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Abstract

The feature selection characterized by relatively small sample size and ex-
tremely high dimensional feature space is common in many areas of contem-
porary statistics. The high dimensionality of the feature space causes serious
difficulties: (i) the sample correlations between features become high even if
the features are stochastically independent; (ii) the computation becomes in-
tractable. These difficulties make conventional approaches either inapplicable
or inefficient. The reduction of dimensionality of the feature space followed by
low dimensional approaches appears the only feasible way to tackle the prob-
lem. Along this line, we develop in this article a tournament screening cum
EBIC approach for feature selection with high dimensional feature space. The
procedure of tournament screening mimics that of a tournament. It is shown
theoretically that the tournament screening has the sure screening property,
a necessary property which should be satisfied by any valid screening proce-
dure. It is demonstrated by numerical studies that the tournament screening
cum EBIC approach enjoys desirable properties such as having higher positive
selection rate and lower false discovery rate than other approaches.

Keywords: Extended Bayes information criterion, Feature selection, Penalized likelihood,

Permutation aggregating, Reduction of dimensionality, Small-n-large-P , Sure screening.
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1 Introduction

It becomes a common situation in many areas of contemporary statistics that a few

features have to be identified from a huge feature space to explain the variation of a

response variable with relatively a small number of observations. It gives rise to the

so-called sparse small-n-large-P problem; that is, the number of candidate features

(P ) is much larger than the sample size (n), but the number of the features causal

to the response variable is small. For example, in microarray tumor studies, DNA

expression levels of thousands of genes are measured to identify, say, a few tens of genes

which can be used for the classification or for the prognostics of tumors. Usually, the

sample size is not more than a hundred. In genome-wide genetic association studies,

to detect a handful of etiological variants of certain quantitative traits or common

diseases, tens or hundreds of thousands of single nucleotide polymorphisms (SNPs)

are genotyped for relatively a small number of samples. For some recent discussions,

see, e.g., Hunter and Li (2005), Huang et al. (2007), Paul et al. (2007), Zhang and

Huang (2007), Kosorok and Ma (2007), and Fan and Lv (2007).

The sparse small-n-large-P problem poses great challenges to feature selection.

First, the causal features are buried among an extremely huge number of candidate

features. Second, even if all the features are independent, the maximum sample

correlation between the features (or maximum spurious correlation coined by some

authors) can reach a very high level. Because of the high spurious correlation, non-

causal features might appear highly correlated with the response variable, which

makes the causal features hard to detect.

In genetic studies, some simple methods have been employed. For example, ap-

propriate models are fitted to features (markers, SNPs, etc.) one at a time. Features

with highest significant effects are selected with Bonferroni adjusted threshold value
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to control the family-wise type I error rate, or, an estimated false discovery rate (FDR)

is used to determine significant single features, see Tusher et al. (2001), Tibshirani et

al. (2002), Marchini et al. (2005), Benjamini and Hochberg (1995), and Storey and

Tibshirani (2003). Another strategy is to pool together the strength of single feature

statistics to increase the power for the detection of causal features. This includes

the sum-statistics method developed by Hoh, Wille and Ott (2001), see also Hoh and

Ott (2003), and the method using truncated product of p-values, see Zaykin et al.

(2002) and Dudbridge and Koeleman (2003). These methods ignore multi-feature

joint effects. They are particularly problematic with high spurious correlations when

P is large.

A different, probably more appropriate, strategy is to incorporate feature selection

into model selection. Apart from classical model selection methods such as all-subsets

and stepwise forward or backward methods, more advanced approaches have been

developed in the recent past. Tibshirani (1996) proposed the LASSO, a L1 norm

penalized likelihood approach. Fan and Li (2001) advocated the SCAD, a penalized

likelihood approach with a modified penalty. Zou and Hastie (2005) proposed the

Elastic Net, which adopts a combined L1 and L2 penalty. Efron et al. (2004) proposed

the LARS, a sequential variable selection procedure which includes LASSO as a special

case. The penalized likelihood methodology has been further advanced by more recent

developments, see Hunter and Li (2005), Huang et al. (2007), Paul et al. (2007), and

Zhang and Huang (2007). Bayesian approach with MCMC for model selection has

also been developed, see Ishwaran and Rao (2003).

However, when P is extremely huge, as is common in genetic genome-wide studies,

there are computational hurdles for the direct implementation of the above mentioned

methods. The reduction of dimensionality of the feature space then becomes a natural
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way to step forward. Because of the sparsity of the causal features, we can hope

that by an efficient screening procedure most of the non-causal features can be first

screened out before any model selection method is used. Such a screening procedure

must have the ability to retain the causal features while screening out non-causal

features. This property is referred to as the sure screening property by Fan and Lv

(2007).

