
THE UNIVERSITY OF BRITISH COLUMBIA

DEPARTMENT OF STATISTICS

TECHNICAL REPORT # 243

Asymptotics of Bayesian Median Loss Estimation

By Chi Wai Yu and Bertrand Clarke

September 2008



Asymptotics of Bayesian Median Loss Estimation
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Abstract

Here we define estimators based on minimizing the median of a loss function in the Bayesian context.

For these estimators, we establish
√

n-consistency, asymptotic normality and efficiency. We contrast the

asymptotic behavior of these medloss estimators with the n1/3 asymptotic behavior of the least median of

squares (LMS) estimators and the least trimmed squares (LTS) estimators which are
√

n-consistent. The

performance of Bayesian medloss estimators is thus intermediate between the LMS and LTS estimators

since they use an actual median but still get
√

n-asymptotics.

1 Introduction

The main ideas of Statistical Decision Theory were proposed by Wald [24]. Later, in their book ”Theory of

Games and Economic Behavior”, von Neumann and Morgenstern [23], hereafter vNM, developed axiomatic

decision theory for choice behavior in a Frequentist context. Their theory influenced the final shape of

Statistical Decision Theory, Wald [25]. In the Bayesian context, Savage [18] extended vNM’s reasoning by

providing other axioms for the maximization of expected utility to be the criterion for decision making in a

subjective probability, i.e. Bayes setting.

However, there are well-known criticisms of the axioms for the existence of vNM’s and Savage’s expected

utility representations. For instance, the Allais paradox, Allais [1], and Ellsberg paradox, Ellsberg [9], show

that vNM’s Independence axiom and Savage’s Sure-Thing principle contradict real life decision making.

Consequently, various alternatives to the expected utility models have been proposed.

Manski [12] constructed quantile utility models in a Frequentist context and proposed that the quantile of

the utility function should be maximized. However, Manski’s approach was not axiomatic. This led Machina

and Schmeidler [11], in the Bayesian context, to consider axiomatic models for decision making that did not

rest on expected utility. However, their approach does not cover quantile utility models. Most recently

Rostek [15] has proposed an axiomatic foundation for Quantile Maximization in the Bayesian context. Her

axiomatization means that the best decision should maximize the pth quantile of the utility function, or

equivalently to minimize the (1− p)th quantile of the loss.

In a statistical context, Rostek’s result justifies using quantiles of the loss, and in this paper, we choose

the median of the loss, hereafter called the medloss, i.e. we take p = 0.5. The median is appropriate because

the non-negativity of the loss means that if the loss function itself is regarded as a random variable, it

has a right skewed distribution, often strongly right skewed. For such distributions, the median is a more

reasonable measure of location than the mean is. In addition, in terms of prediction, using the median helps

avoid overprediction and underprediction in terms of the loss.
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Parallel to the Bayes estimate or posterior expected-loss estimate in classical decision theory, we define

a posterior medloss estimate by

δ(xn) = arg min
d∈D

med
π(Θ|xn)

L(d(xn), Θ), (1)

where xn = (x1, . . . , xn) are the realizations of the n random variables Xn = (X1, . . . , Xn), L(d, θ) is the

loss function, d(xn) is the estimate for θ, D is the decision space, and med
π(Θ|xn)

L is the median of the loss L
under the posterior density π of Θ given xn. Our main result is that these estimators are

√
n-consistent,

asymptotically normal and efficient.

To the best of our knowledge, no one has provided an axiomatization in the frequentist context which

implies that minimizing the medloss is the appropriate criterion for choosing an estimator. We conjecture

that this can be done, although we do not do so here.

Note that the least median of squares (LMS) estimate is the frequentist version of our median-loss

estimate for regression problems. The LMS estimate was introduced by Rousseeuw [16] to estimate regression

parameters because of its high robustness to outliers. The consistency of the LMS estimate in nonlinear

regression models was established by Stromberg [20]. However, it was also shown to have a slow rate of

convergence in the linear regression setting by Andrews et al. [4], see also Kim and Pollard [10].

In addition to the Bayesian version in (1.1), we can define the Frequentist medloss estimator for θ by

δ(Xn) = arg min
d∈D

min
θ

med
Xn

L(d(Xn), θ), (2)

where med
Xn

L is the median of the loss L with respect to Xn under the distribution Pθ. We make use of this

definition in a nonlinear regression setting. Indeed, consider the nonlinear regression model

yi = h(xi, β0) + ui, i = 1, . . . , n.

The LMS estimator and the two-sided least trimmed squares (LTS) estimator are defined by

βn = arg min
β

median
1≤i≤n

[yi − h(xi, β)]2,

and

β(LTS,h)
n = arg min

β

h∑

n−h+1

r2
[i](β),

respectively, where r2
[i](β) represents the ith order statistics of squared residuals r2

i (β) = {yi − h(xi, β)}2,
and the trimming constant h must satisfy n

2 < h ≤ n. Here we extend the existing asymptotic results for the

LMS estimators to the nonlinear regression setting and for the one-sided LTS estimators to two-sided case.

We find the LTS estimators are
√

n-consistent and asymptotically normal but not efficient, and the LMS

estimators exhibit n1/3-asymptotics. The Bayesian medloss estimators represent a good tradeoff between
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the rate of the LTS estimators and the use of the median in the LMS estimators. This suggests that the

Bayesian medloss estimators are to be preferred over the LTS and LMS estimators.

In general, the medloss estimators in the Bayesian and Frequentist contexts have nice properties such

as high robustness to outliers and to the choice of the loss function, and good prediction. We also suggest

that the medloss estimators should be appropriate when the underlying distribution is asymmetric or heavy-

tailed.

The rest of this paper is organized as follows. In Section 2, we present the consistency and asymptotic

normality of posterior medloss estimators. For comparison, we also state the asymptotic results for LMS

estimators in Section 3 and for two-sided LTS estimators in Section 4. In Section 5, we summarize the

implications of our work.

2 Consistency and Asymptotic normality for Bayesian medloss es-

timators

Let Xn
0 = (X0, X1, · · · , Xn) and define the posterior medloss estimator δn = δn(Xn

0 ) to be the one which

minimizes the medloss

Mn(a) = med
π(Θ|Xn)

L(a, θ).

Consider the setting of Borwanker, et al. [5], in which the consistency and asymptotic normality

are established for Markov processes thereby implying the analogous results for IID cases. Suppose that

X0, X1, X2, · · · are random variables forming a strictly stationary ergodic Markov process and taking values

in a measurable space (S,BS). The stationary initial probability distribution and the transition probability

function of the process will be denoted by Pθ(A) and Pθ(y|A) for y ∈ S and A ∈ BS respectively, where

θ ∈ Θ ⊂ R. Suppose that there exists a σ−finite measure µ on (S,BS) such that Pθ(A) and Pθ(y|A) are both

absolutely continuous with respect to µ with densities f(z|θ) and f(y, z|θ) respectively. For θ ∈ Θ, denote

by Pθ the measure on the product measurable space determined by the initial probability distribution and

the transition probability function. Given the observations xn
0 = {x0, x1, · · · , xn}, the log likelihood function

of the process is defined by

ln Ln(θ, xn
0 ) = ln f(x0|θ) +

∑n−1
i=0 f(xi, xi+1|θ).

Moreover, let θ0 be the true parameter and P0 = Pθ0 . Borwanker, et al. [5] suggested that ln f(x0|θ) in the

above expression may be neglected in the large sample theory. Consider the following assumptions with the

observations xn
0 .
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Assumption 1.1: The parameter space Θ is an open interval in R. Π is a prior probability measure on

(Θ,F), where F is the σ−algebra of Borel subsets of Θ and Π is absolutely continuous and has a density π

with respect to the Lebesgue measure on R.

Assumption 1.2: Suppose that ∂
∂θ ln f(x0, x1|θ) and ∂2

∂θ2 ln f(x0, x1|θ) exist and are continuous in θ for

almost all pairs (x0, x1)(µ× µ).

Assumption 1.3: For every θ ∈ Θ, there exists η(θ) > 0 such that

Eθ

[
sup

{∣∣∣ ∂2

∂θ2 ln f(X0, X1|θ′)
∣∣∣ : |θ − θ′| < η(θ), θ′ ∈ Θ

}]
< ∞.

Assumption 1.4: For every θ ∈ Θ and any ε > 0,

−∞ < Eθ[sup{ln f(X0,X1|θ′)
f(X0,X1|θ) : |θ − θ′| ≥ ε, θ′ ∈ Θ}] < 0.

Assumption 1.5: Let

i(θ) = −Eθ

[
∂2

∂θ2 ln f(X0, X1|θ)
]
, for θ ∈ Θ.

It is clear that i(θ) < ∞ for all θ ∈ Θ. Suppose that i(θ) > 0 and i(θ) is continuous in θ.

Assumption 1.6: The proper prior density π is continuous and positive in an open neighborhood of the

true parameter θ0.

Before showing our main result, we need the following lemma for the asymptotic normality of the MLE

in the setting of Markov process.

Lemma 1 (Theorem 2.4 of Borwanker, et al. [5]). Under Assumptions 1.1-1.5, there exists a compact

neighborhood Uθ0 of θ0 such that

(i) θ̂n → θ0 a.s. and (ii) n1/2(θ̂n − θ0)
L→ N(0, i−1

0 ),

where θ̂n = θ̂n(xn
0 ) = arg sup

θ∈Uθ0

ln Ln(θ, xn
0 ).

Under Assumptions 1.1-1.6, now we show the asymptotic normality of the posterior medloss estimator,

which is an median-loss analog of the asymptotic result for the posterior risk estimator in [5].

Theorem 1. Let a Markov chain {Xn, n ≥ 0} satisfying all of the above assumptions. Let δn = δn(x0, · · · , xn)

be the posterior medloss estimator of θ for all (x0, x1, · · · , xn) and all n with respect to a loss function L(θ, a)

satisfying the following conditions:

(i) L(θ, a) = l(θ − a) ≥ 0,
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(ii) l(t1) ≥ l(t2) if |t1| ≥ |t2|.
Moreover, suppose that there exist a non-negative sequence {an} and monotone increasing continuous

function K(·) such that

(iii) For any real number c,

lim
n→∞

∣∣∣med
T |Xn

[anl((T + c)/n1/2)]− med
T |Xn

[K(T + c)]
∣∣∣ = 0,

where T =
√

n(Θ− θ̂n), θ̂n is the MLE of θ0 and med
T |Xn

is the median with respect to T given Xn,

(iv) 1/2 is the continuous point of the distribution of K(Z), and

(v) medZK(Z +m) has a unique minimum at m = 0, where medZ is the median with respect to Z having

a normal distribution N(0, i−1
0 ).

