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Abstract

This report concerns the recalibration of deterministic mesoscale computa-

tional models to align their outputs with measurements made on a microscale

of the phenomena they model. Although the methods presented in the report

are quite general, it focuses on chemical transport models (CTMs) for ground

level ozone concentrations so that they can be empirically compared.

Such a model have been used in setting North American Air Quality Stan-

dards for ozone, a regulatory process that has required specification of ozone’s

policy relevant background (PRB) level, the level that would be observed if all

anthropogenic sources in North America were eliminated. The level is needed

to provide the baseline against which the impact of proposed new NAAQS can

be assessed in environmental risk analysis. However, the PRB cannot be mea-

sured since few if any areas uncontaminated by anthropogenic sources now exist

in North America. Moreover those that do exist may not represent very well

the contaminated areas.

So instead, a deterministic chemical transportation models (CTM) has been

used to infer the PRB by suppressing the anthropogenic sources in the com-

putational model. To validate use of that model in that way, its output has

been favorably compared with measured ozone concentrations with the anthro-

pogenic sources turned on.

However CTMs generate their outputs on a mesoscale, making their out-

puts inherently incomparable with measurements, which are by their nature

made on a micro-scale. Thus although comparisons of raw output do resemble

their microscale counterparts, recalibrating them to adjust for their misalign-

ment can greatly increase their resemblance. This report considers two very
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different statistical methods for recalibrating CTMs and finds through an em-

pirical investigation, a multi-stage multivariate regression method to be the

best overall.

Keywords: Chemical transport models; Bayesian recalibration; policy re-

lated background levels; misaligned data; NAAQS for ozone; combining physi-

cal & statistical models.

INTRODUCTION

This report presents two general methods for recalibrating the outputs from

deterministic mesoscale computational models to align them with microscale

measurements of the environmental phenomena they represent. The former are

not created to represent the latter ([4]). Ensuring their computational feasibility

can mean ignoring things such as topography, turbulence, evaporation and

friction that play an important role in determining the latter. Thus the model

outputs and measurements are by their nature comparable.

Nevertheless in some situations it may be necessary to use these mesoscale

models to simulate microscale measurements. One such situation of great in-

terest in its own right will be the focus of this paper so that the methods

presented here can be empirically assessed. That situation arises in setting

North American Air Quality Standards (NAAQS) for ozone. The regulatory

process involved there has required the specification of ozone’s policy relevant

background (PRB) level, the level that would be observed if all anthropogenic

sources in North America were eliminated. The level is needed to provide the

baseline against which the impact of proposed new NAAQS can be assessed in

environmental risk analysis.

3



However the PRB cannot be measured since few areas (if any) uncontam-

inated by anthropogenic sources now exist in North America. For example,

although one might have expected the Yellowstone National Park (WY) to be

a pristine site, the monthly maximal hourly ozone concentration level there

exceeds 50 ppb (parts per billion), a relatively high level even by urban stan-

dards, for most months from 1998 to 2001 (Figure 3-25a in [1]). Moreover those

pristine areas that do exist may not represent the remainder very well.

Since the PRB level cannot be measured, it has to be imputed. The strategy

adopted in the most recent NAAQS assessment of the ozone standard in the

United States, uses a deterministic model in which anthropogenic sources were

suppressed (i.e. “turned off”) to get outputs representing PRB levels. How-

ever the PRB’s vital role demands some sort of validation of these imputed

PRB levels. A comparison with measurements being ruled out led instead to

a comparison of those outputs with the anthropogenic sources “turned on”

and measurements. Similarity in these two series over broad geographical and

temporal domains supported use of the model outputs when they are turned

off.

The deterministic model selected for this analysis is an ozone chemical trans-

port model (CTM) called GEOS-CHEM (Goddard Earth Observing System-

Chemistry). [Details about the various versions of GEOS-CHEM models can

be found at http://www-as.harvard.edu/chemistry/trop/geos/.] Use of that

model led to an inferred PRB level of between 15 and 35 ppb ([1]), the level

adopted in the review of ozone standards.

Clearly, validating the model with sources turned on does not in and of

itself validate use of the model with sources turned off. However, a great deal

of physical knowledge is built into these CTMs and that gives vital added sup-
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port. Nevertheless, a logical gap remains: the misalignment of model outputs

and measurements, pointing to the need to recalibrate the former for this ap-

plication. This report presents two very different statistical methods for doing

just that.