Fan and Lv (2007) considered a sure independent screening (SIS) procedure which

satisfies the sure screening property. The SIS is similar to the single-feature-statistics

method mentioned in an earlier paragraph. But it is only used for pre-screening,

not for the final feature selection. It reduces the dimensionality of the feature space

(P ) to a level p around the sample size (n) by retaining the first p relatively most

significant features. Before it is formalized by Fan and Lv (2007), the SIS has in fact

been used in an ad hoc way in genetic studies, see, e.g., the analysis of a leukemia

data in Zou and Hastie (2005).

In this article, we develop a procedure called tournament screening (TS). The basic

idea of the tournament screening is as follows. The features are sequentially screened

in consecutive stages. At each stage, the features retained from the previous stage

are divided into non-overlapping groups. The features in each group are subjected

to a penalized likelihood mechanism and a given number of them are selected. The

features selected are then pooled together and enter the next stage. This process

is continued until the dimensionality of the feature space is reduced to a desirable

level. The name of TS is coined because of its similarity to the competitions in a

tournament. We show in this article that the sure screening property is also satisfied

by TS. We also demonstrate by simulations that TS dominates SIS in the final feature

selection in a sense to be made clear later.
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Although feature selection can be incorporated into model selection, there is still

a nuance between the two. Model selection involves not only features but also the

estimation of the parameters associated with the features. It focuses more on the

prediction accuracy of the models, even if the model contains spurious features in

addition to the causal ones. On the other hand, the emphasis of feature selection

is different where the aim is to detect the causal features. It is concerned more

with the capacity of detecting causal features and the purity of the selection. The

capacity of detecting causal features is measured by positive selection rate (PSR)

which is the ratio of the number of selected causal features and the total number

of causal features. The purity of the selection is measured by false discovery rate

(FDR) which is the ratio of the number of non-causal features selected and the total

number of selected features. A method dominates another if it achieves higher PSR

and lower FDR than the other. In this article, we also propose a procedure for the

final feature selection which combines the penalized likelihood methodology with an

extended Bayes information criterion (EBIC) developed by Chen and Chen (2007).

The TS followed by this procedure for feature selection is referred to as the TS cum

EBIC approach.

The remainder of the article is arranged as follows. The TS and its sure screening

property are described in §2. The procedure for final feature selection is presented in

§3. Numerical studies are reported in §4. Some conclusion remarks are made in §5.

Technical details are given in the Appendix.

7



2 TS and its sure screening property

Let y be an n× 1 vector of response values and X an n×P matrix of feature values.

Assume that, given X,

y = Xβ + ε, (1)

where β is a P × 1 vector of parameters with sparsity property, i.e., only a small

number of its components are non-zero, and ε is a vector of n independent and iden-

tically distributed random variables with mean zero and variance σ2. More generally,

we can consider the model

y ∼ f(y, Xβ, σ2), (2)

where f is the density function of y given X. The general model includes generalized

linear models.

Denote by S1 the set of integers from 1 to P . Let S0 be the subset of S1 corre-

sponding to the non-zero components of β; that is, βj 6= 0 if and only if j ∈ S0. For

any subset S of S1, let ν(S) denote the cardinality of S. In particular, let ν0 = ν(S0).

Denote by X(S) the sub-matrix consisting of the columns of X with column indices

in S, and by β(S) the corresponding components of β. The penalized negative log-

likelihood function is defined as:

lp(β(S), σ2|λ) = −2 ln f(y, X(S)β(S), σ2) + n
∑
j∈S

pλ(|βj|),

where pλ(·) is a penalty function regulated by a tuning parameter λ. The penalty

function can be taken as pλ(|β|) = λ|β|, the L1 penalty used in LASSO by Tibshirani

(1996), or as the penalty used in SCAD by Fan and Li (2001) defined through the

following derivative:

p′λ(|β|) = λ

{
I(|β| ≤ λ) +

(aλ− |β|)+

(a− 1)λ
I(|β| > λ)

}
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for some choice of a > 2. The crucial property required of the penalty function is that

it must be singular at zero. Because of the singularity, when the penalized negative

likelihood is minimized with λ fixed at a certain value, a number of components of

fitted β(S) will be forced to zero. By tuning the value of λ, practically any number

of components of the fitted β(S) can be forced to zero.

We now describe the TS procedure in detail. Let ng be a pre-specified group

size. It is determined such that ng < n and that the numerical minimization of the

penalized negative likelihood can be effectively carried out. LetK be a pre-determined

number which serves as the selection size for each group in TS. In principle, K should

be large enough in order to be able to retain all the causal features in the group and

small enough to reduce the dimensionality efficiently. If one has a rough idea about

how big ν0 is, K can be chosen as 2ν0 or 3ν0. The TS procedure goes as follows.

Stage 1: Partition S1 at random into groups of nearly equal size ng to yield

S1 = S11 ∪ · · · ∪ S1J1 ,

where J1 is the largest integer such that [ngJ1] ≤ P . For each group S1j, mini-

mize lp(β(S1j), σ
2|λ) by tuning λ so that there are only K non-zero components

of fitted β(S1j). The features corresponding to these K components are selected

from this group. Let S∗1j denote the index set of these K features. At the end,

pool S∗1j, j = 1, . . . , J1, together to form S2. The dimensionality of the feature

space is reduced to KJ1 at this stage.

