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Abstract

In mixed effects model, observations are a function of fixed and random ef-

fects and an error term. This structure determines a very specific structure

for the variances and covariances of these observations. Unfortunately, the

specific parameters of this variance/covariance structure might not be iden-

tifiable. Nonidentifiability can lead to complications in numerical estimation

algorithms or worse, to incorrect or ambiguous inference. We study the iden-

tifiability of normal linear mixed effects models. We derive necessary and

sufficient conditions of identifiability and we study identifiability in some

commonly used variance-covariance structures. The results are particularly

timely, given the recent interest in linear mixed effects models within the

longitudinal and functional data analysis literature. With that in mind, we

extend our discussion to identifiability in models for scalar responses depend-

ing on function-valued covariates.
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1 Introduction

Mixed effects models have moved beyond the original simple models, becom-

ing more complicated, containing more parameters. However, two different

sets of parameters producing the same covariance matrix for the observations

may cause problems for parameter estimation and for inference. In princi-

ple, parameter identifiability is the first thing that should be verified when

building a model. As Demidenko (2004, p.118) states, “identifiability may

be viewed as a necessary property for the adequacy of a statistical model”.

We study identifiability in normal linear mixed effects models. In the

next section, we define the classical mixed effects model and show that in an

unrestricted form and a specific restricted form, the model is not identifiable.

Sections 3 and 4 give sufficient conditions to identify parameters in various

models. In Section 5 we discuss identifiability of extended models.

2 Motivation

In this section, we give the definition of nonidentifiability. Then we introduce

the general unrestricted classical linear mixed effects model and give two

models that are not nonidentifiable.

Definition 2.1 Let y be the vector of observable random variables with dis-

tribution function Pθ where θ is in the parameter space Θ. This probability

model for y is not identifiable if and only if there exist θ,θ∗ ∈ Θ, with θ 6= θ∗

and Pθ = Pθ∗.
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Throughout the paper, we assume all random variables follow normal dis-

tributions. As the normal distribution is uniquely characterized by its first

two moments, identifiability of a normal distribution function then reduces

to the identifiability of its mean vector and covariance matrix (Demidenko,

2004, Proposition 10, p.118).

In the standard linear mixed effects model, y is the observable random

vector of length n and X and Z are known, non-random design matrices

with dimensions n × p, n > p and n × q, n > q respectively. We assume

throughout that both X and Z have full column rank. Then

y = Xβ + Zu + ε,

u ∼ N(0,Σu), ε ∼ N(0,Σε), u independent of ε. (1)

The random effects vector u and the error vector ε are unobservable. This

model has been studied and applied by, for instance, McCulloch and Searle

(2001).

Unknown parameters in the model are (β,θ), where β ∈ B ⊆ <p, θ =

(Σε,Σu) ∈ Θ̃ ⊆ Θ = the set of all (Σε,Σu) with Σε, n × n, and Σu, q × q,

both symmetric and positive definite. Throughout the paper, we assume that

β and θ do not have common elements, i.e. we assume that (β,θ) ∈ B⊗ Θ̃.

We also assume that Σε and Σu do not have common elements. That is, we

sometimes assume that Θ̃ = Θ̃ε ⊗ Θ̃u where Θ̃ε ⊆ Θε and Θ̃u ⊆ Θu, and

Θε contains all n× n positive definite symmetric matrices and Θu contains

all q × q positive definite symmetric matrices. We take as our operating

definition of identifiability the ability to identify the parameters β, Σε and

Σu.

4



The linear mixed effects model has become popular in the analysis of

longitudinal and functional data. For instance, the response of individual i at

time t can be modelled as
∑

αjφj(t)+
∑

uikψk(t) plus error, where the αj’s are

fixed population effects and the uik’s are individual-specific random effects.

The inclusion of random effects allows us to realistically model covariance

within an individual. Taking φj’s and ψk’s equal to B-splines allows us to

flexibly model a wide variety of responses. In addition, if we allow some of

the αj’s to be random but with a very specific covariance structure, then

the resulting best linear unbiased predictors of the αj’s are computationally

equivalent to the parameter estimates in a smoothing spline fit or a penalized

B-spline fit. See Verbyla (1999) or Ruppert, Wand and Carroll (2003).

