = (σ, ρ) with different numbers of

modeling outputs available. The true values are σ = 1.50, ρ = 5.00. Columns 2-5 are the

averages of posterior means and standard deviations. The averages are computed over the

50 dataset generated in the simulation study.

Number of cells ¯̂σ s̄d ¯̂ρ s̄d

0 1.42 0.26 1.36 1.46

2 1.54 0.31 2.41 2.22

10 1.52 0.35 2.98 2.01

20 1.53 0.33 3.61 2.03

30 1.54 0.33 4.41 2.17

50 1.52 0.27 5.34 2.32

Conclusions

Our simulation results point to strengths and weaknesses in the melding approach.

Strengths:

• The Bayesian melding model can estimate the calibration parameters of the modeling

output very well, given a reasonable number of monitoring sites and grid cells.

• In general, increasing the number of grid cells improves spatial prediction accuracy at

un-monitored sites.

• Estimates of the coefficients of the process mean are very good.

• The melding spatial predictor gives much more realistic estimates of the prediction

uncertainty than does the classical Kriging approach.

Weaknesses:

• Melding does not estimate the covariance parameters (σ and ρ) well in terms of their

standard errors unless an appreciable number of sampling points are very close to one
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Figure 2: Spatial predictions for 100 un-monitored sites Bayesian melding in the case of 50
grid cells.

another. (As seen seen from the previous section, forcing a number of such points into

close proximity does decrease their standard errors substantially).

• The current melding model (7) does not include temporal information. For the ozone

pollution data studied by Kasibhatla and Chameides (2000), both the real measure-

ments and modeling output are hourly data, which does have an obvious daily cycle

and substantial autocorrelations. Extending the melding approach to embrace random

space - time fields would be desirable, as it would enable potentially great strength to

be borrowed across time as well as space.

• The computational burden imposed by melding approach limits its practicality. That

burden stems from the need to invert a large dimensional spatial covariance matrices

three times in each Gibbs sampling iteration. For example, 20 monitoring sites and

100 grid cells with 4 sampling points in each leads to a spatial covariance matrix with
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Figure 3: MCMC Gibbs samplers of the additive and multiplicative calibration parameters,
a and b, respectively, in the case of 50 grid cells.

20 + 100 × 4 = 420 rows and columns. MCMC does not provide a “free Bayesian

lunch” as might naively be suggested by its very elegant theory.

4.2 Ensemble studies

Simulation settings

This subsection presents a simulation study illustrating the use of melding to combine

measurements with modeling outputs from more than one deterministic models. To make

this simulation study closer to the real life case, we uses locations from a dataset studied

by Kasibhatla and Chameides (2000); Hogrefe et al. (2001b,a). There, measurements come

from monitoring sites (“stations”) and modeling output from deterministic models. In fact,

we use only a subset of these stations and grid cells in our simulation, with 50 monitored

sites treated as stations and 100 un-monitored sites. For simplicity we assume only two
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Figure 4: MCMC Gibbs samplers of coefficients β in the case of 50 grid cells.

deterministic models in our simulation study yielding output in 20 grid cells and each of them

has two sampling points. Figure 7 shows the locations of the sites (monitored/unmonitored)

and the sampling points within grid cells.

The mean of the true underlying random process Z is a polynomial function of the

coordinates:

E [Z(s)] = µ(s) = β0 + β1s1 + β2s2 + β3s
2
1 + β4s

2
2 + β5s1s2,

s1 and s2 being the longitude and latitude in degrees of the location s. This second degree

polynomial mean function of the coordinates is one degree higher then the mean function

(19) used in the previous simulation. This more complicated choice permits us to see how

well melding works no matter how complicated the mean function.

In this simulation, we generate 15 independent datasets. Initially we tried 1000 iterations
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Figure 5: MCMC Gibbs samplers of covariance parameters θ = (σ, ρ) in the case of 50 grid
cells.

of the MCMC algorithm but found it failed to converge. Much better results obtained after

we extended the number of iterations to 10,000 with a “burn-in” period of 1000. In the

case of ensemble deterministic models, there are more parameters in the Melding model.

The complexity of ensemble Melding model requires a much longer Markov chain to reach

convergence.

Results

Table 8 gives the estimated values for the parameters and Table 9, the SSPE (sum of squared

prediction errors) for the 100 unmonitored stations. These results, suggest the following

conclusions.

• Estimates of the additive and multiplicative biases for both deterministic models are

quite accurate (Table 8).
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• The estimate of the sill parameter σ is very close to the true value while that of the

range parameter ρ is not. However, the true value does lie within its 90% credibility

interval.

• Estimates of σ2
δ,2 is reasonably accurate. However, the estimate of σ2

δ,1 exceeds the

true value by quite a margin.

• Melding gives better predictions than Kriging, measured by SSPE, because the cal-

ibration parameters are estimated very well, meaning in effect, that the modeling

output helps to achieve better prediction.