Since the authors did not have access to GEOS - CHEM simulated data, they

used instead outputs from the MAQSIP (Multiscale Air Quality Simulation

Platform) as described by [10], whose outputs are thought to be similar to those

of the former. [Its spatial resolution is on a grid scale of 6×6 km2, its temporal

resolution, one hour.] We use both methods to recalibrate MAQSIP’s simulated

data using measurements obtained from the EPA’s Air Quality System (AQS)

monitoring network which measures ozone concentration levels over the eastern

and central part of USA. Validation data obtained from the same source, but

not used in the recalibration itself, enables a comparison of these methods.

We organize the report as follows. Section introduces the data. Section

presents two statistical models to calibrate the deterministic model outputs.

We show the calibration results in Section . Finally in Section we summarize

our findings and give recommendations.

DATA DESCRIPTION

The data comes from two sources: regional surface ozone concentration mea-

surements and model outputs from a deterministic model AQM (air quality

model), a non-hydrostatic version of the MAQSIP (Multiscale Air Quality Sim-

ulation Platform) model. This AQM system has been described in detail by

[11]. The AQM model outputs are based on grid cells with resolution 6×6 km2.

The measurements are from the Air Quality System (AQS) monitoring network.
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Both the measurements and model outputs are hourly concentrations starting

from May 15 to September 11, 1995 over a 120-day period. The dataset rep-

resents 375 monitoring stations in the AQS network and 307 grid cells in the

AQM output. Besides the fact that measurements and model outputs are based

on different supports, the data represent different time standards, model out-

puts being based on the GMT (Greenwich Mean Time) time standard, the

measurements on local time. Ignoring this time difference would result in poor

correlation between measurements and model outputs.

The measurement series, unlike that for the model outputs, have missing

values. For example, all the measurements from station 550730005 (in Wiscon-

sin state) are missing. To deal with the missing values, we first choose those

stations that have no more than 100 hours of missing measurements. Second,

we use the 24 hour mean to fill in the missing values. For example, if the miss-

ing value occurs at 10 AM, then we use the average of the available values at

10 AM every day to fill in this missing value. After adjusting for different time

standards and ignoring the stations with more than 100 missing measurements,

we have measurements at 81 stations and model outputs on 375 grid cells of

2856 hours (119 days). In these 375 grid cells, there are 78 grid cells which

contain one and only one station. To enable us understand better the role of

model-to-measurement correlation, from now on the data always will focus on

the 78 grid cells with 78 stations inside the grid cells. The calibration will focus

on the 8-hour (10AM-17PM) daytime average because the measurements and

model outputs are more correlated during those hours. Although we have 119

days from May to September we only focus on the days from July 1 to July

30 because the ozone concentration is at peak in the summer due to the high

temperature. We use the measurements at 48 stations to fit the models and
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the measurements at the rest 30 stations are used as validation.

METHODOLOGY

This section presents two statistical models which can be used to calibrate the

deterministic model outputs. First, we introduce the Bayesian melding model

proposed in [4] then we present an alternative spatial-temporal implemented in

[7].

BAYESIAN MELDING MODEL

The Bayesian melding model assume the existence of an underlying process to

connect the measurements and model outputs. The mathematical forms of the

model is in the following.

Ẑ(s) = Z(s) + e(s)

s ∈ <D}D ∈ {1, 2, 3}

Z(s) = µ(s) + ε(s)

Z(B) =
1
|B|

∫

B
Z(s)ds

Z̃(s) = a(s) + b(s)Z(s) + δ(s)

Z̃(B) =
1
|B|

∫

B
a(s)ds +

1
|B|

∫

B
b(s)Z(s)ds +

1
|B|

∫

B
δ(s)ds

µ(s) = β0 + β1s1 + β2s2

s = (s1, s2)t (1)

The subscript s stands for the station and B stand for the grid cell. In the above

model, Melding links processes with responses on mismatched scales through an
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underlying true process {Z(s). Denote the measurement process by {Ẑ(s), and

the deterministic model output process by {Z̃(B)}. To match Z(s), we also

hypothesize the existence of deterministic model output process {Z̃(s). The

measurements error and model output error are independent of each other. The

measurement errors, e(s), are independent and identically distributed, having a

normal distribution N(0, σ2
e). The model output errors, δ(s), are independent

and identically distributed with a normal distribution N(0, σ2
δ ). The spatially

correlated residuals, ε(s), have zero mean and covariance matrix Σ(θ), where

θ is the covariance parameter vector. The mean of Z(s) is a linear function of

the longitude (s1) and latitude (s2) at station s. The number of locations is

n. Z(B) and Z̃(B) are integrals of Z(s) and Z̃(s) over grid cell B. We only

observe realizations of process Ẑ(s) and Z̃(B) at measured stations and grid

cells for model outputs. We use the Gibbs sampling algorithm([5]) to fit this

Bayesian melding model. More details can be found in [9].