Then we have

δn → θ0 a.s.P0 and n1/2(θ0 − δn) L→ N(0, i−1
0 ).

To prove Theorem 1, we need the notion of the convergence in quantile, Shorack (2000), and Shorack’s

Proposition 1.

Definition 1. For any distribution function F (·), the quantile function is

K(t) def= F−1(t) = inf{x : F (x) ≥ t}, for 0 < t < 1.

Now denote by Kn the quantile function associated with the distribution function Fn for each n ≥ 0. Then

Kn converges in quantile to K0, denoted by Kn
Q→ K0, if Kn(t) → K0(t) at each continuity point t of K0(t)

in (0, 1).

Lemma 2 (Shorack [19]). Using the same notation as in Definition 1,

Fn
L→ F0 ⇐⇒ Kn

Q→ K0.

Now we can prove Theorem 1.

Proof. We prove Theorem 1 in three steps. The first shows that Wn = n1/2(θ̂n − δn) is finite a.s. and the

second step shows it goes to 0 a.s.P0. Then we complete the proof by using the Slutsky’s theorem and the

asymptotic normality of θ̂n.

1. First, for T = n1/2(Θ− θ̂n),

lim supnanMn(δn) ≤ lim supnanMn(θ̂n)

= lim supnan med
π(Θ|Xn)

l(Θ− θ̂n)

= lim supn med
T |Xn

[anl(T/n1/2)].
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Moreover,
∣∣∣med[anl(T/n1/2)] − medZ [K(Z)]

∣∣∣ ≤
∣∣∣med[anl(T/n1/2)] − med[K(T )]

∣∣∣ +
∣∣∣med[K(T )] −

medZ [K(Z)]
∣∣∣ → 0. The first term goes to zero based on the condition (iii) of the loss function.

By Theorem 3.2 of Borwanker, et al. [5] that the density of T converges to that of Z in total variation,

we have the convergence of T to Z in distribution because

|FT (x)− FZ(x)| ≤
∫ x

−∞
|fT (u)− fZ(u)|du

≤
∫ ∞

−∞
|fT (u)− fZ(u)|du → 0, ∀x,

where FT (·) and FZ(·) are the cdf’s of T and Z, respectively, and fT (·) and fZ(·) are the corresponding

pdf’s. Further, by the continuity of K and the Continuous Mapping Theorem, K(T ) converges in

distribution to K(Z). Thus, by Lemma 2, medK(T ) → medZK(Z), which implies that the second

term converges to zero. So,

lim supnanMn(δn) ≤ lim supnanMn(θ̂n) ≤ medZK(Z). (3)

2. Now we will show n1/2(θ̂n − δn) = Wn < ∞ a.s. by using the argument of Borwanker, et al. [5], but

here we consider the posterior medloss instead of the posterior risk.

First, suppose that the statement Wn < ∞ a.s. is false, then for every M > 0, there exists a set AM

with Pθ(AM ) > 0 such that |Wn(x)| > M i.o. for x ∈ AM . Without loss of generality, we can assume

that Wn(x) > M i.o. Then, for the subsequence {ni} where the inequality holds, we have

aniMni(δni) = ani med
π(Θ|Xni )

l(Θ− δni)

= med
T |Xni

[
ani l

(T + Wni

n
1/2
i

)]

≥ med
T |Xni

[
ani l

(T + Wni

n
1/2
i

)
I{T≥−M}

]

= med
T |Xni

[
ani l

(T + M

n
1/2
i

)
I{T+M≥0}

]

→ medZ

[
K(Z + M)I{Z+M≥0}

]

by condition (iv). The inequality holds because XI{A} ≤ X for any non-negative random variable

X and an indicator function I with any set A. Note that K(Z + M)I{Z+M≥0} is a non-decreasing

function of M for each fixed Z. So, by Tomkins’ corollary in [21], for the median version of the Lebesgue

dominated convergence theorem, we have

lim
M→+∞

medZ

[
K(Z + M)I{Z+M≥0}

]

=medZ lim
M→+∞

[
K(Z + M)I{Z+M≥0}

]

=K(+∞) > medZK(Z).
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Therefore, for a set of positive probability,

lim infn anMn(δn) > medZK(Z) ≥ lim supn anMn(θ̂n),

which contradicts the definition of δn. Thus, lim supn |Wn| < ∞ a.s. P0.

Next for any arbitrary ε > 0, we denote by BM the set such that for x ∈ BM , |Wn| ≤ M for every n

and Pθ(BM ) > 1 − ε. For a fixed x ∈ BM , Wn(x) is a bounded sequence, so it has a limit point m.

Assume that m 6= 0. Then, for the subsequence {ni} where Wni
(x) → m, we have

lim inf
ni

ani
Mni

(δni
) = lim inf

ni

med
T |Xni

[
ani

l
(T + Wni

n
1/2
i

)]

≥ lim
ni

med
T |Xni

[
ani

l
(T + Wni

n
1/2
i

)]
− ε

= medZK(Z + m)− ε

> medZK(Z)− ε.

Since ε is arbitrary, we get lim infni aniMni(δni) > medZK(Z), which is impossible by (3). Thus, m=0

and n1/2(δn − θ̂n) → 0 a.s.P0.

3. Finally, the proof is completed by observing n1/2(δn−θ0) = n1/2(δn− θ̂n)+n1/2(θ̂n−θ0)
L→ N(0, i−1

0 ).

Note that conditions (i), (ii) and (iii) are true for L1 loss with an = n1/2 and K(t) = |t|. Also, since

Z has a normal distribution with median 0, conditions (iv) and (v) are satisfied. Therefore, we have the

following result.

Corollary 1. Consider any continuous posterior density of Θ given Xn = xn with Lp loss, i.e. L(θ, a) =

|θ − a|p. Assume that the median of the loss L is unique. Then for any strictly increasing functions L of

|Θ− d(xn)|, we have

δn → θ0 a.s.P0 and n1/2(θ0 − δn) L→ N(0, i−1
0 ).

2.1 For IID random variables

For the corresponding results in an IID setting, we can follow Prakasa Rao [14]. Basically, what we need to

do is to change the setting for Markov process to IID random variables. The proofs for the results of IID

random variables are similar to those for Markov process. Therefore, we only provide the required settings

and assumptions for the IID case; and the proofs are omitted.
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Consider IID random variables Xi, 1 ≤ i ≤ n, which are defined on a measurable space (Ω,B) with

probability measure Pθ, θ ∈ Θ ⊂ R. Then similar to Assumption 1.2, we have

Assumptions 1.2*: Suppose Pθ << µ, µ σ−finite on (Ω,B). Let

f(x|θ) = dPθ

dµ (x).

Suppose that ∂
∂θ ln f(x|θ) and ∂2

∂θ2 ln f(x|θ) exist and are continuous in θ for x a.e. [µ].

Assumptions 1.3* to 1.5* are the same as Assumptions 1.3 to 1.5 but using ln f(x|θ), instead of ln f(x0, x1|θ).

Theorem 3 for i.i.d. random variables holds under Assumptions 1.1, 1.2*-1.5* and 1.6. This result is

verified by the following theorem.

Theorem 2. Let {Xi, 1 ≤ i ≤ n} be IID random variables satisfying Assumptions 1.1, 1.2*-1.5* and 1.6. Let

δn = δn(x1, . . . , xn) be the posterior medloss estimator of θ with respect to a loss function L(a, θ) satisfying

the conditions (i)-(iv) defined in Theorem 1, then we have

δn → θ0 a.s.P0 and n1/2(θ0 − δn) L→ N(0, i−1
0 ).

3 Asymptotic results for the LMS estimator in nonlinear regres-

sion models

Next we turn to the asymptotic results for LMS estimators in the regression context. In linear regression

models, Kim and Pollard (1990) deduced a limiting Gaussian process for LMS estimators. Here, we extend

their result to nonlinear cases.

First, let H be a vector space of real-valued functions h. Consider the nonlinear regression model

yi = h(xi, β0) + ui, i = 1, . . . , n, (4)

where yi, xi and ui are the realizations of random variables Yi ∈ R, Xi ∈ Rp and Ui ∈ R, respectively, and

β0 ∈ B ⊂ Rd is an unknown true parameter for the known function h ∈ H. Assume that the parameter space

B is compact and β0 is its interior point, and that (xi, ui) are independently sampled from a probability

distribution P on Rp ×R. So, the LMS estimator is defined by

βn = arg min
β

median
1≤i≤n

[yi − h(xi, β)]2. (5)

The asymptotic results of the LMS estimator βn in the non-linear regression models (4) rely heavily on

Kim and Pollard’s main theorem [10], so we state this theorem before giving our main result. The notion of

manageability used below is discussed in Appendix A.1.
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Theorem 3 (Kim and Pollard, [10]). Consider the empirical processes

Eng(·, θ) =
1
n

∑

i≤n

g(ηi, θ),

where {ηi = (xi, ui)} is a sequence of independent observations taken from a distribution P on Rp ×R and

G = {g(·, θ) : θ ∈ Θ} is a class of functions indexed by a subset Θ of Rd.

Define the envelope GR(·) as the supremum of |g(·, θ)| over the class GR = {g(·, θ) : ‖θ − θ0‖ ≤ R}, i.e.

GR(xi, ui) = sup
g∈GR

|g(xi, ui, θ)|.

Also make the following assumptions:

1. Choose a sequence of estimators {θn} for which Eng(·, θn) ≥ sup
θ∈Θ

Eng(·, θ)− op(n−2/3).

2. The sequence {θn} converges in probability to the unique θ0 that maximizes Eg(·, θ), the expectation of

g(·, θ) with respect to the distribution P .