In summary, melding seems to work quite well when we have more than one deterministic

model although the estimate of σ2
δ,1 is not very close to the true value.
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4.3 Reversible jump MCMC: the stationary case

This simulation involves 20 stations and 50 grid cells. Each grid cell has only one sampling

point to reduce the computation burden. All stations (monitoring sites) as well as sampling

points are generated uniformly on [−5, 5] × [−5, 5]. The mean function of the underlying

true process is

E [Z(s)] = µ(s) = β0 + β1s1 + β2s2 + β3s1 ∗ s2

with true parameters β = (1.3, 1.2, 0.5, 0.3). The true parameters of the exponential co-

variance function are σ = 1.5 and ρ = 5.0. The calibration parameters are a = 5.0 and

b = 2.5. The variances of the measurement error and modeling output error are σ2
e = 0.25

and σ2
δ = 0.25 respectively. We simulate 15 independent datasets in total.

Figure 8 shows the MCMC plot and histogram of the dimension k. Table 10 shows the
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estimation results. They lead us to make the following observations.

• The Markov chain for k converges to the true dimension k = 4 (Figure 8).

• The estimates of β are averaged over all the MCMC iterations in which β has dimen-

sion of 4 and that the estimates are close to the true value of β.

• The point estimates of all the parameters are accurate except for those of σ2
e and σ2

δ .
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Figure 8: The upper plot: the dimension k of the coefficient β, as a function of the number
of MCMC iterations. The lower plot: histogram of the posterior MCMC samples of k.

4.4 Non-stationarity Melding Model

In Equation (4) the bandwidth h has to be chosen to represent the non-stationary process

by convolution of latent stationary processes. A minimal requirement for h: ensure the

positive definiteness of the covariance matrix. Yet if h is so small that two locations will
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have no stationary processes between them, the covariance between these two locations will

be zero. So, if h is too small then too many zeros will appear in the covariance matrix of

the non-stationary process, resulting in numerical problems when this covariance matrix is

inverted to evaluate the likelihood of the non-stationary process.

On the other hand, if h is too big, the covariance between two locations could also be

too small because the kernel function is too flat and M in (5) is not big enough. In practice

M cannot be chosen too big because of the computational burden. This simulation studies

the effect of varying h. Primary interests focuses on spatial prediction error as well as on

the accuracy of the a and b estimates.

Table 11 and 12 present the prediction and estimation results. They show that as long

as h is not too small, both the SSPE and estimates of a and b are not much different.

However, when the chosen h is too big, say, more than twice the true bandwidth used to

simulate the data, the SSPE is much bigger. Also, the standard error of estimators of a

and b are much bigger with small h (40% of the true h ) than the estimators with a bigger

h. If h is chosen too small, say, less than half of the true bandwidth used to simulated

the data, even the MCMC algorithm will ”crash” because the covariance matrix becomes

singular. So as a conservative strategy, we recommend choosing a large h. That choice of

h is less likely to produce too many zeros in the spatial covariance matrix, leaving it more

numerically stable.
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Table 4: SSPE (Sum of squared prediction errors) by Kriging and Melding with different
number of grid cells.