The calibrated model output at grid cell B by using Bayesian melding model

is (
Z̃(B)− 1

|B|
∫

B
a(s)ds

)
/b. (2)

The multiplicative calibration parameter b is assumed constant across space

and a(s) = a0 + a1s1 + a2s2. One can plug-in the posterior mean of a(s) and

b into (2) to obtain the calibrated model output ([4]). Departing the plug-

in approach used in [4], we use formula (2) to calculate the calibrated model

outputs at each iteration of the Gibbs sampling so we have a distribution for

the calibrated model outputs. We use the mean of that distribution as the final

calibration results.
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SPATIAL - TEMPORAL MODEL

This section presents a Bayesian hierarchical spatial-temporal model. At each

station, we assume there is a linear relationship between the measurements and

model outputs. We model this relationship by a linear regression with tempo-

rally correlated residuals. To incorporate the spatial correlation, we assume

both the coefficients and residuals are also spatially correlated. Thus we have

a spatial-temporal model with the following form.

Os,t = as + csMs,t + Ns,t

Ns,t = ρNs,t−1 + εs,t

a = (a1, · · ·, an)t∼ MVN(µa,Σa)

c = (c1, · · ·, cn)t∼ MVN(µc,Σc)

(ε1,t, · · ·, εn,t)t∼ MVN(0,Σε) independently and identically

times t = 1, · · ·, T, and

sites s = s1, · · ·, sn

µa = (µa, · · ·, µa)t

µc = (µc, · · ·, µc)t

Σa = σ2
a exp(−D/λa)

Σc = σ2
c exp(−D/λc)

Σε = σ2
ε exp(−D/λε). (3)

As described in the previous section, each grid cell has one and only one station

inside. So each station has two time series: measurements and model outputs

on the grid cell which contains that station. After assigning proper prior dis-
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tributions to the parameter, we have a Bayesian hierarchical spatial-temporal

model. Details on how fit this model can be found in [8]. The calibration

formula is

a + cZ̃(B). (4)

Similar to the calibration with Bayesian melding model, we use the average

of calibrated model outputs at each Gibbs sampling as the final calibration

results.

CALIBRATION RESULTS

This section compare how the measurements are predicted by model outputs,

calibrated model outputs with Bayesian melding and spatial-temporal model.

The Bayesian melding model is a pure spatial model because it does not incorpo-

rate the temporal correlation within the measurements. So we apply Bayesian

melding model to the data on each of the 30 days as if the data are temporally

independent. The RMSPE (root mean square prediction error) measures the

predictive performance. At day t, we define the RMSPE by

RMSPE =

√√√√ 1
n

n∑

i=1

(Oi − Ôi)2,

n being the number of stations to be predicted, Oi, the true measurement

at station i and Ôi, the prediction. Table 1 summarizes the RMSPE of the

model outputs, calibrated model outputs with Bayesian melding and spatial-

temporal model. Figure 1 shows the scatter plots of BM model calibrated model

outputs versus uncalibrated model outputs and Figure 2 shows scatter plots of
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Bayesian spatial-temporal model calibrated model outputs versus uncalibrated

model outputs.

We have the following conclusions from the calibration results. model out-

put, we have the following conclusions.

• Figures 1 and 2 reveal marked differences between calibrated and uncal-

ibrated model outputs because most points deviate from the solid line

with intercept 0 and slope 1. In fact, both of the two approaches pro-

posed in this paper, although very different in nature agree in suggesting

that MAQSIP overestimates measurements at the high end of the scale

and underestimates measurements at the low end.

• Table 1 shows that on average the spatial-temporal model calibrated

model outputs have the smallest RMSPE than the uncalibrated ones and

Bayesian melding calibrated model outputs also have smaller RMSPE

than uncalibrated ones. After calibration, the mean RMSPE has been re-

duced by 16.07% for Bayesian melding model, 21.48% for spatial-temporal

model. Out of all the 30 days, both BM and Bayesian spatial-temporal

model calibrated model outputs have smaller RMSPEs than uncalibrated

ones for 25 days. So it is beneficial to calibrate the model outputs by

using either Bayesian melding or spatial-temporal model.