3. The true value θ0 is an interior point of Θ.

Let the functions g(·, θ0) be standardized so that g(·, θ0) = 0 and suppose that the class GR, for R near

0, is uniformly manageable for the envelopes GR. Then we also require :

4. Eg(·, θ) is twice differentiable with second derivative matrix −V at θ0.

5. H(s, t) ≡ lim
α→∞

αEg(·, θ0 + s/α)g(·, θ0 + t/α) exists for each s, t in Rd and

lim
α→∞

αEg(·, θ0 + t/α)2{|g(·, θ0 + t/α)| > εα} = 0

for each ε > 0 and t ∈ Rd.

6. EG2
R = O(R) as R → 0 and for each ε > 0 there is a constant K such that EG2

RI{GR>K} < εR for R

near 0.

7. E|g(·, θ1)− g(·, θ2)| = O(|θ1 − θ2|) near θ0.

Now, under the above assumptions 1 - 7, we have that the process n2/3Eng(·, θ0 + tn−1/3) converges in

distribution to a Gaussian process Z(t) with continuous sample paths, expected value −1
2 t′V t and covariance

kernel H, as n →∞.

Finally, if V is positive definite and if Z has nondegenerate increments, then n1/3(θn − θ0) converges in

distribution to the (almost surely unique) random vector that maximizes Z, as n →∞.

Now we can state our generalization to nonlinear models. By verifying the assumptions of Theorem 3,

we have the following.
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Theorem 4. Suppose

1. dim(H) is finite.

2. Qh = EX [h′(X,β0)h′(X, β0)T ] is positive definite.

3. ui has a bounded, symmetric density γ that decreases away from its mode at zero, and it has a strictly

negative derivative at r0, the unique median of |u|.

4. For any h ∈ H, h satisfies the Lipschitz condition, i.e.

|h(X, β1)− h(X,β2)| ≤ LX‖β1 − β2‖, where LX > 0 depends on X,

and EX(LX) < ∞.

5. EX‖h′(X, ξ)‖ < ∞ for ξ ∈ U(β0, R), where U(a, b) means an open ball at center a with radius b, and

R is defined for the envelope GR.

6. EX |h′(X, β0)T w| 6= 0 for any w 6= 0.

Then we have that n1/3(βn − β0) converges in distribution to the arg max
θ

of the Gaussian process

Z(θ) = γ′(1)θT Qhθ + W (θ),

as n →∞, where θ = β−β0 and the Gaussian process W has zero mean, covariance kernel H and continuous

sample paths.

In the following, we just outline the proof of Theorem 4; the full proof is in Appendix A. First, we recast

(5) as a problem of constrained optimization by reparametrizing β by β0 + θ, and taking a first-order Taylor

expansion of h(x, β) at β0. Thus,

y − h(x, β) = u− h′(x, ξ)T θ, (6)

where ξ ∈ (β0, β) and ξ → β0 as θ → 0. Then define

fh,x,u(θ, r, ξ) = I{|u−h′(x,ξ)T θ|≤r}(x, u),

and

rn = inf {r : sup
θ

Enfh,x,u(θ, r, ξ) ≥ 1/2}. (7)

Let θn = βn−β0 be a value at which sup
θ

Enfh,x,u(θ, rn, ξ) is achieved, where En corresponds to the empirical

version of the expectation under P.
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Assume that the corresponding constrained maximization (7) for the expectation under P has a unique

solution θ0 and r0. Without loss of generality, let θ0 = 0 and r0 = 1. Since fh,x,u(θ, r, ξ) can be rewritten as

I{|y−h(x,θ+β0)|≤r}(x, y) = I{h(x,θ+β0)−y+r≥0 and y+r−h(x,θ+β0)≥0}(x, y), (8)

we let fh,x,y(θ, r) = fh,x,u(θ, r, ξ) and define

gh,x,u(θ, δ, ξ) = fh,x,u(θ, 1 + δ, ξ)− fh,x,u(0, 1 + δ, ξ).

Applying Kim and Pollard’s main theorem in [10], here stated as Theorem 3, in the present setting will

establish our result Theorem 4. So it suffices to check whether all the required conditions of Kim and

Pollard’s theorem can be satisfied in the nonlinear case. The verifications are shown in Appendix A.

4 Limiting results for two-sided LTS in nonlinear regression mod-

els

Since it is based on a median, the LMS estimator can be viewed as a trimmed mean estimator with a

trimming proportion of 50% on both sides. The more the trimming, the fewer data points that contribute

directly to the estimator. Consequently, the rate of convergence slows from root-n to cube root n. To

verify this intuition, we see that relaxing the trimming proportion gives the n1/2 rate of convergence and

asymptotic normality. In this subsection, we propose the two-sided LTS estimator in nonlinear models and

establish its limiting behavior. Our work is based on the n1/2-convergence and asymptotic normality of the

one-sided LTS estimators that were shown by Č́ıžek [6, 7].

Consider the nonlinear regression model (4) and a sequence of the variables {xt}t∈N satisfying

sup
t∈N

E
{

sup
B∈σf

t+m

|P (B|σp
t )− P (B)|

}
→ 0,

as m →∞, where σp
t = σ(xt, xt−1, . . .) and σf

t = σ(xt, xt+1, . . .) are σ-algebras. The two-sided LTS estimator

is defined by

β(LTS,h)
n = arg min

β
Sn(β), (9)

where Sn(β)
def
=

∑h
n−h+1 r2

[i](β), r2
[i](β) represents the ith order statistics of squared residuals r2

i (β) =

{yi − h(xi, β)}2, and the trimming constant h satisfies n
2 < h ≤ n. Denote the distribution functions of ui

and u2
i by F and G, the corresponding pdf’s by f and g, and quantile functions by F−1 and G−1, respectively.

The choice of the trimming constant h depends on the sample size n, so consider a sequence of trimming

constants hn. Since hn/n determines the fraction of sample included in the LTS objective function, we

12



choose a sequence for which hn = [λn], where [z] represents the integer part of z so that hn/n → λ for some

1/2 < λ ≤ 1.

Č́ıžek made assumptions for the asymptotic results of the one-sided LTS estimator. They can be classified

into three groups: Assumptions D, H and I, where assumptions D are for the distributional assumptions for

the random variables, assumptions H for the regression functions h and assumptions I for the identification

setting.

Our main results for the two-sided case also follow these assumptions, except for Č́ıžek’s assumptions D3

and I2. We make two alternative assumptions TD3 and TI2 for the two-sided case in place of his D3 and

I2. Specifically, we have

Assumption TD3 : assume that for λ ∈ (0, 1),

mgg
def
= inf

β∈B
inf

z∈(−δg,δg)
gβ(G−1

β (λ) + z) > 0

for some δg > 0. Additionally, when 1/2 < λ ≤ 1, suppose that

m∗
G

def
= sup

β∈B
G−1

β (1− λ) > 0 and m∗∗
G

def
= inf

β∈B
G−1

β (λ) > 0,

and

M∗
gg

def
= sup

β∈B
sup

z∈(−∞,m∗
G)

gβ(z) < ∞ and M∗∗
gg

def
= sup

β∈B
sup

z∈(m∗∗
G ,∞)

gβ(z) < ∞,

where Gβ and gβ are the distribution function and probability density function of r2
i (β).

Assumption TI2 : For any ε > 0 and an open ball U(β0, ε) such that B ∩U c(β, ε) is compact, there exist

α(ε) > 0 such that it holds, for 1/2 < λ ≤ 1, that

min
‖β−β0‖>ε

E
[
r2
i (β)I{G−1

β (1−λ)≤r2
i (β)≤G−1

β (λ)}
]

> E
[
r2
i (β0)I{G−1

β0
(1−λ)≤r2

i (β0)≤G−1
β0

(λ)}
]

+ α(ε).

To indicate the modifications of Č́ıžek’s assumptions D, H and I, we denote our assumptions by TD,

TH and TI, respectively. Our theorems for the two-sided LTS estimator on nonlinear models rely on [6, 7],

so our main results on consistency and asymptotic normality of β
(LTS,h)
n stated in Theorems 5 and 6 rely on

numerous preliminary results. Figure ? shows that these preliminary results lead to the desired theorems.

To implement Figure 1, we start with Lemma 3. Let

Sn(β) =
∑hn

n−hn+1 r2
[i](β).

Lemma 3. Under assumptions TD2 and TH1, Sn(β) is continuous on B, twice differentiable at β
(LTS,hn)
n

if β
(LTS,hn)
n ∈ U(β0, δ), and almost surely twice differentiable at any fixed point β ∈ U(β0, δ).

13



Figure 1:

Denote I[r2
[n−hn+1](β),r2

[hn](β)](r2
i (β)) by I2(r2

i (β)), h′β(xi, β) by h′β and h′′ββ(xi, β) by h′′ββ. Then we have

Sn(β) =
n∑

i=1

r2
i (β)I2(r2

i (β)), (10)

S′n(β) = −2
n∑

i=1

r2
i (β)h′βI2(r2

i (β)),

S′′n(β) = 2
n∑

i=1

{h′β(h′β)T − ri(β)h′′ββ}I2(r2
i (β))

almost surely at any β ∈ B and β ∈ U(β0, δ), respectively.

The proof of this lemma is substantially the same as Č́ıžek’s, so we omit it here.

Next we establish the consistency and asymptotic normality of β
(LTS,hn)
n in three stages using Č́ıžek’s

idea of asymptotic linearity, which we establish first in Proposition 1.

To investigate the behavior of the normal equations S′n(β) = 0 around β0 as a function of β−β0, consider

the difference

D1
n(t) = S′n(β0 − n−1/2t)− S′n(β0)

= −2
n∑

i=1

[
{yi − h(xi, β0 − n−1/2t)}h′β(xi, β0 − n−1/2t)I2(r2

i (β0 − n−1/2t))

− {yi − h(xi, β0)}h′β(xi, β0)I2(r2
i (β0))

]
.

Here, t ∈ TM = {t ∈ Rp|‖t‖ ≤ M}, where 0 < M < ∞ is an arbitrary but fixed constant.

Proposition 1 (Asymptotic Linearity). Under assumptions TD, TH and TI, and for λ ∈ (1/2, 1] and

M > 0, we have

n−1/2 sup
t∈TM

‖D1
n(t)
−2 − n1/2QhtCλ‖ = op(1), as n →∞,
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where Qh = EX [h′(X,β0)h′(X, β0)T ], Cλ = (2λ− 1) + ( qλ+q1−λ

2 )[H(λ)−H(1− λ)], H(λ) = f(qλ) + f(−qλ)

and qλ =
√

G−1(λ).