Dataset Kriging 0cells 2 cells 10 cells 20 cells 30 cells 50 cells
1 116.03 74.11 74.21 75.83 61.75 56.67 71.86
2 104.50 42.16 42.73 40.57 40.60 41.17 39.46
3 223.32 104.80 115.60 107.57 94.54 88.72 78.28
4 119.76 78.73 76.37 73.50 73.48 69.00 63.57
5 182.26 80.53 90.61 72.47 73.20 69.82 62.21
6 135.59 59.63 64.79 52.65 52.60 53.14 51.06
7 150.89 68.86 68.71 70.23 68.27 67.88 67.92
8 127.38 92.14 90.36 94.48 86.12 89.74 79.00
9 115.09 65.81 59.11 62.19 57.87 60.31 56.87
10 121.31 120.22 117.87 106.56 103.36 91.41 82.43
11 107.19 56.38 67.78 57.15 54.68 55.63 51.33
12 172.63 100.56 96.47 96.12 93.62 89.37 86.77
13 140.90 71.37 70.93 69.01 63.82 62.55 56.94
14 194.51 126.80 134.38 134.74 120.24 123.25 104.89
15 181.34 92.89 89.98 83.47 84.37 83.54 78.83
16 257.84 151.52 141.73 129.46 118.79 105.07 95.62
17 141.69 81.64 80.08 77.18 73.68 72.90 57.69
18 170.47 90.68 89.63 91.66 84.61 79.97 73.82
19 113.81 73.24 74.97 74.34 69.21 67.39 66.16
20 99.03 83.48 85.73 82.64 80.42 79.52 73.01
21 249.37 163.09 147.83 156.51 141.12 131.03 105.89
22 138.46 85.70 95.09 81.80 79.31 72.60 64.44
23 138.66 82.25 73.79 81.62 69.68 68.94 61.82
24 110.81 76.74 75.58 79.02 81.83 81.40 69.30
25 110.84 92.90 98.19 88.23 84.67 82.00 76.09
26 162.32 112.48 114.98 110.75 102.47 91.22 85.60
27 203.55 112.85 113.07 116.73 123.22 112.19 105.84
28 138.53 72.54 74.38 73.53 69.50 68.60 66.67
29 117.12 82.46 82.15 101.03 75.22 74.61 69.97
30 152.81 135.98 133.59 122.34 117.14 93.48 72.49
31 157.05 117.43 117.13 107.43 106.66 105.21 92.00
32 140.36 101.53 100.57 93.45 88.29 93.38 88.65
33 142.60 103.28 101.85 104.96 106.54 111.43 107.54
34 102.68 93.99 86.41 88.18 74.78 77.84 67.23
35 153.52 80.53 78.76 75.80 74.19 76.07 70.82
36 171.43 75.52 73.94 70.59 65.64 63.30 52.16
37 105.98 85.41 85.17 79.46 72.99 78.09 66.47
38 144.45 62.95 71.70 63.52 68.56 66.12 60.56
39 257.85 173.02 170.12 163.96 179.29 154.24 132.83
40 158.86 123.88 119.54 109.30 95.47 91.86 104.50
41 145.30 93.46 100.74 101.24 94.68 84.76 65.31
42 128.23 72.57 73.41 73.23 69.72 67.10 65.88
43 193.23 80.03 83.14 82.81 82.26 80.17 75.48
44 130.01 72.40 72.02 74.59 74.97 70.93 67.97
45 112.00 79.34 80.79 72.00 76.52 67.87 81.12
46 168.65 121.84 95.57 91.42 86.39 91.86 76.49
47 213.19 137.96 139.81 122.81 122.18 112.25 93.99
48 100.05 84.13 74.76 76.80 68.59 65.79 63.60
49 136.49 70.64 74.48 66.42 62.05 66.89 54.86
50 113.47 110.61 92.53 89.05 85.96 79.55 73.53

mean 149.47 93.46 92.66 89.41 85.10 81.76 74.74
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Table 5: The SSPE when the true values of the parameters (a, b, β, θ) are used. That
is, we use the conditional mean of the unavailable measurements based on the available
measurements to predict at the 100 unavailable stations.

Dataset 2 cells 10 cells 20 cells 30 cells 50 cells
1 71.45 67.06 58.71 43.00 43.47
2 40.87 44.22 40.07 41.19 38.79
3 91.50 89.48 83.86 78.88 59.20
4 66.72 62.83 62.69 55.20 56.90
5 82.61 61.58 61.24 61.48 45.55
6 53.37 52.38 49.85 49.16 51.02
7 80.49 78.99 72.17 65.16 62.48
8 75.61 78.63 66.16 67.84 64.87
9 52.14 51.78 50.65 54.46 56.31

10 74.02 71.02 58.54 50.27 44.31
11 59.88 55.76 48.13 46.95 48.71
12 95.59 94.42 75.94 67.41 59.28
13 63.23 61.81 57.52 52.86 55.63
14 91.40 86.96 85.65 69.78 54.15
15 87.79 90.01 85.94 81.63 62.36
16 57.62 56.83 54.90 50.70 44.47
17 66.08 67.89 58.25 60.47 45.96
18 85.65 81.95 61.91 61.83 50.13
19 70.43 72.75 65.97 57.36 48.66
20 77.18 66.47 61.21 56.51 51.70
21 105.28 99.17 103.48 71.71 54.18
22 72.46 75.67 59.15 62.64 53.83
23 53.52 52.24 46.91 48.51 47.59
24 72.67 68.45 64.94 67.81 45.60
25 77.12 68.43 68.92 59.51 60.16
26 89.49 84.16 70.41 68.56 50.87
27 112.37 103.01 72.94 72.33 54.01
28 69.11 58.72 60.26 60.95 56.24
29 63.89 65.79 54.27 52.92 55.52
30 69.43 62.33 59.45 45.74 43.89
31 94.46 89.88 83.92 80.52 74.34
32 80.29 56.97 57.68 47.16 47.38
33 94.49 84.18 86.67 53.36 48.66
34 73.97 62.18 54.61 53.44 45.64
35 77.03 68.71 62.90 65.48 55.35
36 49.02 48.34 45.57 40.47 39.14
37 57.07 56.01 52.06 51.31 54.31
38 54.79 53.17 55.68 58.89 43.27
39 107.22 84.85 67.01 71.63 72.91
40 79.55 75.74 65.22 66.18 57.71
41 93.32 93.24 52.51 54.55 44.87
42 60.07 64.15 59.39 50.81 45.13
43 71.83 74.13 73.27 68.45 51.47
44 71.14 71.26 71.38 64.28 61.59
45 69.84 57.97 54.07 52.08 48.51
46 69.84 61.69 67.31 75.64 70.61
47 78.45 71.75 70.10 56.13 56.87
48 65.29 56.04 45.04 43.28 38.92
49 60.39 55.84 51.19 43.97 42.54
50 80.41 75.18 64.94 58.50 47.76

mean 74.35 69.84 63.21 58.78 52.26

48



Table 6: Coverage probability of the credible interval for the simulation study in Section
4.1, with 20 monitored sites and up to 50 grid cells to predict 100 un-monitored sites. The
first column is the nominal coverage probability of the credible interval.