The parameter vector β is always identifiable since Ey = Xβ and X is of

full column rank. So to study identifiability in the normal model, it suffices

to study the covariance matrix of y, Σy = ZΣuZ
′ + Σε, to see when Σε and

Σu are identifiable. Thus, nonidentifiability of model (1) with parameter

space B⊗ Θ̃ is equivalent to the existence of θ,θ∗ ∈ Θ̃, with θ 6= θ∗ giving

the same Σy, i.e.

ZΣuZ
′ + Σε = ZΣ∗

uZ
′ + Σε

∗. (2)

In Example 2.1 below, we show that the unrestricted model where Θ̃ =

Θ is nonidentifiable. A similar argument shows that the restricted model

in Example 2.2 below is not identifiable. Example 2.2 uses the covariance

structure assumed for the random effects in the penalized Bspline method.

Thus, when using penalized Bsplines, one cannot assume a general form for

Σε.

Example 2.1
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Suppose we place no further restrictions on Θ. Then the model is not iden-

tifiable. To see this, let (Σε,Σu) ∈ Θ and 0 < a < 1. Then Σ∗
u = (1− a)Σu

and Σε
∗ = Σε + aZΣuZ

′. So Σε
∗ and Σ∗

u satisfy (2) and (Σε
∗,Σ∗

u) ∈ Θ.

Example 2.2

Suppose that Θ = Θε⊗ Θ̃u where Θ̃u contains all matrices of the form σ2R

where R is positive definite and known, and σ2 > 0. To see that this model

is not identifiable, use the same argument as in Example 2.1 and note that

the constructed Σ∗
u is in Θ̃u if Σ∗

u is in Θ̃u.

In practice, one usually assumes a more specific structure for Σε, such as

Σε = σ2
ε I. Restrictions may lead to identifiability, and such restrictions and

their effects on identifiability will be discussed in the next two sections.

3 Simple sufficient conditions of identifiabil-

ity

In this section, we find sufficient conditions of identifiability of model (1)

assuming Θ̃ = Θ.

A further examination of (2) gives us the following sufficient conditions.

Clearly, if Σu is known, then ZΣuZ
′ is known, and so Σε is completely

determined.

If Σε is known, then the model is identifiable. To see this, consider (2)

with Σε = Σε
∗. It follows that ZΣuZ

′ = ZΣ∗
uZ

′ and so Σu = Σ∗
u since Z is

of full column rank.
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If ZΣuZ
′Σε

−1 = K, where K is known and K + I is of full column rank,

then the model is identifiable. Suppose by way of contradiction the model

is not identifiable. Then (2) holds for (Σu,Σε) 6= (Σ∗
u,Σε

∗) both in Θ̃ with,

by assumption, ZΣuZ
′ = KΣε and ZΣ∗

uZ
′ = KΣε

∗. Substituting these

expressions into (2) yields

KΣε + Σε = KΣε
∗ + Σε

∗,

that is,

(K + I)(Σε −Σε
∗) = 0.

Since K + I is of full rank, we must have Σε = Σε
∗. But, as shown in the

previous paragraph, this implies that Σu = Σ∗
u.

The last condition is similar to a common condition for identifiabililty in

simple linear regression models with measurement errors. The model assumes

yi = β0 + β1xi + εi, εi ∼ (0, σ2
ε ),

where xi is observed with error having variance σ2
u. The response yi then has

variance σ2
u + σ2

ε . One of the common conditions of model identifiability is

to assume the ratio σ2
u/σ

2
ε is known. The inverse Σε

−1 appearing in our last

condition could be viewed as multivariate version of “denominator”.

If there are any supplementary data, we may then be able to find an

estimate of Σu, Σε or K and we can treat this estimate as the true value.