Now we can state our two results on consistency and asymptotic normality.

Theorem 5 (Consistency). Under assumptions TD, TH1, TH5 and TI, the two-sided LTS estimator

β
(LTS,hn)
n minimizing (9) is weakly consistent, i.e.

β
(LTS,hn)
n

p→ β0, as n →∞.

In addition, if all conditions of H are satisfied. Then β
(LTS,hn)
n is

√
n-consistent, i.e.

√
n(β(LTS,hn)

n − β0) = Op(1), as n →∞.

Theorem 6 (Asymptotic Normality). Suppose that assumptions TD, TH and TI are satisfied and Cλ 6= 0,

then we have

√
n(β(LTS,hn)

n − β0)
L→ N(0, V2λ),

where V2λ = (Cλ)−2σ2
2λQ−1

h , Cλ and Q−1
h are defined in Proposition 1 and σ2

2λ = Eu2
i I[G−1(1−λ),≤G−1(λ)](u2

i ).

The proofs of these results are substantially the same as the proofs in [6, 7] for one-sided LTS estimators,

so we omit the details. We only extend the required lemmas and propositions for Č́ıžek’s one-sided LTS

estimator to our two-sided situation. Since the objective function giving the two-sided LTS estimator is not

differentiable, we consider the behavior of the ordered residual statistics (Lemmas 5 and 6). Given this, the

proof of the asymptotic linearity of the corresponding LTS normal equations as stated in Proposition 1 can

be given. Then combining these results with the uniform law of large numbers (Lemma 4) and stochastic

equicontinuity for mixing processes, we can prove the consistency and rate of convergence of the two-sided

LTS estimates (Theorem 5). Finally, using Proposition 2 below, the proof of the asymptotic normality of

the two-sided LTS estimate (Theorem 6) will follow from the consistency and asymptotic linearity of the

LTS normal equations.

Now we can begin giving the formal proofs of Proposition 1, and Theorems 5 and 6. We start with

Lemma 4.

Lemma 4 (Uniform weak law of large numbers). Let assumptions TD, TH and TI1 hold, and assume that

t(x, u; β) is a real function continuous in β uniformly in x and u over any compact subset of the support

of (x, u). Also, we suppose that Esup
β∈B

|t(x, u; β)|1+δ < ∞, for some δ > 0. Then, letting I3(β; K1, K2) =

I[G−1
β (1−λ)−K1,G−1

β (λ)+K2]
(r2

i (β)), we have

sup
β∈B,K1,K2∈R

∣∣∣ 1
n

n∑

i=1

[t(xi, ui; β)I3(β;K1,K2)]− E[t(xi, ui; β)I3(β; K1, K2)]
∣∣∣ → 0,

as n →∞ in probability.
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The proof is in Appendix B.1.

Next, note that Č́ıžek’s Lemmas A.2 - A.5 are valid for λ ∈ (0, 1) with our assumption TD in place of

his assumption D. So we only state these lemmas here without proofs. Denote the ith order statistics of the

squared residuals r2
i (β) = (yi−h(xi, β))2 by r2

[i](β) used to define the two-sided LTS estimator in (9). Thus,

we have the following.

Lemma 5. For λ ∈ (0, 1) and hn = [λn] for n ∈ N , under assumptions TD, TH1 and TI1, we have

sup
β∈B

∣∣∣r2
[hn](β)−G−1

β (λ)
∣∣∣ → 0, (11)

as n →∞ in probability. Moreover,

EGn
= Esup

β∈B

∣∣∣r2
[hn](β)−G−1

β (λ)
∣∣∣ → 0, (12)

as n →∞.

Lemma 6. For λ ∈ (0, 1) and hn = [λn] for n ∈ N , under assumptions TD, TH1 and TI1, there exist

some ε > 0 such that

√
n sup

β∈U(β0,ε)

∣∣∣r2
[hn](β)−G−1

β (λ)
∣∣∣ = Op(1)

and

ELn = E
{√

n sup
β∈U(β0,ε)

∣∣∣r2
[hn](β)−G−1

β (λ)
∣∣∣
}

= Op(1),

as n →∞.

Lemma 7. Let assumptions TD, TH and TI1 hold, and suppose that λ ∈ (0, 1), τ ∈ (1/2, 1), and hn = [λn]

for n ∈ N . Then, we have
∣∣∣r2

[hn](β0 − n−1/2t)− r2
[hn](β0)

∣∣∣ = Op(n−τ )

uniformly in t ∈ TM = {t ∈ Rk : ‖t‖ ≤ M} as n →∞.

Lemma 8. Under assumptions TD, TH1 and TI1, we have that for any i ≤ n and λ ∈ (0, 1),

P 0
G = P

(
sup
β∈B

∣∣∣I{r2
i (β)≤r2

[hn](β)} − I{r2
i (β)≤G−1

β (λ)}
∣∣∣ 6= 0

)
= o(1).

In addition, under assumptions TD, TH and TI1, there exists ε > 0 such that

P 0
L = P

(
sup

β∈U(β0,ε)

∣∣∣I{r2
i (β)≤r2

[hn](β)} − I{r2
i (β)≤G−1

β (λ)}
∣∣∣ 6= 0

)
= O(n−1/2).

as n →∞.

By Lemma 8, we have the following result.
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Corollary 2. Under assumptions TD, TH1 and TI1. For λ ∈ (1/2, 1) and for any i ≤ n, we have

PG = P
(
sup
β∈B

∣∣∣I{r2
[n−hn+1](β)≤r2

i (β)≤r2
[hn](β)} − I{G−1

β (1−λ)≤r2
i (β)≤G−1

β (λ)}
∣∣∣ 6= 0

)

= o(1).

In addition, under assumptions TD, TH and TI1, there exists ε > 0 such that

PL = P
(

sup
β∈U(β0,ε)

∣∣∣I{r2
[n−hn+1](β)≤r2

i (β)≤r2
[hn](β)} − I{G−1

β (1−λ)≤r2
i (β)≤G−1

β (λ)}
∣∣∣ 6= 0

)

= O(n−1/2), as n →∞.

Proof of Corollary 2. Denote A1 = {r2
i (β) ≤ r2

[hn](β)}, B1 = {r2
i (β) ≥ r2

[n−hn+1](β)}, A2 = {r2
i (β) ≤

G−1
β (λ)} and B2 = {r2

i (β) ≥ G−1
β (1−λ)}. Let vin(β) = I{r2

[n−hn+1](β)≤r2
i (β)≤r2

[hn](β)}−I{G−1
β (1−λ)≤r2

i (β)≤G−1
β (λ)}.

Thus,

vin(β) = IA1IB1 − IA2IB2 .

So we have

0 ≤ sup
β∈B

∣∣∣vin(β)
∣∣∣ = sup

β∈B

∣∣∣IA1IB1 − IA2IB1 + IA2IB1 − IA2IB2

∣∣∣

≤ sup
β∈B

∣∣∣IA1 − IA2

∣∣∣
∣∣∣IB1

∣∣∣ + sup
β∈B

∣∣∣IA2

∣∣∣
∣∣∣IB1 − IB2

∣∣∣

≤ sup
β∈B

∣∣∣IA1 − IA2

∣∣∣ + sup
β∈B

∣∣∣IB1 − IB2

∣∣∣.

Notice that sup
β∈B

∣∣∣vin(β)
∣∣∣ 6= 0 implies that either sup

β∈B

∣∣∣IA1 − IA2

∣∣∣ 6= 0 or sup
β∈B

∣∣∣IB1 − IB2

∣∣∣ 6= 0. Thus, we have

0 ≤ P (sup
β∈B

∣∣∣vin(β)
∣∣∣ 6= 0) ≤ P (sup

β∈B

∣∣∣IA1 − IA2

∣∣∣ 6= 0) + P (sup
β∈B

∣∣∣IB1 − IB2

∣∣∣ 6= 0) = o(1).

The second last equality holds by the first result of Lemma 8. Similarly, using the above arguments with

the second result of Lemma 8, we can prove that there exists ε > 0 such that

P ( sup
β∈U(β0,ε)

∣∣∣vin(β)
∣∣∣ 6= 0) = O(n−1/2).

Using the same technique as in the proof of Corollary 2, we have the following which is parallel to Č́ıžek’s

Corollary A.6.

Proposition 2. Let assumptions TD, TH1 and TI1 hold and assume that t(x, u; β) is a real-valued function

continuous in β uniformly in x and u over any compact subset of the support of (x, u). Moreover, assume
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that E sup
β∈B

∣∣∣t(x, u;β)
∣∣∣ < ∞. Then we have that for λ ∈ (1/2, 1),

E
{

sup
β∈B

∣∣∣t(xi, ui; β)
[
I{r2

[n−hn+1](β)≤r2
i (β)≤r2

[hn](β)} − I{G−1
β (1−λ)≤r2

i (β)≤G−1
β (λ)}

]∣∣∣
}

= o(1).

In addition, under assumptions TD, TH and TI1, there exists ε > 0 such that

E
{

sup
β∈U(β0,ε)

∣∣∣t(xi, ui;β)
[
I{r2

[n−hn+1](β)≤r2
i (β)≤r2

[hn](β)} − I{G−1
β (1−λ)≤r2

i (β)≤G−1
β (λ)}

]∣∣∣
}

= O(n−1/2), as n →∞.

Proposition 2 controls the upper bound arising from applying Chebyshev’s inequality to a weighted sum

of differences of indicator functions. This sum of differences expresses the distance between residuals and

their limiting quantiles. It is stated in the following.

Proposition 3. Let assumptions TD, TH1 and TI1 hold and assume that t(x, u; β) is a real-valued function

continuous in β uniformly in x and u over any compact subset of the support of (x, u). Moreover, assume

that Esup
β∈B

∣∣∣t(x, u; β)
∣∣∣ < ∞. Then we have that for λ ∈ (1/2, 1),

sup
β∈B

∣∣∣ 1
n

n∑

i=1

{
t(xi, ui;β)

[
I{r2

[n−hn+1](β)≤r2
i (β)≤r2

[hn](β)} − I{G−1
β (1−λ)≤r2

i (β)≤G−1
β (λ)}

]}∣∣∣

= op(1).