kriging 0 cell 2 cells 10 cells 20 cells 30 cells 50 cells
0.95 0.37 0.68 0.91 0.94 0.94 0.97 0.95
0.90 0.32 0.59 0.84 0.89 0.88 0.86 0.91
0.80 0.26 0.49 0.73 0.79 0.78 0.76 0.80
0.70 0.21 0.40 0.62 0.70 0.68 0.66 0.71
0.60 0.18 0.33 0.52 0.57 0.56 0.55 0.59
0.40 0.12 0.22 0.34 0.39 0.38 0.36 0.40

Table 7: Estimates are based on 20 monitored sites and 50 sampling points. There are
25 sampling points in close proximity to one another. The averages are computed over 50
datasets. True values are σ = 1.50 and ρ = 5.00.

averaged posterior mean averaged posterior sd
σ 0.97 0.25
ρ 4.69 0.76
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Table 8: Parameter estimates in the simulation study of ensembles of deterministic models

in Subsection 4.2. Columns 3-4 give the averages of posterior means and standard deviations

for ai, bi, i = 1, 2, the calibration parameters of the modeling output for two deterministic

models. σδ,1 and σδ,2 are the variances of two modeling output error processes. The averages

are computed over 15 datasets.

Parameters True value mean sd
a1 5.00 4.94 0.48
b1 2.50 2.50 0.02
a2 4.00 4.00 0.68
b2 3.40 3.39 0.03
σ 1.50 1.51 0.28
ρ 5.00 6.73 0.91
β0 2.50 1.98 0.59
β1 2.90 2.92 0.17
β2 3.20 3.20 0.16
β3 0.80 0.80 0.03
β4 1.10 1.11 0.03
β5 1.30 0.31 0.03
σe 0.25 0.33 0.13
σδ,1 0.25 0.24 0.46
σδ,2 0.25 4.51 0.91
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Table 9: SSPE of Melding and Kriging in the simulation of multi-deterministic models. We

have 50 monitored sites and 100 unmonitored ones. There are 20 grid cells each of them

having two sampling points inside.

Dataset Kriging Bayesian Melding
1 42.57 33.13
2 74.07 70.99
3 85.39 59.90
4 56.63 48.59
5 81.75 45.36
6 81.91 73.19
7 56.64 55.89
8 55.31 48.74
9 85.39 56.79
10 72.93 57.10
11 60.41 49.30
12 65.04 59.70
13 97.69 50.43
14 62.23 60.55
15 60.79 41.45

mean 69.25 54.07

Table 10: Estimates in the stationary case using reversible jump Melding.

Parameters True value Estimate Standard Error
k 4 4.079 0.41
a1 5.00 5.32 0.52
b1 2.50 2.45 0.07
σ 1.50 1.10 0.27
ρ 5.00 4.94 0.67
β0 1.30 0.96 0.74
β1 1.20 1.06 0.49
β2 0.50 0.51 0.10
β3 0.30 0.32 0.04
σ2

e 0.25 0.39 0.06
σ2

δ 0.25 4.52 0.83
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Table 11: SSPEs with different choices of h in non-stationary Melding. Columns 2-6 give
the SSPEs for different ratios of the true bandwidth generating the data over the chosen
bandwidth in the non-stationary melding model.

dataset 1.67 1.33 1.00 0.50 0.40
1 7.99 7.74 8.09 8.89 10.73
2 3.39 3.01 2.92 3.26 5.71
3 3.50 3.78 7.40 2.59 4.63
4 4.30 3.60 3.26 3.28 4.24
5 4.11 4.79 4.44 5.18 17.33
6 2.04 4.01 2.18 3.61 2.71
7 3.87 3.87 5.12 4.19 5.58
8 6.15 6.13 7.70 6.40 8.36
9 2.90 3.04 2.49 5.09 18.33
10 4.63 5.94 4.96 7.03 6.68
11 2.49 3.15 3.27 5.11 3.08
12 3.29 2.40 2.56 5.09 7.56
13 4.13 4.40 5.46 5.07 3.50
14 3.27 3.49 3.81 2.90 7.70
15 7.45 7.26 7.87 7.04 6.26

mean 4.23 4.44 4.77 4.98 7.49

Table 12: Estimates of a and b for varying values of h in non-stationary Melding. Columns 2-
5 give the averages of posterior means and standard deviations. The averages are computed
over the 15 datasets generated in the simulation study. The true values are a = 5.00 and
b = 2.50.