The sufficient conditions for identifiability can then be satisfied.
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4 Sufficient conditions of identifiability for a

structured Σε

As we observed from Examples 2.1 and 2.2, the model is not identifiable even

if we restrict Σu to be a scalar multiple of a known matrix. In this section,

we study the effect of putting restrictions on Σε. In Theorem 4.1 below, we

give a necessary and sufficient condition of nonidentifiability, a condition that

relies mainly on the design matrix Z via HZ = Z(Z′Z)−1Z′. The theorem

leads to four corollaries: Corollaries 4.1 and 4.2 give necessary and sufficient

conditions for identifiability when Σε arises from an exchangeable covariance

structure or is diagonal. Corollary 4.3 states an easily checked condition

on Σε that guarantees identifiability of the model. That corollary is then

applied to two commonly used error structures. Using Corollary 4.4, we can

generalize a known identifiability result, giving a shorter proof under weaker

conditions.

Theorem 4.1 Let Θ̃ ⊆ Θ and define HZ = Z(Z′Z)−1Z′. Then model

(1) with parameter space B ⊗ Θ̃ is nonidentifiable if and only if there ex-

ist (Σε,Σu) ∈ Θ̃ and (Σε
∗,Σ∗

u) ∈ Θ̃, with Σε
∗ 6= Σε such that

HZ [Σε −Σε
∗] = Σε −Σε

∗, (3)

and

Σ∗
u = Σu + (Z′Z)−1Z′ [Σε −Σε

∗]Z(Z′Z)−1. (4)

Proof :

Nonidentifiability of the model is equivalent to the existence of (Σε,Σu) and
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(Σε
∗,Σ∗

u) in Θ̃, not equal, satisfying (2). Note that this is equivalent to

having (Σε,Σu) and (Σε
∗,Σ∗

u) in Θ̃ with Σε
∗ 6= Σε satisfying

Z(Σu −Σ∗
u)Z

′ = Σε
∗ −Σε. (5)

Suppose the model is nonidentifiable. We premultiply (5) by Z′, post-

multiply it by Z and then pre- and postmultiply by (Z′Z)−1 to get

Σu −Σ∗
u = (Z′Z)−1Z′ [Σε

∗ −Σε]Z(Z′Z)−1. (6)

This gives (4). To derive (3), premultiply (6) by Z, postmultiply (6) by Z′

to get

Z(Σu −Σ∗
u)Z

′ = HZ [Σε
∗ −Σε]HZ (7)

which, by (5), is the same as

Σε −Σε
∗ = HZ [Σε −Σε

∗]HZ. (8)

Premultiplying (8) by the idempotent matrix HZ gives

HZ [Σε −Σε
∗] = HZ [Σε −Σε

∗]HZ.

Substituting (8) into the right side of the above yields (3).

To prove the converse, we want to show that (3) and (4) lead to (5). It

is clear from (4) that (7) holds. If we can show that (8) holds then we are

done since substituting (8) into the right side of (7) yields (5). To show (8),

from (3) and the symmetry of Σε −Σε
∗, we see that

HZ[Σε −Σε
∗] = [Σε −Σε

∗]HZ.

Premultiplying the above identity by the idempotent matrix HZ gives HZ[Σε−
Σε

∗] = HZ[Σε − Σε
∗]HZ. Substituting (3) for the left side of the equation,

we see that (8) holds. 2
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The proofs of the next two corollaries are in the appendix, Section 6.

Corollary 4.1 Let 1 be an n-vector with each element being one. Sup-

pose that the distribution of ε1, . . . , εn is exchangeable, that is, the covari-

ance matrix of ε is of the form σ2 [(1− ρ)I + ρJ] where J = 11′. Let

Θ̃ε = {Σε = σ2 [(1− ρ)I + ρJ] , σ2 > 0, −1/(n − 1) < ρ < 1}. Sup-

pose the matrix Z satisfies 1′Z 6= 0 and rank(Z) = q with 1 ≤ q < n − 1.

Suppose the parameter space is B⊗ Θ̃ε⊗Θu. Then model (1) is identifiable

if and only if HZJ 6= J.