Stage 2: Repeat the process in Stage 1 with S1 replaced by S2. The dimensionality

of the feature space is further reduced to KJ2 where J2 is the largest integer

such that [ngJ2] ≤ KJ1.
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Further Stages: The above process continues until the dimensionality of the feature

space is reduced to K.

The TS procedure described above starts with a random partition of the feature

space. The eventually reduced feature space is dependent of the initial partition in

general. To reduce this dependence, a permutation aggregating procedure can be

applied. The permutation aggregating procedure is as follows. The TS procedure is

repeated a given number, say B, of times, each time with an independent partition of

the feature space at the beginning and with a larger reduced dimensionality, say 2K.

At the end, count the frequencies of the features appearing in the obtained B reduced

feature spaces, and retain the K most frequent features for the final feature selec-

tion. The idea of permutation aggregating is the same as the bootstrap aggregating

(Bagging) proposed by Breiman (1996). The only difference is that bootstrapping in

bagging is here replaced by random permutation.

The sure screening property of TS is stated in the following theorem under some

conditions.

Theorem: Assume model (1) holds. In addition, assume that the entries of X

are independent bounded random variables with mean 0 and variance 1, and they are

independent of ε. Suppose that P = O(nκ) for some κ > 0 as n→∞. Let the penalty

function pλ be taken as either L1 penalty or SCAD penalty. Let S be any subset of S1

such that K < ν(S) < n and λ∗ be the smallest value of λ such that the minimum of

lp(β(S)|λ∗) = ‖y −X(S)β(S)‖2 + n
∑
j∈S

pλ∗(|βj|)

attains at some β̂(S) with K non-zero components. Let S∗ be the index set of the

nonzero components of β̂(S). Then, as n→∞,

P (S0 ∩ S ⊂ S∗)→ 1.
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Our condition on the entries of X is motivated by Fan and Lv (2007). They

assumed the same condition for the sure screening property of SIS. This condition

as well as the assumption of regression model (1) can be relaxed. We do not intend

the relaxation in this article because the regression model still covers a broad class

of practical problems. Furthermore, the relaxation of the conditions will involve too

much technicalities which we want to avoid at the current stage. The proof of the

theorem is given in the Appendix.

3 TS cum EBIC for final feature selection

The TS reduces the dimensionality P (>> n) of the original feature space to K(< n ).

Then any conventional model selection methods can be employed in the final selection.

We will concentrate on the penalized likelihood methodology in the final selection be-

cause of its superiority over classical model selection methods which has been shown

in the literature. The penalized likelihood methodology is usually coupled with cross

validation, and feature selection and parameter estimation are done simultaneously.

Implicitly, it aims to select a model (including both features and the estimates of the

parameters) to minimize prediction error. However, we found that the penalized like-

lihood methodology coupled with cross validation tends to select too many spurious

features overwhelming the causal features. For feature selection, the accountability of

individual features is more important than the overall predicting ability of the model.

A procedure which emphasizes on the accountability of individual features is more

appropriate. In this section, we describe a procedure that combines the penalized

likelihood methodology with EBIC. The penalized likelihood methodology is used to

order models and the EBIC is then used to make the final selection.
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Let S∗ be the index set of the K features retained from the TS procedure. First,

consider the penalized likelihood of the model containing all the K features:

lp(β(S∗)|λ) = −2 ln f(y, X(S∗)β(S∗)) + n
∑
j∈S∗

pλ(|βj|).

The parameter λ is tuned to a value λ1 such that it is the smallest to make at least one

component of β̂(S∗) obtained by minimizing lp(β(S∗)|λ1) to be zero. There might

be more than one zero components. But, for the ease of presentation, we assume

there is only one such component. Let jK ∈ S∗ be the index corresponding to this

zero component. Next, update S∗ to S∗/jK . This is equivalent to eliminating feature

X({jK}) from further consideration. With the updated S∗, the above minimization

and tuning procedure is repeated, and another feature, say X({jK−1}), is eliminated.

Continuing this way, eventually, we obtain an ordered sequence of the indices in S∗:

j1, j2, . . . , jK .

From the ordered sequence above, we form a nested sequence of subsets of in-

dices: Sk = {j1, . . . , jk}, k = 1, . . . , K. For each Sk, the un-penalized likelihood

ln f(y, X(Sk)β(Sk)) is maximized and then the EBIC is computed. The features in

the model with the smallest EBIC value are eventually selected.