(true h)/(chosen h) ¯̂a s̄d
¯̂
b s̄d

1.67 5.04 0.33 2.49 0.05
1.33 5.03 0.32 2.49 0.05
1.00 5.01 0.31 2.49 0.05
0.50 5.00 0.30 2.50 0.05
0.40 5.51 1.23 2.72 0.58
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5 Application

This section presents an analysis of the results obtained by using the melding model to

combine simulated ozone levels from a deterministic model with measurements from ozone

monitoring sites located in the eastern and central USA.

5.1 Data description

The data in this section comes from two sources: regional surface ozone concentration

measurements and modeling output from a deterministic model AQM (air quality model),

a non-hydrostatic version of the MAQSIP (Multiscale Air Quality Simulation Platform)

model. This AQM system has been described in detail by Wheeler and Houyoux. (1998).

The AQM modeling output is based on grid cells with resolution 6× 6 km2. The measure-

ments are from the Air Quality System (AQS) monitoring network. Both the measurements

and modeling output are hourly data starting from May 15 to September 11, 1995 over a

120-day period. The dataset represents 375 monitoring stations in the AIRS network and

307 grid cells in the AQM output. Besides the fact that measurements and modeling out-

put are based on different supports, the data represent different time standards, modeling

output being based on the GMT (Greenwich Mean Time) time standard, the measurements

on local time. Ignoring this time difference would result in poor correlation between mea-

surements and modeling output. The next subsection shows the necessity to adjust this

discrepancy.

This dataset has been analyzed by Kasibhatla and Chameides (2000), Hogrefe et al.

(2001b) as well as Hogrefe et al. (2001a). The first paper compares the Pearson correlation

coefficients between quantiles (10th, 25th, 50th, 75th and 90th) of the measurements and

AQM modeling output for daily average data. The latter two papers also analyze the

correlation between measurements and modeling output, but after decomposing the hourly

time series into sub-series on different time scales, using the Kolmogorov-Zurbenko filter of
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Zurbenko (1986). They reach similar conclusions, that the AQM modeling output represents

the measurement better at longer time scales.

However in estimating the correlation between measurements and model output, the

above analysis ignores the temporal and spatial correlation in the data, thus leaving some

uncertainty about their validity. Moreover correlation analysis does not help in the as-

sessment of the model calibration (additive and multiplicative) since the correlation is by

definition invariant under the transformation of measurement scales. Finally our interest

lies not merely in the degree of linear association between measurements and modeling out-

put measured by the correlation, but rather in predicting the ozone level at unmonitored

locations. These factors motivate a new data analysis using the Bayesian melding model.

5.2 Preliminary data analysis

The previous subsection points out that the measurements are based on local time while

the modeling output are based on GMT (Greenwich Mean Time). So we need to adjust

the modeling output to the local time. Being between May and September, those local

times must be in daylight savings for the zone of the relevant monitoring site, that is one

of: Eastern Daylight Time (EDT), Central Daylight Time (CDT) and Mountain Daylight

Time (MDT).

Prior to adjustment, the correlation between measurements and modeling output can

be quite small. Consider for example, the measurements from monitoring site (or station

for brevity) #290470003 that lies inside the model grid cell #1847. That station, being in

Mississippi, is on CDT, that is GMT -5 hours before adjustment. The scatter plots and

their Pearson correlation coefficient in Figure 9 show little linear association between the

two series prior to realigning the times. Correcting the misalignment increases considerably,

the correlation between that measurements and simulated data for grid cell #1847. Figure

9 demonstrates the necessity to adjust the modeling output to the local time standard. The

dataset has 119 days after the adjustment.
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Figure 9: Scatter plots and Pearson correlations between measurements of station
#290470003 and modeling output for cell #1847. The x-axis stands for the modeling out-
put of grid cell #1847 and the y-axis stands for the measurements at station #290470003.
The station #290470003 is inside grid cell #1847. The upper panel is before adjusting the
modeling output to the local time and the lower is after. Observe that the adjustment
results in marked increase in the correlation from 0.2 to 0.7.

The measurement series, unlike that for the modeling output, have missing values. For

example, all the measurements from station 550730005 (in Wisconsin state) are missing. To

deal with the missing values, we first choose those stations that have no more than 100 hours

of missing measurements. Second, we use the 24 hour mean to fill in the missing values.

For example, if the missing value occurs at 10 AM, then we use the average of the available

values at 10 AM every day to fill in this missing value. After adjusting for different time

standards and ignoring the stations with more than 100 missing measurements, we have

measurements at 81 stations and modeling output on 375 grid cells of 2856 hours (119

days). In these 375 grid cells, there are 78 grid cells which contain one and only one station.