Comments. The condition HZJ = J means the sum of the elements of each

row of HZ is equal to one, and this is an easy condition to check. For the

case that q = 1, i.e. Z is a column vector (z1, . . . , zn)′ where
∑

zi 6= 0,

HZ =




z2
1

s2
z

z1z2

s2
z

· · · z1zn

s2
z

...
...

znz1

s2
z

znz2

s2
z

· · · z2
n

s2
z




, where s2
z =

∑
z2

i .

The model is identifiable if and only if Z is not a constant vector.

When q = 2, suppose we have the usual simple linear regression model

with centered covariates:

Z =




1 z1

...
...

1 zn




, with
∑

zi = 0. (9)

Then

HZ =




1
n

+
z2
1

s2
z

1
n

+ z1z2

s2
z

· · · 1
n

+ z1zn

s2
z

...
...

1
n

+ znz1

s2
z

1
n

+ znz2

s2
z

· · · 1
n

+ z2
n

s2
z




.
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and each row of HZ sums to one. Thus unfortunately, the model is not

identifiable under this Z combined with the exchangable covariance structure.

Corollary 4.2 Suppose that Θ̃ε equals the collection of all diagonal positive

definite n× n matrices. Then model (1) with parameter space B⊗ Θ̃ε⊗Θu

is identifiable if and only none of the diagonal elements of HZ is equal to

one.

Comments. Again, the condition on HZ is easy to check. Consider the case

q = 1. As we have seen, diagonal elements of HZ equal z2
i /

∑
z2

j , i = 1, . . . , n.

Therefore, the model is identifiable if and only if Z does not have n − 1

zero elements. Consider q = 2 with Z as in (9). The model is identifiable

provided, for all i, (1/n) + z2
i /

∑
z2

j doesn’t equal 1. So typically, the model

is identifiable.

The following corollary provides a sufficient condition for identifiability, a

condition that can sometimes be easily checked. Consider (3). Note that the

rank of HZ(Σε −Σε
∗) is at most q, since the rank of HZ is q. Thus, for (3)

to hold, we must be able to find some Σε and Σε
∗ with the rank of Σε−Σε

∗

less than or equal to q. This proves the following.

Corollary 4.3 Suppose that Θ̃ ⊆ Θ. Then model (1) with parameter space

B× Θ̃ is identifiable if rank(Σε−Σε
∗) > q for all Σε, Σε

∗ in the parameter

space.

Now we apply Corollary 4.3 to show model identifiability under the “mul-

tiple of a known positive definite matrix” and the “MA(1)” covariance struc-

tures respectively in next two examples.
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Example 4.1 Multiple of a known positive definite matrix

Fix R, symmetric and positive definite, and suppose (Σε,Σu) ∈ Θ̃ implies

that Σε = σ2R, some σ2 > 0. Consider Σε = σ2R and Σε
∗ = σ∗2R, σ∗2 6= σ2.

Clearly Σε −Σε
∗ = (σ2 − σ∗2)R is invertible, and so is of rank n, which we

have assumed is greater than q. Thus, the model is identifiable.

To show the model in Example 4.2 below is identifiable, we need the

following lemma which is a result in (Graybill, 1983, p.285)

Lemma 4.1 Let T be the n × n Toeplitz matrix with ones on the two par-

allel subdiagonals and zeroes elsewhere. Given two scalars a0 and a1, the

eigenvalues of the n× n matrix C = a0I + a1T are

µi = a0 + 2|a1| cos
iπ

n + 1
, i = 1, . . . , n.

Example 4.2 MA(1)

Suppose that n− 1 > q. Let the components of ε have the MA(1) covariance

structure, i.e. of the form σ2(I + ρT). Let Θ̃ε = {Σε = σ2(I + ρT), σ2 >

0, |ρ| < 1/2} and suppose (Σε,Σu) ∈ Θ̃ implies that Σε ∈ Θ̃ε.

Let Σε and Σε
∗ ∈ Θ̃ε. By Lemma 4.1, the eigenvalues of the difference

matrix Σε −Σε
∗ = (σ2 − σ∗2)I + (σ2ρ− σ∗2ρ∗)T are

λi = (σ2 − σ∗2) + 2
∣∣∣σ2ρ− σ∗2ρ∗

∣∣∣ cos
iπ

n + 1
, i = 1, . . . , n.