In addition, under assumptions TD, TH and TI1, there exists ε > 0 such that

sup
β∈U(β0,ε)

∣∣∣ 1√
n

n∑

i=1

{
t(xi, ui; β)

[
I{r2

[n−hn+1](β)≤r2
i (β)≤r2

[hn](β)} − I{G−1
β (1−λ)≤r2

i (β)≤G−1
β (λ)}

]}∣∣∣

=Op(1), as n →∞.

Proof of Proposition 3. Recall that A1 = {r2
i (β) ≤ r2

[hn](β)}, B1 = {r2
i (β) ≥ r2

[n−hn+1](β)}, A2 = {r2
i (β) ≤

G−1
β (λ)} and B2 = {r2

i (β) ≥ G−1
β (1− λ)}. By the first result of Proposition 2, for any ε∗ > 0, we have

P
(
sup
β∈B

∣∣∣ 1
n

n∑

i=1

{
t(xi, ui; β)

[
IA1IB1 − IA2IB2

]}∣∣∣ > ε∗
)

≤ 1
ε∗

E
(
sup
β∈B

∣∣∣ 1
n

n∑

i=1

{
t(xi, ui; β)

[
IA1IB1 − IA2IB2

]}∣∣∣
)

≤ 1
ε∗

E
(
sup
β∈B

1
n

n∑

i=1

∣∣∣t(xi, ui; β)
[
IA1IB1 − IA2IB2

]∣∣∣
)

=
1
ε∗

E
(
sup
β∈B

∣∣∣t(xi, ui; β)
[
IA1IB1 − IA2IB2

]∣∣∣
)
→ 0.
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Moreover, by the second result of Proposition 2, there exists ε > 0 such that

E
(

sup
β∈U(β0,ε)

∣∣∣ 1√
n

n∑

i=1

{
t(xi, ui;β)

[
IA1IB1 − IA2IB2

]}∣∣∣
)

=
√

nE
(

sup
β∈U(β0,ε)

∣∣∣ 1
n

n∑

i=1

{
t(xi, ui;β)

[
IA1IB1 − IA2IB2

]}∣∣∣
)
≤ O(1).

Therefore, using the Chebyshev’s inequality again gives the second result.

In what follows, we study in more detail the differences of probabilities that I{r2
[n−hn+1](β)≤r2

i (β)≤r2
[hn](β)}

at β = β0 and βn for sequences βn converging to β0 at
√

n-rate. Our next result gives bounds for how closely

residuals at the true parameter β0 approximate residuals at β in a neighborhood of β0.

Lemma 9. Recall that A1 = {r2
i (β) ≤ r2

[hn](β)} and B1 = {r2
i (β) ≥ r2

[n−hn+1](β)}. Denote A0
1 = {r2

i (β0) ≤
r2
[hn](β0)} and B0

1 = {r2
i (β0) ≥ r2

[n−hn+1](β0)}. Let assumptions D∗ and H hold and β ∈ U(β0, n
−1/2M) for

some M > 0. Then for λ ∈ (1/2, 1), we have, as n →∞,

1. For the conditional probability

(a) P
(
IA0

1
IB0

1
6= IA1IB1

∣∣∣xi

)
=

∣∣∣(h′β(xi, β0))T (β−β0)
∣∣∣[H(λ)+H(1−λ)]+Op(n−1/2) = Op(n−1/4), and

(b) E
{

sgn ri(β0)
(
IA0

1
IB0

1
− IA1IB1

)∣∣∣xi

}
= (h′β(xi, β0))T (β − β0)[H(λ)−H(1− λ)] + Op(n−1/2).

2. For the corresponding unconditional probability

P
(
IA0

1
IB0

1
6= IA1IB1

)

=EX

∣∣∣(h′β(xi, β0))T (β − β0)
∣∣∣[H(λ) + H(1− λ)] + O(n−1/2) = O(n−1/2).

3. For the conditional probability taken over all β ∈ U(β0, n
−1/2M)

P
(
∃β ∈ U(β0, n

−1/2M) : IA0
1
IB0

1
6= IA1IB1

∣∣∣xi

)

=n−1/2M

p∑

j=1

∣∣∣h′βj
(xi, β0)

∣∣∣[H(λ) + H(1− λ)] + Op(n−1/2)

=Op(n−1/4)

4. For the corresponding unconditional probability taken over all β ∈ U(β0, n
−1/2M),

P
(
∃β ∈ U(β0, n

−1/2M) : IA0
1
IB0

1
6= IA1IB1

)

=n−1/2M

p∑

j=1

EX

∣∣∣h′βj
(xi, β0)

∣∣∣[H(λ) + H(1− λ)] + Op(n−1/2)

=Op(n−1/2)
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where H(λ) = f(qλ) + f(−qλ) and qλ =
√

G−1(λ).

Proof of Lemma 9. Note that Č́ıžek’s Lemmas A.8 holds for λ ∈ (0, 1). First, the result of 1(a) holds because

P (IA0
1
IB0

1
6= IA1IB1 |xi)

≤P (IA0
1
6= IA1 |xi) + P (IB0

1
6= IB1 |xi)

=
∣∣∣(h′β(xi, β0))T (β − β0)

∣∣∣[f(qλ) + f(−qλ)] + Op(n−1/2)

+
∣∣∣(h′β(xi, β0))T (β − β0)

∣∣∣[f(q1−λ) + f(−q1−λ)] + Op(n−1/2)

=
∣∣∣(h′β(xi, β0))T (β − β0)

∣∣∣[H(λ) + H(1− λ)] + Op(n−1/2) = Op(n−1/4).

In addition, 1(b) can be obtained by using Č́ıžek’s result in his lemma A.8 with our 1(a), so we omit the

proof here.

Second, for the corresponding unconditional probability,

P (IA0
1
IB0

1
6= IA1IB1)

=EXP (IA0
1
IB0

1
6= IA1IB1 |xi) ≤ EX

∣∣∣(h′β(xi, β0))T (β − β0)
∣∣∣[H(λ) + H(1− λ)]

+ Op(n−1/2).

Again the proof of the result is completed by using Č́ıžek’s result in his lemma A.8.

Third, for the conditional probability taken over all β ∈ U(β0, n
−1/2M),

P
(
∃β ∈ U(β0, n

−1/2M) : IA0
1
IB0

1
6= IA1IB1

∣∣∣xi

)

≤P
(
∃β ∈ U(β0, n

−1/2M) : IA0
1
6= IA1

∣∣∣xi

)

+ P
(
∃β ∈ U(β0, n

−1/2M) : IB0
1
6= IB1

∣∣∣xi

)

≤n−1/2M

p∑

j=1

∣∣∣h′βj
(xi, β0)

∣∣∣[H(λ) + H(1− λ)] + Op(n−1/2)

=Op(n−1/4).

The fourth result can be obtained by using the same techniques as in our second and third results, so we

omit the proof.

Č́ıžek’s corollary A.9 controls the deviation of residuals in one tail from the Taylor approximation to h.

Here, both tails must be controlled, as in the following.

Lemma 10. Under the assumptions of Lemma 9, suppose that there exists some β ∈ U(β0, n
−1/2M) such

that IA0
1
6= IA1 and IB0

1
6= IB1 . Then

max{
∣∣∣|ri(β)| − qλ

∣∣∣,
∣∣∣|ri(β)| − q1−λ

∣∣∣}

≤
∣∣∣(h′β(xi, ξ))T (β − β0)

∣∣∣ + Op(n−1/2) = Op(n−1/4).
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and

max
{

E
{∣∣∣|ri(β)| − qλ

∣∣∣
∣∣∣xi

}
, E

{∣∣∣|ri(β)| − q1−λ

∣∣∣
∣∣∣xi

}}

≤
∣∣∣(h′β(xi, ξ))T (β − β0)

∣∣∣ + Op(n−1/2),

where ξ ∈ (β0, β).

This lemma is a direct consequence of Č́ıžek’s Corollary A.9.

The proofs of Theorems 5 and 6 can be obtained using Č́ıžek’s proofs of his theorems 4.1, 4.2 and 4.3 but

with our lemmas and propositions for the two-sided LTS estimators. For the sake of completeness, we prove

Theorem 6 using Theorem 5 and Proposition 1, because Theorem 6 is the most directly useful in practice.

Proof of Theorem 6 : From Theorem 5, we have tn =
√

n(β0 − β
(LTS,hn)
n ) = Op(1), as n →∞. Then using

Proposition 1, with probability approaching to 1, we have

n−1/2
(D′

n(tn)
−2

− n1/2QhtnCλ

)

=n−1/2
(D′

n(
√

n(β0 − β
(LTS,hn)
n ))

−2
+ n1/2QhCλ

√
n(β(LTS,hn)

n − β0)
)

=op(1),

where Cλ = (2λ− 1) + ( qλ+q1−λ

2 )[H(λ)−H(1− λ)], H(λ) = f(qλ) + f(−qλ) and qλ =
√

G−1(λ).

Then by simple algebra with the definition of β
(LTS,hn)
n , we have

√
n(β(LTS,hn)

n − β0)

= n−1/2Q−1
h C−1

λ

n∑

i=1

{ri(β0)}h′β(xi, β0)IG
2 (β0) + op(1) (13)

+ n−1/2Q−1
h C−1

λ

n∑

i=1

{ri(β0)}h′β(xi, β0)[I2(β0)− IG
2 (β0)]. (14)

First, we show that (14) is negligible in probability. Recall that ri(β0)
def
= ui. Thus, (14) can be rewritten as

n−1/2Q−1
h C−1

λ

n∑

i=1

uih
′
β(xi, β0)[I{u2

[n−hn+1]≤u2
i≤u2

[hn]} − I{G−1(1−λ)≤u2
i≤G−1(λ)}].