To enable us understand better the role of model-to-measurement correlation in spatial
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prediction, from now on the data always will focus on the 78 grid cells with 78 stations

inside the grid cells. Although the measurements and modeling output are available during

the 119 day period, we only focus on the 30 days of July, when the ozone concentration is

at a high level due to high temperatures.

The ozone concentration level at night and early in the morning is much lower than

during the day. Figure 10 shows the 24 side-by-side hourly box plots of measured ozone

levels at station #10731005 and simulated ozone levels at grid cell #3529. The station

#10731005 is inside grid cell #3529. Both the observed and simulated ozone level are at

a peak during the 8 hours from 10 AM to 17 PM. Figure 11 shows the histograms of the

model-to-measurement correlation at all 24 hours and at the 8 hours. Based on Figures

10 and 11, we focus on the analysis of 8-hour measurements and modeling output, since

otherwise the two data sources are quite dissimilar. Moreover, little interest obtains in the

hours outside that period. From now on, the 8-hour average measurements or modeling

output is also referred to as the ”daily average”. We apply the melding model to analyze

the hourly, daily and weekly average ozone concentration levels for the selected 8-hour time

period. Kasibhatla and Chameides (2000); Fiore et al. (2003, 2004) focus their analysis on

similar daily average data. In particular, Fiore et al. (2003) use the empirical orthogonal

function (EOF) method, a principal component analysis (PCA), to compare the first two

principal components of the measurement and modeling output.

The simulated ozone levels at the 78 grid cells and measurements at 48 stations are used

to fit the Bayesian melding Model (7). The measurements at the remaining 30 stations are

used as validation data. These 30 stations are called “un-monitoring” sites from now on.

Figure 13 maps the grid cells and monitoring/un-monitoring sites.

We compare the results of spatial prediction between two competing approaches: Bayesian

melding and Kriging. In fact, we have two different versions of Kriging: Kriging using mea-

surements and Kriging using modeling output. The RMSPE (root mean square prediction

error) measures the predictive performance. At time t, which could be hour, day or week,
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Figure 10: The upper panel is the 24 side-by-side hourly box plots of measurements at
station #10731005. The lower panel is the 24 side-by-side hourly box plots of modeling
output (simulated ozone levels) in grid cell #3529. The station #10731005 lies inside grid
cell #3529.

we define the RMSPE by

RMSPE =

√√√√ 1
n

n∑

i=1

(Oi − Ôi)2,

n being the number of un-monitoring sites to be predicted, Oi, the measurement at station

i and Ôi, the prediction.

5.3 Analysis of Hourly Data

For the 30 days from July 1 to July 30, 1995, we have 240 hourly measurements and

modeling outputs at the daily 8-hour time period (10 AM-17 PM) selected for analysis.
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Figure 11: Histograms of correlation over space at each hour. The upper histogram is for all
the 24 hours. The lower histogram is for the 8-hour day time. Notice the markedly larger
model-to-measurement correlations during the hours 10AM-17PM.

We apply melding and Kriging to each hour separately. For brevity, we list the average

RMSPE for melding and Kriging in Table 13. The averages are computed over the 240

hours. Figure 12 shows the plot of the RMSPE difference between melding and Kriging

using only measurements versus the correlation between measurements and modeling output

over space. We offer the following observations about the analysis of hourly data.

• Table 13 shows that on average, the melding predictor has the smallest RMSPE among

all the competitive prediction approaches.

• The melding predictor seems marginally better than Kriging using only the measure-

ments. The RMSPE for melding is 15.82 and for Kriging using measurements, 16.36.
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As shown in the next subsection, the melding predictor does much better than that

version of Kriging in the analysis of daily average data.

• Kriging using modeling output has the biggest RMSPE, pointing to the desirability

of calibrating the modeling output.

• Figure 12 shows that in general, for spatial prediction melding outperforms Kriging

using measurements when the correlation between measurements and modeling output

is 0.6 or bigger.

• The coverage probability of melding’s 90% predictive interval is 86.72%, which is fairly

good.

Table 13: Average RMSPE of hourly ozone predictions at 30 stations. Column 1: RMSPE

for Bayesian melding. Column 2: RMSPE for Kriging using measurements. Column 3:

RMSPE for Kriging using modeling output.

melding Kriging 1 Kriging 2

15.82 16.36 16.91

5.4 Analysis of Daily Average Data

This section presents our analysis of daily 8-hour (10AM-17PM) measurements and model-

ing output averages. We would make the following observations about our analysis of daily

average data.

• Table 14 shows that for daily averages, melding has the smallest RMSPE among all

competitive prediction approaches. The RMSPE of melding is smaller than Kriging

using measurements on 18 out of the 30 days. The average RMSPE for Kriging using

modeling output is the biggest, showing the need to calibrate the modeling output.
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Figure 12: Hourly RMSPE (root mean square prediction error) difference between Kriging
using measurements and melding versus the correlation over space between measurements
and modeling output. Points above the horizontal line in the plot represent victories for
Melding over Kriging.