Given any (σ2, ρ) and (σ∗2, ρ∗), with (σ2, ρ) 6= (σ∗2, ρ∗), the number of zero

λi’s is at most one. Hence, the rank of the difference matrix is greater than

or equal to n − 1. Therefore, model (1) is identifiable under this MA(1)

covariance structure.
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In longitudinal or functional data analysis, usually there are N individuals

with the ith individual modelled as in (1):

yi = Xiβ + Ziui + εi,

ui ∼ N(0,Σu), εi ∼ N(0,Σεi),

(Σu,Σεi) ∈ Θu ⊗ Θ̃
i

ε, ui and εi independent. (10)

Statistical inference is normally based on the joint model, the model of these

N individuals. The following corollary gives sufficient conditions for identi-

fiability of the joint model. The intuition behind the result is that, if we can

identify Σu from one individual, then we can identify all of the Σεi’s.

Corollary 4.4 If an individual model (10) is identifiable, then the joint

model is identifiable.

Proof:

We notice each individual model (10) shares a common parameter, the co-

variance matrix Σu. If one individual model uniquely determines Σu and its

Σεi, the identified Σu will then yield identifiability of all the individual Σεi’s

since, if ZiΣuZ
′
i + εi = ZiΣuZ

′
i + ε∗i , clearly εi = ε∗i . Therefore, the joint

model is identifiable. 2

Corollary 4.4 reduces the verification of a joint model’s identifiability

to the individuals’. For instance, if the i-th individual model has Zi of full

column rank and Σεi = σ2
ε Ini

, where ni is the length of yi, then this individual

model is identifiable by Corollary 4.1 and thus so is the joint model. Note

that the other individual models can still have their Zj’s not of full column

rank.
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Demidenko (2004, Chapters 2 & 3) studies the joint model but assumes

the covariance matrix of εi is σ2Ini
. Suppose each Zi is of dimension ni × q.

Demidenko shows that the joint model is identifiable if at least one matrix

Zi is of full column rank and
∑N

i=1(ni − q) > 0. Using our argument in

the previous paragraph, the condition
∑N

i=1(ni − q) > 0 can be dropped.

Furthermore, our result can be applied to more general Σε’s.

5 Extensions

In this section, we discuss identifiability of a model in functional regression

for a functional predictor y(·) and a scalar response w. We derive a necessary

and sufficient condition of nonidentifiability for this model.

We model y(t) as
∑

j αjφj(t) +
∑

k ukψk(t) plus error, with the φj’s and

ψk’s known, the αj’s unknown and the uk’s unknown and random. The de-

pendence of the response w on y is modelled through an unknown functional

coefficient, β: w = β0+
∫

β(t) [y(t)−E(y(t))] dt+η where η is mean 0 normal

noise. Thus, for appropriately defined ρ and with u = (u1, . . . , uq)
′, we can

write

w = β0 + ρ′u + η,

β0 ∈ <, ρ ∈ <q unknown , η ∼ (0, σ2
η) independent of u. (11)

The predictor y is observed at a sequence of discretized points and the

observed values are contained in the vector y, which then follows model

(1). James (2002), Müller (2005) and Heckman and Wang (2007) consider

this modelling of y and w and propose different approaches to estimate the

functional coefficient, β.
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We assume model (1) and (11). For our purpose of identifiability dis-

cussion here, we consider the unknown parameters to be (β0,β) and θ =

(Σε,Σu, σ
2
η, ρ). We suppose that (β0,β) ∈ B ⊆ < ⊗ <p and that θ ∈ Θ̃ ⊆

Θ = Θε ⊗Θu ⊗<+ ⊗<q where Θε and Θu are as before and <+ is the set

of positive real numbers.

To study identifiability, we must study the distribution of the random

vector (y′, w). We see that E(y) = Xβ, E(w) = β0 and (y′, w)′ has covariance

matrix

Σ =




ZΣuZ
′ + Σε ZΣuρ

ρ′ΣuZ
′ ρ′Σuρ + σ2

η


 .