Then our Proposition 2 and assumption TD2 imply that, for k = 1 and 2,

E
∣∣∣ui[I{u2

[n−hn+1]≤u2
i≤u2

[hn]} − I{G−1(1−λ)≤u2
i≤G−1(λ)}]

∣∣∣ k = O(n−1/2), (15)

as n →∞. Therefore, the summands in (14) multiplied by n1/4 have a finite expectation

E
∣∣∣n1/4uih

′
β(xi, β0)[I{u2

[n−hn+1]≤u2
i≤u2

[hn]} − I{G−1(1−λ)≤u2
i≤G−1(λ)}]

∣∣∣ = o(1),
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and variance

var
{

n1/4uih
′
β(xi, β0)[I{u2

[n−hn+1]≤u2
i≤u2

[hn]} − I{G−1(1−λ)≤u2
i≤G−1(λ)}]

}

≤ n1/2EXi

{
h′β(xi, β0) · var(ui ·

∣∣∣I{u2
[n−hn+1]≤u2

i≤u2
[hn]}

− I{G−1(1−λ)≤u2
i≤G−1(λ)}

∣∣∣|Xi) · h′β(xi, β0)T
}

+ n1/2varXi

{
h′β(xi, β0) · E(ui ·

∣∣∣I{u2
[n−hn+1]≤u2

i≤u2
[hn]}

− I{G−1(1−λ)≤u2
i≤G−1(λ)}

∣∣∣|Xi)
}

≤ O(1)
{

EXi
{h′β(xi, β0)h′β(xi, β0)T }+ varXi

(h′β(xi, β0))
}

= O(1).

by assumption TH5 and the independence of xi and ui.

Now since all indicators depend only on the squares of the residual u2
i and the error terms ui are

symmetrically distributed by assumption TD2, we have that, for any i = 1, 2, . . . , n and any n ∈ N ,

E
{

n1/4uih
′
β(xi, β0)[I{u2

[n−hn+1]≤u2
i≤u2

[hn]} − I{G−1(1−λ)≤u2
i≤G−1(λ)}]

}
= 0.

In the condition case, we get

E
{

n1/4uih
′
β(xi, β0)[I{u2

[n−hn+1]≤u2
i≤u2

[hn]}

− I{G−1(1−λ)≤u2
i≤G−1(λ)}]

∣∣∣u1, . . . , ui−1, x1, . . . , xi−1

}
= 0.

Therefore, similar to Č́ıžek’s one-sided case,

n1/4uih
′
β(xi, β0)[I{u2

[n−hn+1]≤u2
i≤u2

[hn]} − I{G−1(1−λ)≤u2
i≤G−1(λ)}]

forms a sequence of martingale differences with finite variances. Applying the law of large numbers for the

sum of martingale differences (14), we have

n−1/2Q−1
h C−1

λ

n∑

i=1

uih
′
β(xi, β0)

[
I{u2

[n−hn+1]≤u2
i≤u2

[hn]}

− I{G−1(1−λ)≤u2
i≤G−1(λ)}

]
p→ 0, (16)

as n →∞. Thus, (14) is negligible in probability op(1). Based on this result, (14) gives

√
n(β(LTS,hn)

n − β0)

=n−1/2Q−1
h C−1

λ

n∑

i=1

ri(β0)h′β(xi, β0)I{G−1(1−λ)≤u2
i≤G−1(λ)} + op(1). (17)
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Additionally, using the same arguments as for (14), the summands in (17) form a sequence of identically

distributed martingale differences with finite second moments by the assumptions TD2 and TH5. Then, by

the law of large numbers for L1-mixingales in [2], we have

1
n

n∑

i=1

u2
i h
′
β(xi, β0)h′β(xi, β0)T · I{G−1(1−λ)≤u2

i≤G−1(λ)}

p→ var(uih
′
β(xi, β0)) · I{G−1(1−λ)≤u2

i≤G−1(λ)},

as n →∞. Therefore, the proof of Theorem 8 for the asymptotic normality of the two-sided LTS estimator

β
(LTS,hn)
n is completed by the central limit theorem for the martingale differences in (17) with the asymptotic

variance

V2λ = C−2
λ ·Q−1

h · var[uih
′
β(xi, β0)I{G−1(1−λ)≤u2

i≤G−1(λ)}] ·Q−1
h

= C−2
λ ·Q−1

h · E
{

[h′β(xi, β0)uiI{G−1(1−λ)≤u2
i≤G−1(λ)}]

× [h′β(xi, β0)uiI{G−1(1−λ)≤u2
i≤G−1(λ)}]

T
}
·Q−1

h

= C−2
λ ·Q−1

h · E[h′β(xi, β0)h′β(xi, β0)T ] · E[u2
i I{G−1(1−λ)≤u2

i≤G−1(λ)}] ·Q−1
h

= C−2
λ ·Q−1

h ·Qh · σ2
2λ ·Q−1

h

= C−2
λ · σ2

2λ ·Q−1
h ,

where σ2
2λ = E[u2

i I{G−1(1−λ)≤u2
i≤G−1(λ)}] and λ ∈ (1/2, 1).

5 Summary

In place of the conventional expected-loss-based estimators, we used the median of the loss to define a new

estimator in the Bayesian and Frequentist contexts. In this paper, the Bayesian medloss estimator is shown

to have an optimal rate of convergence and asymptotic normality, as in the conventional expected loss case.

However, using the median has permitted weaker assumptions. For example, we do not require any moment

conditions.

In the Frequentist context, we have also established asymptotic results for the LMS and the two-sided LTS

estimators in nonlinear regression models. The former is the Frequentist version of our medloss estimator.

However, like the linear situation, our LMS estimator only has a cube-root convergence rate. On the other

hand, the LMS estimators can be regarded as a limiting case of the LTS estimators with 50% trimming on

each side. If any fixed amount of trimming strictly less than 50% on both sides is used, the asymptotic rate

increases from n1/3 to
√

n in which case the usual consistency and asymptotic normality can be proved,

although efficiency fails.

Taken together these three results demonstrate that, in effect, the Bayesian approach averages over a

small region around the LTS estimator to give an estimator close enough to the LMS estimator that the
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√
n-rate and efficiency are obtained. That is, the Bayesian medloss estimator is a good tradeoff between

using the actual median and using an arbitrary trimming proportion below 50%.

APPENDIX

A Detailed proof for the LMS estimator

In this appendix, we are going to verify that the LMS estimator in nonlinear situations satisfies the conditions

of our Theorem 3. Before verifying these conditions in A.4, we need results from A.1-A.3. Finally, we prove

the asymptotic results for LMS estimators in A.5. Our method here requires that we first obtain Lemma 4.1

in [10] since it is required for the detailed verification of Theorem 3 here.

A.1 Manageability

Manageability, proposed by Pollard [13], is a notion used to establish an n−1/3 rate of convergence for the

LMS estimators, and to verify the stochastic equicontinuity conditions for showing the limiting behavior of

the LMS estimators in linear models [10].

As explained in [13], the concept of manageability formalizes the idea that maximal inequalities for the

maximum deviation of a sum of independent stochastic processes from its expected value can be derived

from uniform bounds on the random packing numbers.

Formally, let Fnω = {(f1(ω, t), . . . , fn(ω, t)) : t ∈ T}, and define the packing number D(ε,F) for a subset

F of a metric space with metric d as the largest m for which there exist points t1, . . . , tm in F with d(ti, tj) > ε

for i 6= j. Also, for each α = (α1, . . . , αn) of nonnegative constants, and each f = (f1, . . . , fn) ∈ Rn, the

pointwise product α¯f is the vector in Rn with ith coordinate αifi, and α¯F is the set of all vectors α¯f

with f ∈ F .

Then following Pollard [13], a triangular array of random processes {fni(ω, t) : t ∈ T, 1 ≤ i ≤ kn} is

manageable, with respect to the envelopes Fn(ω), for n = 1, 2, . . ., if there exists a deterministic function λ,

for which

• ∫ 1

0

√
ln λ(x)dx < ∞, and

• the random packing number D(x|α ¯ Fn(ω)|, α ¯ Fnω) ≤ λ(x) for 0 < x ≤ 1, all ω, all vectors α of

nonnegative weights, and all n.

A sequence of processes {fi} is manageable if the array defined by fni = fi for i ≤ n is manageable.

The concept of manageability extends to a definition of uniform manageability based on the maximal

inequality. Among those classes of functions which are manageable, those that are also uniformly manageable
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satisfy the extra condition that the bound in the maximal inequality is independent of R used in the envelope

GR. See Kim and Pollard [10] for details.

A.1.1 Manageability of the class of functions fh,x,y(θ, r) and gh,x,u(θ, δ, ξ)

By the sufficient conditions for manageability [10], we can easily show that the classes of functions fh,x,y(θ, r)

and gh,x,u(θ, δ, ξ) for nonlinear models are also manageable.

Lemma 11 (Dudley, [8]). If G is an m-dimension vector space of real functions on a set, then

V C(Cg) = dim(G) + 1,

where Cg = {x ∈ X : g(x) ≥ 0, g ∈ G} and V C(Cg) means the VC dimension of Cg.

TO use this result, suppose G1 and G2 are the classes g1(θ, r) = h(x, θ + β0) − y + r and g2(θ, r) =

y + r − h(x, θ + β0) for any h ∈ H, respectively. Consider

C1 = {(θ, r) ∈ Rd+1 : 0 ≤ g1(θ, r), g1 ∈ G1}

and

C2 = {(θ, r) ∈ Rd+1 : 0 ≤ g2(θ, r), g2 ∈ G2}.

Therefore, by Dudley’s lemma and our assumption 1 in Theorem 6, the VC dimensions of C1 and C2 are

bounded above by dim(H)+3 < ∞. So, C1 and C2 form VC-classes, which implies that C1 ∩ C2 is also a VC

class. Now, the class of functions fh,x,u(θ, r, ξ) or fh,x,y(θ, r) forms a VC-subgraph, and hence is manageable.

Recall that

gh,x,u(θ, δ, ξ) = fh,x,u(θ, 1 + δ, ξ)− fh,x,u(0, 1 + δ, ξ).

Since the classes F and F0 of fh,x,u(θ, r, ξ) and fh,x,u(0, r, ξ), respectively, are VC-subgraphs, the class

G = {f1 − f0 : f1 ∈ F and f0 ∈ F0},

is also a VC-subgraph by Lemma 2.6.18 (vander Vaart and Wellner [22]). Thus, subclasses GR of G as defined

in Kim and Pollard [10] are uniformly manageable with the envelope

Gh
R = sup

GR

|gh,x,u(θ, r, ξ)|.