• Figure 14 confirms the intuitively plausible result that in general the prediction per-

formance of melding improves as the correlation between measurements and modeling

output increases. When the correlation exceeds 0.6, melding performs substantially

better than Kriging on most days.

• In implementing the melding model, we assume the additive calibration parameter

a(s) is a polynomial function of the coordinates at location s, that is a(s) = f(s)βa.

We use the reversible jump MCMC to choose the degree of the polynomial function.

The reversible jump MCMC can sample the dimension of βa from its posterior distri-

bution. Section 3.6 describes this reversible jump MCMC in detail. For all 30 days,
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the posterior distribution of βa ranges between 1 to 3. So, we can assume a(s) is a

linear function of the coordinates at location s, that is, a(s) = a0 + a1s1 + a2s2, s1

and s2 being the longitude and latitude in degrees at location s. By assuming a is a

linear function coordinates at location s, we get a smaller RMSPE than by assuming

a is a constant across the space.

• In the melding Model (7), we assume that the multiplicative calibration parameter

b is constant across stations. The more realistic this assumption, the better will be

the melding predictor’s performance against Kriging. In the dataset, each station is

located in a grid cell, so the modeling output for that grid cell can be treated as the

modeling output at the station inside the grid cell. Thus, at each grid cell B, we can

plausibly estimate b by

b̂(B) =
Z̃(B)− â(B)

Ẑ(B)
, (20)

where Ẑ(B) =
∫
B Ẑ(s)ds is the integral of {Ẑ(s)} over the grid cell B. Because

we only have one sampling point in each grid cell, this integral is just Ẑ(s), that

is, the measurement at the station inside grid cell B. After obtaining b̂(B) from

the above formula, we can compute the sampling variance of {b̂(B)} and the absolute

mean difference of {b̂(B)} between grid cells having measured or unmeasured stations.

Figure 15 and Figure 16 show plots of (Kriging RMSPE - melding RMSPE) versus

V̂ar(b̂) and the absolute mean difference for b̂, respectively, for the 30 days in July.

From these plots we can see that melding prediction is better than Kriging when V̂ar(b̂)

and the absolute mean difference of b̂ are small. This finding is expected because the

melding prediction is better when the model assumptions are more justified.

• The coverage probability of the 90% credible for the melding prediction is 87.33%,

which is fairly good.
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Figure 13: Locations of 48 available stations, 78 grid cells and 30 unavailable stations. ∆:
available stations. Rectangle: grid cells. +: unavailable stations to be predicted.

5.5 Analysis of weekly Average Data

Fuentes and Raftery (2005) analyze weekly average SO2 measurements and modeling output

in USA. The available/unavailable stations and grid cells used in the analysis of weekly

average data is the same as in the analysis of daily average data. However, with averages

over longer time scales, the predictions of both melding and Kriging are expected to improve

because of better normality of the data distribution and smaller variation of the average data

over the longer time scale. The improvement of the melding prediction also lies in the better

performance of deterministic model for the longer time scale as noted by Kasibhatla and

Chameides (2000); Hogrefe et al. (2001b,a). Table 15 presents that the RMSPE of melding,

Kriging with only measurements, Kriging with measurement plus modeling output without
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Figure 14: RMSPE difference between Kriging prediction with measurements and meld-
ing prediction versus the correlation over space between measurements and modeling out-
put. Points above the plotted horizontal line represented victory for Melding. Notice the
supremacy of Melding when correlation exceeds 0.6.

calibration, Kriging with only modeling output without calibration. We have the following

findings from the analysis of weekly average data.

• Table 15 shows that melding achieves the smallest RMSPE in week 2 and week 4. On

average over all 4 weeks, Melding has smallest RMSPE.

• As expected, the RMSPE for all the predictors are smaller than RMSPE in the analysis

of daily average data.

• Melding’s 90% predictive interval has a reasonably good coverage probability of 91.67%.

• The RMSPE for the melding model in Tables 13, 14 and 15 tells us that the melding
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Figure 15: Daily RMSPE difference between Kriging with measurements and melding versus
the variance of b̂ (defined by formula (20) ) across space. Points above the plotted horizontal
line represented victory for Melding. Notice the supremacy of Melding when the variance
of b̂ over space is small.

model’s predictor improves as the averaging time scale increases. This agrees with

the findings in Kasibhatla and Chameides (2000); Hogrefe et al. (2001a), that is, the

modeling output represents the measurements better on larger time scales.

6 Summary and Conclusions

Previous sections present the details of the Bayesian melding model and the MCMC al-

gorithm used to fit the model. We have also conducted a comprehensive simulation and

applied the melding model to the ozone data in different time scales.