In the remainder of this section, we give some discussion on the EBIC. For model

selection criteria, the traditional AIC (Akaike, 1973), BIC (Schwarz, 1978) and the

like are too liberal in the sense that too many spurious features will be selected when

the dimension of the feature space is extremely high. The final selection with the

reduced feature space is not a feature selection problem with low dimensional feature

space. The high spurious correlation of the original high dimensional feature space

will pass to the reduced feature space. The high dimensionality should still be taken

into account in the final selection. For example, a model based on X(Sk) can well

be considered as a model selected among all models containing k features from the
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original feature space. The EBIC is recently developed by Chen and Chen (2007)

particularly for feature selection with high dimensional feature spaces. The EBIC of

a model with feature matrix X(S) is defined as

EBICγ(S) = −2 ln f(y, X(S)β̂(S)) + ν(S) lnn+ 2γ ln[τ(S)], (3)

where β̂(S) is the maximum likelihood estimate of β(S), τ(S) is the total number

of models which can be formed by ν(S) features from the original feature space of

dimension P , and γ is a constant between 0 and 1 which is to be determined by the

user.

The EBIC of a model is essentially the negative of 2 times the log posterior

probability of the model in a Bayesian framework. The original BIC is a special

case of EBIC with γ = 0 which corresponds to a constant prior that assigns equal

probability mass on every individual model. When the dimension P of the feature

space is huge, the absurdity of the BIC becomes obvious. Let the model space be

partitioned into subclasses according to the number of features a model contains.

Under the constant prior, the probability assigned to a subclass is proportional to

its size, and the subclasses of models with larger number of features have much

larger probability than subclasses of models with small number of features. As a

consequence, the BIC is in favour of models with more features rather than those

with less features. The EBIC rectifies BIC by assigning the prior probability to a

subclass inversely proportional to the γth power of its size. Thus EBIC is in favour

of models with fewer features. Under some mild conditions, Chen and Chen (2007)

shown that if P = O(nκ) and γ > 1 − 1/(2κ) then EBIC is consistent in the sense

that asymptotically the EBIC will select the model with feature matrix X(S0) with

probability 1. The result also indicates that the original BIC might not be consistent

when κ ≥ 1/2. The EBIC with γ = 1 is universally consistent but it is also the most
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stringent criterion.

4 Numerical Studies

In this section, we report three sets of numerical studies. In the first set, we compare

TS with SIS on their consequence for the final feature selection. In the second set,

the TS cum EBIC approach with different penalties are compared with each other,

and they are also compared with other feature selection procedures. In the third set,

the TS cum EBIC approach is applied to a real problem.

Numerical Study 1

In the comparison of TS and SIS, we are not concerned with the sure screening

property of the two procedures since the property is theoretically justified for both TS

and SIS and some simulation results on SIS have been reported by Fan and Lv (2007).

Our goal is the final feature selection, therefore, we focus on their consequences for the

final selection. Fan and Lv (2007) considered the combination of SIS with a number of

model selection methods such as SCAD, Dantzig selector (Candes and Tao, 2007) and

so on. While focusing on the prediction accuracy of the selected model, they made

comparison among those different combinations and found that the combination of

SIS with SCAD outperforms all the other combinations in terms of both parsimony

and estimation error. Therefore, in our study, we only compare TS followed by

SCAD (TS-SCAD) with SIS followed by SCAD (SIS-SCAD). But, instead of using

cross-validation to choose the tuning parameters, which aims at minimizing prediction

error but fails in selecting causal features, we apply the procedure described in §3 and

choose the tuning parameters by EBIC1. We refer these procedures as TS cum EBIC

and SIS cum EBIC. The failure of cross validation for causal feature selection will
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be exposed in Numerical Study 2. For each simulated data set, the original feature

space is reduced to the same low dimensionality by both TS and SIS. The positive

selection rate (PSR) and the false discovery rate (FDR) in the final selection are then

compared. Two settings for generating the data sets are utilized.

In the first setting, the sample size is taken as n = 200 and the dimension of the

feature space is taken as P = 1000. The features are generated in groups of 100 each.

For each group, the features are generated as the components of a one-hundred-variate

normal vector with mean zero, variance 1 and correlation corr(i, j) = |ρ||i−j| for given

ρ’s. The generated features are shuffled and 15 of them are randomly chosen as the

causal features. The response variable is then generated as

yi = β0 +
15∑
j=1

βjxij + εi,

where β0 = 0, βj = 3, j = 1, . . . , 15, and εi are i.i.d. normal variables with mean

zero and standard deviation 9.5. The standard deviation is chosen such that each

individual feature has a 4% marginal contribution to the variation of the response

variable. The dimensionality of the feature space is reduced to 30, i.e., two times the

number of causal features. The PSR and FDR of the two procedures are averaged

over 100 replicates of simulations.