By the manageability of the class of fh,x,y(θ, r) and Kim and Pollard’s Corollary 3.2 in [10], we have

sup
θ,r
|Enfh,x,u(θ, r, ξ)−Efh,x,u(θ, r, ξ)| = Op(n−1/2). (18)
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A.2 Op(n
−1/2) rate of convergence of rn in (3.4)

Denote the distribution function of u by Γ. We have

Efh,x,u(θ, r, ξ) = ExEx
u [fh,x,u(θ, r, ξ)]

= Ex[Γ(h′(X, ξ)T θ + r)− Γ(h′(X, ξ)T θ − r)], (19)

where E is the expectation with respect to the product probability measure P of (x, u), Ex
u means the

condition expectation with respect to u given X and Ex is the unconditional expectation taken over X.

Clearly, (19) is a continuous function of θ and r, which is maximized by θ = 0 for each fixed r because

of the symmetry of u at 0. In other words, we have

sup
θ

Efh,x,u(θ, r, ξ) = Γ(r)− Γ(−r).

Thus, it follows that there exist positive constants k and λ for which

sup
θ

Efh,x,u(θ, 1− δ, ξ) < 1/2− kδ (20)

and Efh,x,u(θ, 1 + δ, ξ) ≥ 1/2 + λδ, (21)

for any δ > 0 small enough. Let P [A, B] and Pn[A,B] represent EI[A,B] and EnI[A,B], which have probability

measures P and Pn, respectively.

By (18), we have

4n
def= sup

θ,r

∣∣Pn[h′(x, ξ)T θ − r, h′(x, ξ)T θ + r]− P [h′(x, ξ)T θ − r, h′(x, ξ)T θ + r]
∣∣

= Op(n−1/2).

Putting r = 1− 4n

k , we get

Pn[h′(x, ξ)T θ − 1 +
4n

k
, h′(x, ξ)T θ + 1− 4n

k
]

≤4n + P [h′(x, ξ)T θ − 1 +
4n

k
, h′(x, ξ)T θ + 1− 4n

k
].

Thus by (20), we have

sup
θ

Pn[h′(x, ξ)T θ − 1 + 4n

k , h′(x, ξ)T θ + 1− 4n

k ] < 4n + 1/2− k(4n/k) = 1/2,

which implies that

rn ≥ 1−4n/k. (22)

Similarly, by (21), there exists λ > 0 such that

P [−1− δ, 1 + δ] ≥ 1/2 + λδ,
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for all δ > 0 small enough. Therefore,

Pn[−1− 4n

λ , 1 + 4n

λ ] ≥ −4n + P [−1− 4n

λ , 1 + 4n

λ ] ≥ −4n + 1/2 + λ(4n

λ ) = 1/2,

which implies

rn ≤ 1 +
4n

λ
. (23)

Combining the results in (22) and (23), we get rn = 1 + Op(n−1/2).

A.3 Conditions for Kim and Pollard’s Lemma 4.1 are satisfied in nonlinear case

Denote Gh
R at fixed x by Gh

R(x). Note that

|gh,x,u(θ, r, ξ)| ≤ I∗(−1−δ,h′(x,ξ)T θ−1−δ)(u) + I∗(h′(x,ξ)T θ+1+δ,1+δ)(u),

for fixed x. Here the asterisk of the indicator function means that the interval may be reversed, that is,

I∗(a,b)(u) = I(min(a,b),max(a,b))(u).

By the boundedness of the density of u, let M < ∞ be the supremum of the density of u. Thus,

Ex
uGh

R(x) ≤ sup
‖θ−θ0‖≤R

{2Mh′(x, ξ)T θ}. (24)

Recall that we set θ0 = 0. By the Cauchy-Schwarz inequality, we get that

Ex
uGh

R(x) ≤ 2M‖h′(x, ξ)‖R,

which implies that

EGh
R = ExEx

uGh
R(x) ≤ 2MEx(‖h′(X, ξ)‖)R.

Therefore, by assumption 6 in our Theorem 4, it follows that EGh
R = O(R), which is required for Lemma

4.1 in [10] to establish the convergence of θn or βn.

A.4 Check the conditions of Kim and Pollard’s main theorem/ our Theorem 3

In what follows, we verify that Kim and Pollard’s main theorem holds for LMS estimators in nonlinear

models, i.e. we check the conditions of our Theorem 3.
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A.4.1 Conditions 2, 3 and 4 are satisfied

First, we use Lemma 4.1 of Kim and Pollard [10] for the pair (θ, δ) to show that there exists Mn = Op(1)

such that

|Engh,x,u(θ, δ, ξ)− Egh,x,u(θ, δ, ξ)| ≤ ε[‖θ‖2 + δ2] + n−2/3M2
n, (25)

for each ε > 0.

To do this, consider

Egh,x,u(θ, δ, ξ) = Ex[Ex
u [gh,x,u(θ, δ, ξ)]],

where Ex
u [gh,x,u(θ, δ, ξ)] = Eu[gh,x,u(θ, δ, ξ)|x] is a continuous function of θ and δ for fixed x.

By Taylor’s expansion of Ex
u [gh,x,u(θ, δ, ξ)] about θ = 0 and δ = 0, we have Ex

u [gh,x,u(θ, δ, ξ)] =

γ′(1)θT Qx
hθ + o(‖θ‖2) + o(δ2) and

Egh,x,u(θ, δ, ξ) = γ′(1)θT Qhθ + o(‖θ‖2) + o(δ2), (26)

where Qh = ExQx
h = Ex[h′(x, β0)h′(x, β0)T ]. (26) is used to verify conditions 2 and 4. However, its derivation

is long so it is differed to the end of this subsection.

By (25) and (26), we have

Engh,x,u(θ, δ, ξ) ≤ γ′(1)θT Qhθ + o(1)‖θ‖2 + o(1)δ2 + ε[‖θ‖2 + δ2] + Op(n−2/3).

Since θn maximizes Engh,x,u(θ, rn − 1, ξ), we have

0 = Engh,x,u(0, rn − 1, β0) ≤ Engh,x,u(θn, rn − 1, ξ)

≤ γ′(1)θT
n Qhθn + (ε + o(1))‖θn‖2

+ (ε + o(1))(rn − 1)2 + Op(n−2/3).

Since we proved that rn = 1 + Op(n−1/2), we now obtain

0 ≤ γ′(1)θT
n Qhθn + (ε + o(1))‖θn‖2 + (ε + o(1))Op(n−1) + Op(n−2/3). (27)

Note that Qh is a symmetric matrix, so we have

λd ≤ θT Qhθ
θT θ

≤ λ1,

where λ1 and λd are the largest and smallest eigenvalues of Qh. In other words, we have

θT Qhθ ≥ λd‖θ‖2,

which implies that γ′(1)θT
n Qhθn ≤ γ′(1)λd‖θn‖2 (∵ γ′(1) < 0). Thus, by (27),
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[−λdγ
′(1)− (ε + o(1))]‖θn‖2 ≤ (ε + o(1))Op(n−1) + Op(n−2/3).

Since Qh is positive-definite, λd > 0. Taking ε = −γ′(1)
2 λd > 0, we have

[−γ′(1)
2 λd − o(1)]‖θn‖2 ≤ Op(n−2/3),

which implies ‖θn‖ = Op(n−1/3) or ‖βn − β0‖ = Op(n−1/3). So, condition 2 holds.

Second, condition 3 is satisfied by the assumption on (4).

Third, to verify condition 4, observe that (26) implies that Egh,x,u(θ, δ, ξ) is twice differentiable in θ and

the second derivative matrix with respect to θ at (0, 0, β0) is

∂2

∂θ∂θT
Egh,x,u(0, 0, β0) = EX

∂2

∂θ∂θT
Ex

u [gh,x,u(0, 0, β0)]

= EX2γ′(1)QX
h

= 2γ′(1)Qh.

Finally, we derive the expression (26). Recall that

Egh,x,u(θ, δ, ξ) = Ex[Ex
u [gh,x,u(θ, δ, ξ)]],

where Ex
u [gh,x,u(θ, δ, ξ)] = Eu[gh,x,u(θ, δ, ξ)|x] is a continuous function of θ and δ for fixed x.

By Taylor’s expansion of Ex
u [gh,x,u(θ, δ, ξ)] about θ = 0 and δ = 0, we have

Ex
u [g(θ, δ, ξ)] =Ex

u [g(0, 0, β0)] + θT ∂

∂θ
Ex

u [g(0, 0, β0)] + δ
∂

∂δ
Ex

u [g(0, 0, β0)]

+
1
2

[
θT ∂2

∂θ∂θT
Ex

u [g(0, 0, β0)]θ + δ2 ∂2

∂δ2
Ex

u [g(0, 0, β0)]

+ 2δθT ∂2

∂δ∂θ
Ex

u [g(0, 0, β0)]
]

+ o(‖θ‖2) + o(δ2),

where we use g = gh,x,u above, so gθ = ∂
∂θ gh,x,u.

By the definition of gh, we have Ex
u [g(0, 0, β0)] = 0. Moreover, since

∂

∂θ
Ex

u [g(θ, δ, ξ)] =
∂

∂θ

∫ h′(x,ξ)T θ+1+δ

h′(x,ξ)T θ−1−δ

γ(u)du− 0

= h′(x, ξ)γ(h′(x, ξ)T θ + 1 + δ)− h′(x, ξ)γ(h′(x, ξ)T θ − 1− δ),

we have ∂
∂θ Ex

u [g(0, 0, β0)] = h′(x, β0)γ(1)− h′(x, β0)γ(−1) = 0, because γ(1) = γ(−1)).

Similarly, we have

(i)
∂

∂δ
Ex

u [g(θ, δ, ξ)] =
∂

∂δ

∫ h′(x,ξ)T θ+1+δ

h′(x,ξ)T θ−1−δ

γ(u)du− ∂

∂δ

∫ 1+δ

−1−δ

γ(u)du

= [γ(h′(x, ξ)T θ + 1 + δ) + γ(h′(x, ξ)T θ − 1− δ)]

− [γ(1 + δ) + γ(−1− δ)],
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⇒ ∂
∂δ Ex

u [g(0, 0, β0)] = 0.

(ii) ∂2

∂θ∂θT Ex
u [g(θ, δ, ξ)] = γ′(h′(x, ξ)T θ + 1 + δ)h′(x, ξ)h′(x, ξ)T − γ′(h′(x, ξ)T θ − 1 − δ)h′(x, ξ)h′(x, ξ)T ,

thus we have

∂2

∂θ∂θT
Ex

u [g(0, 0, β0)] = [γ′(1)h′(x, β0)h′(x, β0)T ]− [γ′(−1)h′(x, β0)h′(x, β0)T ]

= 2γ′(1)Qx
h,

where Qx
h = h′(x, β0)h′(x, β0)T for fixed x and γ′(1) = −γ′(−1).