We see that the Bayesian melding model has its strengths and weakness. Its strengths

are the following.
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Figure 16: Daily RMSPE difference between Kriging with only measurement and melding
versus the absolute mean difference of b̂ (defined by formula (20)) between the measured
and unmeasured stations. Points above the plotted horizontal line represented victory for
Melding. Notice the supremacy of Melding when the absolute mean difference of b̂ over
space is small.

• The novel method connects the measurement process with the modeling output pro-

cess by assuming the existence of an underlying process. This approach addresses the

difference-in-support problem in a fundamental way.

• Melding can do a variety of things such as predict unmeasured responses, assessing

deterministic modeling output, detecting spatial trends and estimating spatial corre-

lation.

• The model better estimates prediction uncertainty than the classical approach, Krig-

ing. In our data analysis, the coverage probability of Melding’s predictive interval is

reasonably close to the nominal level.

• Its Bayesian framework makes melding relatively easy to extend to incorporate other
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things like ensembles, the reversible jump MCMC and non-stationary spatial correla-

tion.

However, melding model also has some weakness as following.

• The computational price is high. By sampling points within grid cells, the dimension

of the spatial correlation matrix can be very big even with a modest number of grid

cells. Inverting the spatial covariance matrix three times in each MCMC iteration

takes a lot of computation time.

• Melding does not yet cover space-time processes and hence it can not ”borrow strength”

over time. Ozone data are recorded hourly, which obviously has strong periodicity and

strong auto-correlation. The main challenge to create a “space-time” Bayesian meld-

ing model lies in the computation burden. With temporal correlation, the space-time

correlation matrix will be huge and hence more likely to be ill-conditioned. Inverting

such a matrix will be both difficult and computationally expensive.

• Melding’s normality assumption poses a problem. For the measurements, a transfor-

mation maybe used to validate that assumption. However, with the modeling output

data, non-linear transformations cannot be used since the modeling output is repre-

sented by such an integral of the true process.

• The locations of sampling points within grid cells change because of the random sam-

pling scheme. Because the mean of the underlying process depends on its geographical

coordinates in general (like universal Kriging), the prediction result have some varia-

tion every time the Bayesian melding is used for the same data.

Finally, we offer the following observations.

• Where some of the stations are within grid cells, it would seem better to use them

instead of sampling points within the grid cells to reduce the dimension of the spatial

correlation matrix.
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• The meaning of the concept of a “true underlying process” seems unclear since it is

merely a conceptual construct rather than a physically meaningful process. Thus its

may will be criticized.

• We assume the underlying process mean to be a polynomial function of the geograph-

ical coordinates, which may not be enough if other variable such as temperature also

affects the ozone level. We can side-step the assumption of a true underlying process

by regressing the measurements on the modeling output directly.
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Table 14: RMSPE (root mean square prediction error) for predicting daily average of ozone

levels at 30 stations. Column 1: days. Column 2: RMSPE for Bayesian melding. Column

3: RMSPE for Kriging with measurements. Column 4: RMSPE for Kriging with modeling

output. The number with * is the smallest number in each row.

day melding Kriging 1 Kriging 2

1 14.50 13.98 13.91*

2 8.99 8.58* 12.86

3 11.43 8.71* 11.84

4 13.53 12.19* 15.51

5 13.65 10.63* 15.59

6 14.43 11.69* 16.54

7 13.59 13.04* 13.54

8 11.73* 11.82 12.89

9 17.86 14.11 15.99

10 15.14 9.43 12.76

11 11.59 15.60 11.32

12 15.30* 16.24 15.30

13 14.14* 19.61 15.16

14 15.61* 22.67 17.99

15 18.55 21.06 18.45*

16 17.95 19.36 17.60*

17 11.37* 14.14 11.70

18 13.67 16.84 11.65*

19 6.98 * 11.54 10.51

20 12.84* 14.03 15.45

21 17.44 16.61* 17.33

22 9.48* 11.88 12.54

23 10.04* 11.65 8.65

24 9.60* 9.37 11.99

25 11.76* 12.90 21.11

26 17.55* 18.11 19.03

27 12.26* 15.94 14.95

28 14.31* 18.33 18.07

29 13.49 12.63* 19.10

30 12.41* 14.66 14.26

mean 13.37* 14.24 14.79
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Table 15: RMSPE (root mean square prediction error) for predicting weekly average of

ozone levels at 30 stations. Column 1: days. Column 2: RMSPE for Bayesian melding.

Column 3: RMSPE for Kriging with measurements. Column 4: RMSPE for Kriging with

modeling output. The number with * is the smallest number in each row.

week melding Kriging 1 Kriging 2

1 9.43 7.98* 13.77

2 9.72* 11.22 10.51

3 10.32 10.21 9.83*

4 8.08* 11.76 12.71

mean 9.38* 10.29 11.71
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