The second setting is adapted from Fan and Lv (2007). The sample size is taken

as n = 400, the dimensionality of the feature space is taken as P = 2500. The causal

features are taken as X1, . . . , X14 which are generated as dependent normal variables

with mean zero, variance 1 and correlation corr(i, j) = 0.4|i−j|. The remaining P −14

features are generated as follows. Let Z15, . . . , ZP be generated as i.i.d. standard

normal variables. Then, for i = 15, . . . , 28, Xi is generated as Xi = Zi + rXi−14, for

the remaining i, Xi = Zi + (1− r)X1, where r = 1− 5 lnn/P . The response variable
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Table 1: The average positive selection rate (PSR) and false discovery rate (FDR)
of the TS cum EBIC with SCAD (TS-SCAD) and SIS cum EBIC with SCAD (SIS-
SCAD) over 100 replicates of simulations as described in Simulation 1.

PSR FDR
(n, P ) ρ TS-SCAD SIS-SCAD TS-SCAD SIS-SCAD

(200, 1000) 0.00 0.130 0.136 0.035 0.033
0.25 0.122 0.120 0.036 0.037
0.75 0.151 0.137 0.217 0.218

(400, 2500) 0.40 0.917 0.862 0.014 0.011

is then generated as

yi =
14∑
j=1

βjXij + εi,

where εi are i.i.d. normal variables with mean 0 and standard deviation 2 and βj’s

are generated as βj = (−1)uj (a+ |zj|) with zj being i.i.d. standard normal variables,

uj being i.i.d. Bernoulli variables with probability of success 0.4, and a = 4 lnn/
√
n.

Again, the simulation is repeated for 100 replicates.

The results under both settings are given in Table 1. The results demonstrate that

when the features are independent or slightly correlated, TS-SCAD and SIS-SCAD

are comparable in terms of both PSR and FDR (the cases with ρ = 0 and 0.25 in

the first setting), but when the correlation among the features are high, TS-SCAD

has much higher PSR and lower or comparable FDR (the case with ρ = 0.75 in the

first setting and the case in the second setting). The PSR in the first setting is not

high because the effect of each causal feature is not strong (each accounts for only 4%

of the total variation) and the sample size is relatively small. With stronger effects

and larger sample size, both procedures have high PSR and low desirable FDR, as

demonstrated in setting 2.
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Numerical Study 2

In this set of numerical studies, we compare the TS cum EBIC coupled with

different penalties and other approaches such as LASSO with cross-validation and

multiple tests with Bonferroni adjusted threshold values. In the TS cum EBIC ap-

proach, there is an issue on the choice of penalty function. Although, in principle,

the LASSO penalty, the SCAD penalty and the elastic net penalty which is a linear

combination of L1 and L2 penalties can all be used, their performance in feature

selection could differ. Since elastic net penalty involves two tuning parameters, it

does not produce a linear order of the features when the parameters are tuned, which

entails a tremendous computational complexity. Hence, we only consider the LASSO

and SCAD penalty. The LASSO with cross-validation is chosen as a representative

for approaches focusing on model prediction accuracy. It is chosen because of its

easy computation. The multiple tests with Bonferroni adjusted threshold value men-

tioned in the introduction, which has been used in the genetics literature, is one of

the univariate soft thresholding approaches.

The elegant LARS algorithm developed by Efron et al. (2004) makes it possible

to compute the whole solution path for LASSO sequentially when P < n. When

P ≥ n, the algorithm cannot continue after the first n features have been tentatively

selected. In addition, the computational load is already very heavy even long before

n features are selected when P is very large. With moderate dimensionality, we found

that the TS procedure produces essentially the same reduced feature space as that

obtained by the LARS algorithm stopped while the same number of features have

been selected.

The features and responses are generated in the same way as in Setting 1 of

Numerical Study 1 except that 20 simulated features are randomly chosen as causal
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Table 2: The average positive selection rate (PSR) and false discovery rate (FDR) of
the TS cum EBIC with SCAD (TS-S), TS cum EBIC with LASSO (TS-L), LASSO
with cross-validation (L-CV) and univariate soft thresholding (UST) over 100 repli-
cates of simulations as described in Simulation 2.

PSR FDR
(n, P ) ρ(σ) TS-S TS-L L-CV UST TS-S TS-L L-CV UST

(200, 1000) .20(6) .528 .444 .997 .165 .151 .197 .802 .039
.40(6) .487 .385 .996 .173 .152 .209 .795 .065
.75(6) .533 .263 .988 .230 .238 .284 .793 .489

(400, 2500) .40(6) .993 .999 1.00 .509 .075 .099 .826 .046
(800, 6100) .40(6) 1.00 1.00 — .936 .004 .052 — .056
(800, 6100) .40(15) .719 .771 — .467 .035 .072 — .027

features and that the standard deviation of εi is set at 6. The reduced dimensionality

is set as 40, again, two times the number of causal features. But for the procedure

of LASSO with cross validation, the dimensionality is reduced to 120, since by some

preliminary simulation we found that the cross validation will choose almost all the

features in the reduced feature space if the dimensionality is reduced to too low.