We know the parameter β is identifiable if the matrix X is of full column

rank. The identifiability of β0 is also clear. So we focus on identifying the

covariance parameters θ.

Our discussion in Section 2 suggests the unrestricted model won’t be

identifiable. In fact, we can construct an example following Example 2.1 to

show the existence of nonidentical θ and θ∗ both in Θ such that (2) holds

and

ZΣuρ = ZΣ∗
uρ

∗, (12)

ρ′Σuρ + σ2
ε = ρ∗′Σ∗

uρ
∗ + σ∗η

2. (13)

Example 5.1 Example 2.1 continued.

Let 0 < a < 1, Σ∗
u and Σε

∗ be as in Example 2.1, and let ρ∗ = ρ/(1−a) and

σ∗η
2 = σ2

η − aρ′Σuρ/(1− a). It is not hard to see (12) and (13) are satisfied.

If, in addition, we restrict a < σ2
η/(σ

2
η + ρ′Σuρ), we see that σ∗η

2 is positive.

The following theorem gives a necessary and sufficient condition of non-

identifiability.
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Theorem 5.1 Let Θ̃ε ⊆ Θε, let Θ̃ = Θ̃ε ⊗ Θu ⊗ <+ ⊗ <q. and define

HZ = Z(Z′Z)−1Z′. Then model (1) and (11) with parameter space B⊗ Θ̃ is

nonidentifiable if and only if there exist (Σε,Σu, σ
2
η,ρ) and (Σε

∗,Σ∗
u, σ

∗
η
2,ρ∗)

both in Θ̃, with Σε
∗ 6= Σε such that the following hold

(a) HZ [Σε −Σε
∗] = Σε −Σε

∗,

(b) Σ∗
u = Σu + (Z′Z)−1Z′ [Σε −Σε

∗]Z(Z′Z)−1,

(c) ρ∗ = Σ∗
u
−1Σuρ,

(d) σ∗η
2 = σ2

η + ρ′Σu(Σ
−1
u −Σ∗

u
−1)Σuρ.

Proof:

Nonidentifiability of the model is equivalent to the existence of nonidentical

θ and θ∗ in Θ̃, satisfying (2), (12) and (13).

First suppose that (2), (12) and (13) hold for some θ 6= θ∗. By the

argument given in Theorem 4.1, (2) implies that (a) and (b) hold. Since Z

is of full column rank, (12) yields (c). Substituting (c) into (13) yields (d).

We easily see that, if θ 6= θ∗ and if (a) through (d) hold, then Σε 6= Σε
∗.

Now suppose that conditions (a) through (d) hold for some Σε 6= Σε
∗.

Again, by the argument given in Theorem 4.1, (2) holds. We easily see that

(12) and (13) also hold. 2

6 Appendix

6.1 Proof of Corollary 4.1

To prove it, we use the following result from Graybill, 1983, p.206.
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Lemma 6.1 Given two scalars a and b, the characteristic equation of the

matrix C = (a− b)I + bJ in λ is

(a + (n− 1)b− λ) (a− b− λ)n−1,

and hence n− 1 characteristic roots are equal to a− b and one root is equal

to a + (n− 1)b.

Proof :

To prove the corollary, we use Theorem 4.1 and a proof by contradiction.

First suppose that the model is identifiable and suppose, by way of

contradiction, HZJ = J. Fix Σε ∈ Θ̃ε. Let s > 1, σ∗2 = sσ2 and

ρ∗ = (ρ − 1)/s + 1. It is not hard to check −1/(n − 1) < ρ∗ < 1. De-

fine Σε
∗ = σ∗2 [(1− ρ∗)I + ρ∗J]. Then Σε − Σε

∗ = (σ2 − σ∗2)J and, since

HZJ = J, it is clear that (3) is satisfied. We now show that, for any Σu ∈ Θu,

there exists s∗ > 1 so that Σ∗
u defined as in (4) is positive definite whenever

1 < s < s∗. This will show that the model is not identifiable, which contra-

dicts our assumption. Plugging Σε −Σε
∗ = (σ2 − σ∗2)J into (4) yields

Σ∗
u = Σu + σ2(1− s)(Z′Z)−1Z′JZ(Z′Z)−1. (14)