• Figure 3 shows that both BM and Bayesian spatial-temporal calibrated

model outputs are closer to the measurements than the uncalibrated ones

at most stations.
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Figure 1: Scatter plots of uncalibrated model outputs versus BM calibrated model
outputs. The solid lines have intercept 0 and slope 1. The plots are for days 2, 7, 8
and 26 from the upper left to the lower right in left-to-right sequence.

CONCLUSIONS

Results reported in the previous section, lead us to conclude that the spatial

temporal model recalibrates the model outputs better than Bayesian melding,

because unlike the latter, the former “borrows strength” across time as well as

space. More specifically, the recalibrated outputs come closer to their measured

counterparts for the former than the latter. Nevertheless Bayesian Melding

does have appeal since it addresses the misalignment problem directly unlike

its purely statistical competitor. In fact, its approach resembles Reynold’s av-

eraging where sub - grid cell (micro - scale) processes are averaged out through
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Figure 2: Scatter plots of uncalibrated model outputs versus Bayesian spatial-
temporal model calibrated model outputs. The solid lines have intercept 0 and slope
1. The plots are for days 2, 7, 8 and 26 from the upper left to the lower right in
left-to-right sequence.

integration.

However, both agree that MAQSIP overestimates measured ozone concen-

trations at the high end and underestimates them at the low end. It is not

clear if this finding carries over to other CTMs such as GEOS - CHEM, nor

whether result would apply once the anthropogenic sources are suppressed in

the model. These results seems generally in accord with findings reported in

[2] and [3] which report amongst other things that GEOS - CHEM outputs

are about 10 ppbv too high in the southeastern United States in summer and
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Figure 3: Measurements versus the uncalibrated and calibrated model output of 30
grid cells on day 2. The solid line shows the measurements inside the grid cells. The
dotted and dashed lines are the uncalibrated and calibrated model outputs respec-
tively.

in excess of measured levels in highly populated coastal areas. The second of

these papers finds the O3 to be in the range of 15 - 35 (ppbv) with “occasional

incidences of 40 - 50 ppbv at high altitude western sites in spring”.

Since the PRB inferred from GEOS - CHEM lies at the low end of the scale,

our results based on MAQSIP leads to concerns that the imputed level of PRB is

too high. Were this true for GEOS - CHEM, the excess disease outcome counts

(above the PRB baseline) due to ozone would be underestimated pointing to

a need for even more stringent regulations than those proclaimed on March
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12, 2008 by the EPA Administrator. Clearly this is an issue that needs to be

addressed more carefully prior to the next review of the US ozone standards.
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Table 1: RMSPE of uncalibrated and calibrated model outputs for the prediction of

measurements at the 30 stations. column 1: day 1-30; column 2: RMSPE of uncali-

brated model output; column 3: RMSPE of BM calibrated model output; column 4:

RMSPE of Bayesian spatial-temporal model calibrated model output; The number

with a * indicates the “winner” in that row.

Day model output BM spatial-temporal

1 20.43 16.54 13.39*
2 19.88 10.89* 12.17
3 10.41 7.60* 8.78
4 14.82 13.79 12.00*
5 22.72 16.05 15.94*
6 23.67 15.09 14.02*
7 16.14 13.75 13.12*
8 15.36 14.42 11.30*
9 14.66 14.61* 15.06
10 12.23 11.19* 12.42
11 12.96 10.01 9.78*
12 17.41 16.19 15.00*
13 15.07 18.45 15.25*
14 20.83 15.77* 22.28
15 23.19 20.14* 22.79
16 16.49 17.28 16.22*
17 15.68 11.47 11.09*
18 15.89 15.35 13.83*
19 10.30 10.44 7.29*
20 14.20 11.59* 13.14
21 19.78 26.13 14.37*
22 17.96 11.07 8.98*
23 12.29 11.37 8.29*
24 15.87 10.02 9.53*
25 22.67 12.35* 13.92
26 18.41 14.06 * 14.12
27 16.59 9.99* 10.80
28 19.70 18.75 13.15*
29 13.44 11.33* 15.92
30 15.06 17.41 11.69*

mean 16.80 14.10 13.19*
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