The following settings are considered: (i) (n, P ) = (200, 1000), ρ = 0.2, 0.4 and 0.75,

σ = 6; (ii) ρ = 0.4, (n,P) = (400, 2500), (800, 6100), σ = 6; (iii) ρ = 0.4, (n,P) =

(800, 6100), σ = 15. The simulation results are reported in Table 2. In the heading

of the table, TS-S, TS-L, L-CV and UST stand respectively for TS cum EBIC with

SCAD, TS cum EBIC with LASSO, LASSO with cross-validation and univariate soft

thresholding. For the UST, an overall 0.05 level critical value is used.

The findings of Simulation 2 are summarized as follows. (a) Generally, TS-S has

higher or comparable PSR and lower FDR than TS-L and hence is obviously better

than TS-L. (b) The performance of TS-S is not affected too much by the increment of

the correlation among the features while the increment of correlation has an apparent
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adverse effect on the performance of TS-L. (c) The LASSO with cross-validation has

intolerably high FDR and fails for feature selection. (d) The UST can tightly control

the FDR only when features are not highly correlated, its power to detect causal

features is too low. (e) There are two major factors which affect PSR and FDR:

sample size and relative size of feature effects. The PSR increases and the FDR

decreases as sample size increases. The larger the relative size of the feature effects,

the larger the PSR and the smaller the FDR, as demonstrated by the results under

setting (ii) and (iii).

Numerical Study 3

In this study, we first apply the TS cum EBIC approach to a real genetic data

set, then use the data set to conduct some simulations, which provides guidelines on

how the results of the analysis can be used for further genetic studies. The SCAD

penalty is used in the approach. The data consists of the trait values together with

the genotypes at 2155 SNPs over 23 chromosomes of 233 individuals belonging to 16

pedigrees obtained from an experiment. In the experiment, B lymphocytes from the

blood samples of these individuals are transformed into immortalized lymphoblastoid

cell lines (LCLs) by Epstein-Barr Virus (EBV) which express in the LCLs. The trait

value is a measure of the mRNA expression level of the EBNA-3A gene, one of the

EBV genes, in LCLs. As the result of a preliminary analysis, only 1414 SNPs are

retained in the analysis because the other SNPs either are uninformative or have a

large proportion of missing genotypes.

In this application, because of the pedigree structure, a variance-component-model

considered by Amos (1994) is used instead of the linear regression model. The TS

procedure is applied by first randomly dividing the 1414 SNPs into 14 groups of equal
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size 101, and selecting 20 SNPs from each group. The dimensionality of the SNPs is

finally reduced to 30. Then the final selection procedure with EBIC is applied to the

30 SNPs. The EBIC1, EBIC1/2 and the original BIC are used in the final selection.

The EBIC1 selects 1 SNP, the EBIC1/2 selects 4 SNPs and the original BIC selects 7

SNPs. More details about the analysis are given in Chen, Chen and Liu (2006). To

what extent, can the selected SNPs by the different EBIC be trusted as the genuine

ones associated with the trait? How can these results be used to guide further genetic

investigation? To answer these questions, we conduct simulation studies based on the

data structure to provide some guidelines.

In the simulation studies, we keep the SNP genotypes intact, but each time we

randomly select a given number of SNPs and treat them as the ones which are re-

sponsible for the variation of the trait value, then the trait values are generated from

these SNPs using a linear model with an error term having standard deviation 1. We

consider two settings, at each setting, 10 SNPs are randomly selected to generate the

trait values, but the values of the coefficients associated with the selected SNPs are

different. In the first setting,

β(S0) = (−1.56,−1.09, 1.22,−.06,−.08,−.012, .067,−.047,−.07, .05)t.

In the second setting,

β(S0) = (−.31, .23, .42,−.32,−.33,−.26, .41, .29,−.35,−.69)t.

In the first setting, the first three SNPs have effect size larger than the standard

deviation 1 and are considered as major SNPs. The other ones have effect size much

smaller than 1 and are not expected to be detected. In the second setting, all the ten

SNPs have about the same effect size which are not big and are considered as minor

SNPs. These two settings are designed to see how the tournament screening cum
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Table 3: Average positive selection rate (PSR) and false discovery rate (FDR) of the
tournament screening cum EBIC based on the real data structure over 200 replicates
(I — setting 1, II — setting 2).

EBIC PSR FDR
γ I II I II
0 .993 .638 .541 .384
1
2

.993 .580 .059 .139
1 .993 .515 .007 .084

EBIC approach perform when the SNP effects are at different levels. The simulation

based on each of the two settings is repeated 200 times and the results are given in

Table 3.

The simulation results show that the EBIC1 has a tight control over the false

discovery rate whether or not the associated SNPs have major or minor effects, the

EBIC1/2 still has a reasonable control over the false discovery rate, but the original

BIC is too liberal. These suggest that, in the real data analysis, the SNP selected by

EBIC1 is highly likely to be a genuine one associated with the trait. Furthermore,

other SNPs selected by EBIC1/2 also stand a very good chance to be the genuine

ones. Thus, further genetic verification studies should be first focused on the one

selected by EBIC1. If fund allows, those selected by EBIC1/2 should also be further

investigated.