By assumption 1′Z 6= 0 and Z is of full column rank, the matrix (Z′Z)−1Z′JZ(Z′Z)−1

is non-negative definite and of rank one since J = 11′. Let λ be its non-

zero and thus the largest eigenvalue of (Z′Z)−1Z′JZ(Z′Z)−1. Let λm be the

smallest eigenvalue of the matrix Σu, and let s∗ = λm/(λσ2) + 1. For any

x ∈ <q, x 6= 0, x′Σ∗
ux > 0 by the following argument.

x′Σ∗
ux = x′Σux + σ2(1− s)x′(Z′Z)−1Z′JZ(Z′Z)−1x

≥ λmx′x + σ2(1− s)λx′x

> 0
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Now suppose that HZJ 6= J and suppose, by contradiction, that the

model is not identifiable. Then, by Theorem 4.1, there exist nonidentical Σε

and Σε
∗ satisfying (3) and, since the rank of HZ is q, the rank of Σε −Σε

∗

is at most q. We have

Σε −Σε
∗ =

[
(σ2 − σ∗2)− (σ2ρ− σ∗2ρ∗)

]
I + (σ2ρ− σ∗2ρ∗)J.

By Lemma 6.1, the eigenvalues of Σε−Σε
∗ are (σ2−σ∗2)−(σ2ρ−σ∗2ρ∗), which

is of multiplicity n−1 and (σ2−σ∗2)+(n−1)(σ2ρ−σ∗2ρ∗), of multiplicity 1.

Since Σε −Σε
∗ is not the zero matrix, all of the eigenvalues cannot be equal

to 0: we must either have no eigenvalues equal to 0, one eigenvalue equal to

0, or n− 1 eigenvalues equal to 0. In order to have rank(Σε −Σε
∗) ≤ q, the

n−1 multiple eigenvalues have to be zero since 1 ≤ q < n−1 by assumption.

That is, σ2−σ∗2 = σ2ρ−σ∗2ρ∗ and so Σε−Σε
∗ = (σ2−σ∗2)J. But plugging

this into (3) yields HZJ = J, contradicting our assumption.

2

6.2 Proof of Corollary 4.2

Proof :

We first note a fact about the matrix HZ. Since HZ is symmetric and

idempotent,

HZ[k, k] =
∑

l

(HZ[k, l])2 = (HZ[k, k])2 +
∑

l 6=k

(HZ[k, l])2 .

Thus, if HZ[k, k] = 1, then HZ[k, i] = HZ[i, k] = 0 for all i 6= k.

To prove the corollary, we use Theorem 4.1 and a proof by contradiction.
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First suppose that the model is identifiable and suppose, by way of con-

tradiction, a diagonal element of HZ is equal to 1. Without loss of generality,

we assume HZ[1, 1] = 1. Then by our observation, HZ[1, i] = HZ[i, 1] = 0 for

all i 6= 1. Fix Σε = diag{σ2
1, . . . , σ

2
n} ∈ Θ̃ε. Let σ∗21 satisfy 0 < σ∗1

2 < σ2
1 and

define Σε
∗ = diag{σ∗12, σ2

2, . . . , σ
2
n}. Then Σε−Σε

∗ = diag{σ2
1−σ∗1

2, 0, . . . , 0}.
It is not hard to check that (3) is satisfied. Clearly, for any Σu ∈ Θu, Σ∗

u

defined as in (4) is also in Θu. Thus, the model is not identifiable, which

contradicts our assumption.

Now suppose that no diagonal element of HZ is equal to one and sup-

pose, by contradiction, that the model is not identifiable. Then there exists

nonidentical diagonal matrices, Σε and Σε
∗, satisfying (3). As Σε 6= Σε

∗, at

least one of the diagonal elements of Σε −Σε
∗ is not zero. Suppose the k-th

diagonal element is not zero. By (3), the k-th diagonal element of HZ must

be one, contradicting our assumption. 2
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