5 Conclusion remarks

The TS cum EBIC approach developed in this article is specifically devised for fea-

ture selection while the purpose is to detect causal features. In this situation, the

PSR and FDR, which are similar concepts of power and probability of type I error in
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hypothesis testing, are more important than the prediction accuracy of the selected

model. The TS cum EBIC approach enjoys desirable properties in terms of PSR and

FDR compared with other approaches. This approach is especially useful for genetic

genome-wide association studies where tens or hundreds of thousands SNPs are in-

vestigated to detect etiological genetic variants and efficient statistical methods are

still in wanting. As demonstrated, the approach is particularly efficient for detecting

major genetic variants, it enjoys very high PSR and very low FDR. Even for minor

variants, the PSR and FDR of the approach are very appealing. We believe that the

TS cum EBIC approach will provide the geneticists with an important tool in their

scientific exploring.

In genetic studies, it is not uncommon that the interaction between two genes,

termed as epistasis effect, is prominent but the marginal effects of the genes are

negligible. Without consideration of interactions, those genes will never stand a

chance to be detected. With P already large, the inclusion of the consideration of

interactions becomes more challenging. The TS cum EBIC approach can be easily

adapted for the consideration of interactions.

Though TS is only used together with the EBIC procedure in this article, it can

also be used as a general screening procedure for other purposes because of its sure

screening property.

Appendix

Proof of the Sure Screening Property

We first derive some preliminary results about the order of the sample correlation

between the response variable and the feature variables. Denote by x(i, j) the (i, j)th

entry of X and y(i) the ith component of y. Let C be the bound of the entries of X.
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Recall that the total index set of the feature space is denoted by S1 and the index

set of the features with non-zero coefficients in the regression model (1) is denoted

by S0. Under the assumptions of the Theorem, we have

Lemma: For j ∈ S0,

1

n

n∑
i=1

x(i, j)y(i) = β2(j) + op(n
−1/2 lnn). (4)

Uniformly over j 6∈ S0,

1

n

n∑
i=1

x(i, j)y(i) = op(n
−1/2 lnn). (5)

This lemma states in words that the correlation of the response variable with a

causal feature variable is of order Op(1) and those with a non-causal feature variable

is of order op(n
−1/2 lnn) which tends to zero as n → ∞. It is this property that

distinguishes the causal features from the non-causal features in the tournament pro-

cedure. The lemma follows from an inequality of Hoeffding (Serfling, 1980, pp75) for

bounded random variables. By Hoeffding’s inequality, we have

P

{
|
n∑
i=1

x(i, j)x(i, k)| ≥ nδ

}
≤ 2 exp

{
− nδ

2

2C4

}

for any n and positive constant δ. Furthermore, we have

P

{
max

j,k∈S1,j 6=k
|
n∑
i=1

x(i, j)x(i, k)| ≥ nδ

}
≤ 2n2κ exp

{
− nδ

2

2C4

}
,

since ν(S1) = P = O(nκ) and hence the number of pairs (j, k) is of order n2κ. Let

δ = n−1/2 log n, this inequality implies that

max
j,k∈S1,j 6=k

|
n∑
i=1

x(i, j)x(i, k)| = op(n
1/2 lnn).
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Because of the sparsity of β, we have

y = X(S0)β(S0) + ε.

Then it is easy to see that, for j ∈ S0,

n−1
n∑
i=1

x(i, j)y(i) = n−1β2(j)
n∑
i=1

x2(i, j) +
∑

k∈S0,k 6=j
[n−1

n∑
i=1

x(i, j)x(i, k)]

+n−1
n∑
i=1

x(i, j)ε(i)

= β2(j) + op(n
−1/2 lnn).

and that, uniformly for j 6∈ S0,

n−1
n∑
i=1

x(i, j)y(i) =
∑
k∈S0

β(k){n−1
n∑
i=1

x(i, j)x(i, k)}+ n−1
n∑
i=1

x(i, j)ε(i)

= op(n
−1/2 lnn).

The lemma is thus proved.

Now, let S be any subset of S1 such that K < ν(S) < n and λ is tuned to a value

λ∗ such that the minimum of

lp(β(S)|λ∗) = ‖y −X(S)β(S)‖2 + n
∑
j∈S

pλ∗(|βj|)

attains at some β̂(S) with exactly K non-zero components. Let S∗ be the index set

of the nonzero components of β̂(S). So S∗ ⊂ S and ν(S∗) = K. Let S+
0 = S0 ∩ S

and S−0 = S0/S. That is, S+
0 is the set of the causal features contained in S, and

S−0 is the set of the causal features not contained in S. We are going to show that

S+
0 ⊂ S∗. Obviously,

lp(β̂(S∗)|λ∗) = inf
β(S)

lp(β(S)|λ∗) < lp(β(S+
0 )|λ∗). (6)
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We have

lp(β(S+
0 )|λ∗) =

n∑
i=1

[
∑
j∈S−0

β(j)x(i, j) + ε(i)]2 + n
∑
j∈S+

0

pλ∗(|βj|)

=
∑
j∈S−0

β2(j)
n∑
i=1

x2(i, j) +
∑

j,k∈S−0 ,j 6=k

β(j)β(k)
n∑
i=1

x(i, j)x(i, k)

+
∑
j∈S−0

β(j)
n∑
i=1

x(i, j)ε(i) +
n∑
i=1

ε2(i) + n
∑
j∈S+

0

pλ∗(|βj|)

= n
∑
j∈S−0

β2(j) +
n∑
i=1

ε2(i) + n
∑
j∈S+

0

pλ∗(|βj|) + op(n
1/2 lnn). (7)

Now, suppose S+
0 6⊂ S∗; that is, there is at least one causal feature in S+

0 which is

not in S∗. Let S∗− = S−0 ∪ (S+
0 /S∗). Clearly, S−0 ⊂ S∗−. Let

H∗ = X(S∗){X ′(S∗)X(S∗)}−1X ′(S∗)

be the projection matrix of X(S∗). By (4) and (5), it is seen that

n{X ′(S∗)X(S∗)}−1 = IK×K + op(n
−1/2 lnn).

That is, it deviates from an K × K identity matrix component-wise by an order of

n−1/2 lnn. Thus, we have

H∗ = n−1X(S∗){I + op(n
−1/2 lnn)}X ′(S∗).

For any j, k 6∈ S∗, we have

X ′(j)H∗X(k) = n−1X ′(j)X(S∗){I + op(n
−1/2 lnn)}X ′(S∗)X(k)

= n−1op(n
1/2 lnn){I + op(n

−1/2 lnn)}op(n1/2 lnn)

= op([lnn]2).
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This order is uniform over all possible pairs of j, k. Then, we have

lp(β̂(S∗)|λ∗) ≥ inf
β(S∗)

‖X(S∗−)β(S∗−) + ε−X(S∗)β(S∗)‖2

= {β′(S∗−)X ′(S∗−) + ε′}(I −H∗){X(S∗−)β(S∗−) + ε}

= β′(S∗−)X ′(S∗−)(I −H∗)X(S∗−)β(S∗−)

+2β′(S∗−)X ′(S∗−)(I −H∗)ε+ ε′(I −H∗)ε. (8)

It can be seen that

β′(S−1 )X ′(S−1 )(I −H∗)X(S−1 )β(S−1 )

= β′(S−1 )X ′(S−1 )X(S−1 )β(S−1 )− β′(S−1 )X ′(S−1 )H∗X(S−1 )β(S−1 )

= nβ′(S−1 )β(S−1 ) + op(n
1/2 lnn) + op([lnn]2)

= nβ′(S−1 )β(S−1 ) + op(n
1/2 lnn).

The variance of β′(S∗−)X ′(S∗−)(I − H∗)ε is clearly O(n) and hence its order is

Op(n
1/2). It is obvious that

ε′(I −H∗)ε =
n∑
i=1

ε2(i) +Op(1).

Thus,

lp(β̂(S∗)|λ∗) ≥ nβ′(S∗−)β(S∗−) +
n∑
i=1

ε2(i) + op(n
1/2 lnn).

Eventually, we have

lp(β̂(S∗)|λ∗)− lp(β(S+
0 )|λ∗)

≥ n{
∑
j∈S∗−

β2(j)−
∑
j∈S−0

β2(j)} − n
∑
j∈S+

0

pλ∗(|βj|) + op(n
1/2 lnn).

Since, by assumption, S−0 ⊂ S∗−, the first term on the right hand side of the above

inequality is positive and is of order O(n). Thus the total on the right hand side is

26



larger than 0 in probability provided that

∑
j∈S+

0

pλ∗(|βj|) = op(1). (9)

Then this will contradict to (6). This contradiction shows that S+
0 ⊂ S∗.

We now show that (9) is true. For convenience, take the penalty as the L1 penalty.

Since ν(S∗) = K > ν0, there is at least one j ∈ S∗ which is not in S0 such that

β̂(j) 6= 0. This implies that

2
n∑
i=1

x(i, j){y(i)−
∑
k∈S∗

x(i, k)β̂(k)}+ nλ∗ = 0, (10)

which follows from elementary calculus. Since j 6∈ S0, the order of

n∑
i=1

x(i, j){y(i)−
∑
k∈S∗

x(i, k)β̂(k)}

is op(n
1/2 lnn). Thus for (10) to hold, λ∗ must be of order op(n

−1/2 lnn). Hence∑
j∈S+

0
pλ∗(|βj|) = op(n

−1/2 lnn) = op(1). A similar argument can be made for the

SCAD penalty but we do not present details here. The theorem is thus finally proved.
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