(iii) ∂2

∂δ2 Ex
u [g(θ, δ, ξ)] = ∂

∂δ [γ(h′(x, ξ)T θ + 1 + δ) + γ(h′(x, ξ)T θ− 1− δ)]− ∂
∂δ [γ(1 + δ) + γ(−1− δ)], which

implies that ∂2

∂δ2 Ex
u [g(0, 0, β0)] = 0.

(iv) ∂2

∂δ∂θ Ex
u [g(θ, δ, ξ)] = ∂

∂δ [h′(x, ξ)γ(h′(x, ξ)T θ + 1 + δ) − h′(x, ξ)γ(h′(x, ξ)T θ − 1 − δ)]. Thus, we have
∂2

∂δ∂θ Ex
u [g(0, 0, β0)] = 0.

Thus, we have Ex
u [gh,x,u(θ, δ, ξ)] = γ′(1)θT Qx

hθ + o(‖θ‖2) + o(δ2) and (26).

A.4.2 Conditions 6 and 7 are satisfied

For condition 6, since u has a bounded density and E‖h′(X, ξ)‖ < ∞ by our assumption 6, it follows that

E(Gh
R)2 = O(R) by the same technique we used for showing EGh

R = O(R) in Appendix A.3.

For condition 7, recall that gh,x,u is the difference of two indicator functions fh,x,u(θ, 1 + δ, ξ) and

fh,x,u(0, 1 + δ, ξ), where fh,x,u(θ, r, ξ) = I{|u−h′(x,ξ)T θ|≤r}. So, for (θ1, δ1) and (θ2, δ2) near (0, 0),

∣∣gh,x,u(θ1, δ1, ξ1)− gh,x,u(θ2, δ2, ξ2)
∣∣ ≤ I∗A1

(u) + I∗A2
(u) + I∗A3

(u) + I∗A4
(u).

There are many combinations of intervals of the form A1, A2, A3 and A4. For example, A1 = (−1−δ1,−1−δ2),

A2 = (1 + δ2, 1 + δ1), A3 = (h′(x, ξ2)T θ2 − 1 − δ2, h
′(x, ξ1)T θ1 − 1 − δ1) and A4 = (h′(x, ξ2)T θ2 + 1 +

δ2, h
′(x, ξ1)T θ1 + 1 + δ1). In all cases the total length of the intervals A1, A2, A3 and A4 on the right is

bounded by 2|h(x, β1)− h(x, β2)|+ 4|δ2− δ1| for fixed x, where βi = β0 + θi, and ξi ∈ (β0, βi) for i=1 and 2.

Moreover, ξi → β0 as θi → 0. Thus,

Ex
u

∣∣gh,x,u(θ1, δ1, ξ1)− gh,x,u(θ2, δ2, ξ2)
∣∣

≤M [2|h(x, β1)− h(x, β2)|+ 4|δ2 − δ1|].

By assumption 4 in our Theorem 4, we have
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|h(x, β1)− h(x, β2)| ≤ Lx‖β1 − β2‖ = Lx‖θ1 − θ2‖ ,

where Lx > 0 depends on x. Therefore,

Ex
u

∣∣gh,x,u(θ1, δ1, ξ1)− gh,x,u(θ2, δ2, ξ2)
∣∣ ≤ 2MLx‖θ1 − θ2‖+ 4M |δ2 − δ1|,

and

E
∣∣gh,x,u(θ1, δ1, ξ1)− gh,x,u(θ2, δ2, ξ2)

∣∣

= ExEx
u

∣∣gh,x,u(θ1, δ1, ξ1)− gh,x,u(θ2, δ2, ξ2)
∣∣

≤ 2MEx(Lx)‖θ1 − θ2‖+ 4M |δ2 − δ1|
≤ 2M

[
max{Ex(Lx), 2}][‖θ1 − θ2‖+ |δ2 − δ1|

]
,

which implies that

E
∣∣gh,x,u(θ1, δ1, ξ1)− gh,x,u(θ2, δ2, ξ2)

∣∣ = O(‖θ1 − θ2‖+ |δ2 − δ1|). (28)

So Kim and Pollard’s condition 7 is satisfied.

A.4.3 Condition 1 is satisfied

Now we show that θn comes close to maximizing Enfh,x,u(θ, 1, ξ), which is equivalent to saying that βn

maximizes Pn(|y − h(x, β)| ≤ 1). Kim and Pollard’s technique needs to check whether or not the two-

parameter centered process

Xn(a, b) = n2/3Engh,x,u(an−1/3, bn−1/3, ξ(a))

− n2/3Egh,x,u(an−1/3, bn−1/3, ξ(a))

satisfies the uniform tightness (i.e. stochastic equicontinuity) condition used for the weak convergence of the

process. In their lemma 4.6, Kim and Pollard [10] show that the process Xn satisfies the uniform tightness.

The main hypotheses of lemma 4.6 are uniform manageability and conditions 6 and 7. In Appendix A.1.1

we have shown the classes of fh,x,u and gh,x,u are manageable. Also, in Appendix A.4.2 we establish

conditions 6 and 7. Now Xn is uniformly tight. Given this, we must show that βn comes close to maximizing

Pn(|y − h(x, β)| ≤ 1). So, using n1/3(rn − 1) = op(1), we have

Xn(n1/3θ, n1/3(rn − 1))−Xn(n1/3θ, 0) = op(1)

uniformly over θ in an Op(n−1/3) neighborhood of zero. That is,

Engh,x,u(θ, rn − 1, ξ)

=Egh,x,u(θ, rn − 1, ξ) + Engh,x,u(θ, 0, ξ)− Egh,x,u(θ, 0, ξ) + op(n−2/3),

uniformly over an Op(n−1/3) neighborhood. Within such a neighborhood, by (26) we have
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Egh,x,u(θ, rn − 1, ξ)− Egh,x,u(θ, 0, ξ) = o((rn − 1)2) = op(n−2/3).

Then if mn maximizes Engh,x,u(θ, 0, ξ) just as θn maximizes Engh,x,u(θ, rn−1, ξ), we have mn = Op(n−1/3).

Therefore,

Engh,x,u(θn, 0, ξ) = Engh,x,u(θn, rn − 1, ξ)− op(n−2/3)

≥ Engh,x,u(mn, rn − 1, ξ)− op(n−2/3)

= Engh,x,u(mn, 0, ξ)− op(n−2/3).

In other words, we have

Engh,x,u(θn, 0, ξ) ≥ sup
θ

Engh,x,u(θn, 0, ξ)− op(n−2/3),

which means that θn comes close to maximizing Enfh,x,u(θ, 1, ξ).

A.4.4 Condition 5 is satisfied

Consider the one-parameter class of functions {gh,x,u(θ, 0, ξ) : θ ∈ Rd, ξ ∈ (β0, β)} with θ = β − β0. Using

the same techniques as in the verification of conditions 6 and 7, we have for fixed s and t,

Ex
u |gh,x,u(

s

α
, 0, ξs)− gh,x,u(

t

α
, 0, ξt)|2

=|Γ(1 + h′(x, ξs)T s

α
)− Γ(1 + h′(x, ξt)T t

α
)|

+ |Γ(−1 + h′(x, ξs)T s

α
)− Γ(−1 + h′(x, ξt)T t

α
)|.

By Taylor’s expansion of the first two terms at 1 and the last two at −1 with γ(1) = γ(−1), we have

Ex
u |gh,x,u(

s

α
, 0, ξs)− gh,x,u(

t

α
, 0, ξt)|2

=2
∣∣γ(1)[h′(x, ξs)T s

α
− h′(x, ξt)T t

α
] + o(1/α)

∣∣, (29)

where ξs ∈ (β0, βs) and ξt ∈ (β0, βt), βs = β0 + s
α and βt = β0 + t

α . In fact, ‖ξs − β0‖ ≤ ‖s/α‖ and

‖ξt − β0‖ ≤ ‖t/α‖. As α →∞, ξs and ξt will tend to β0. Thus we have

L(s− t) ≡ lim
α→∞

αE|gh,x,u(
s

α
, 0, ξs)− gh,x,u(

t

α
, 0, ξt)|2

=2 lim
α→∞

Ex

∣∣γ(1)[h′(x, ξs)T s− h′(x, ξt)T t] + αo(1/α)
∣∣

=2γ(1)Ex|h′(x, β0)T (s− t)|.

Similarly, we can also prove that

L(s) ≡ lim
α→∞

αE|gh,x,u( s
α , 0, ξs)|2 = 2γ(1)Ex|h′(x, β0)T s|

and

32



L(t) ≡ lim
α→∞

αE|gh,x,u( t
α , 0, ξt)|2 = 2γ(1)Ex|h′(x, β0)T t|.

Thus, the limiting covariance function is

H(s, t) ≡ lim
α→∞

αE[gh,x,u(
s

α
, 0, ξs)gh,x,u(

t

α
, 0, ξt)]

=
1
2
[L(s) + L(t)− L(s− t)],

by the identity 2xy = x2 + y2 − (x− y)2.

A.5 Proof of asymptotic results for the LMS estimators in nonlinear models

Conditions 1-7 are satisfied, it is enough to complete the proof of Theorem 4 by verifying that the limiting

Gaussian process has nondegenerate increments.

Note that in Appendix A.4.4., since L(0) = 0, H(s, s) = L(s) and H(t, t) = L(s). Thus, by our

assumption 6, we have

H(s, s)− 2H(s, t) + H(t, t) = L(s− t) 6= 0, for any s 6= t. (30)

Under (30), Kim and Pollard’s lemma 2.6 in [10] can be applied to give that the limiting Gaussian process has

nondegenerate increments. Consequently, applying Kim and Pollard’s main theorem with our assumption 3

on the positive definiteness of Qh, we can identify the limit distribution of n1/3θn, i.e. n1/3(βn − β0), with

the arg max
θ

of the Gaussian process

Z(θ) = γ′(1)θT Qhθ + W (θ),

where W has zero means, covariance kernel H and continuous sample paths.

B LTS

The following results are used for the proof of the asymptotic behavior of the two-sided LTS estimator.

B.1 Proof of Lemma 4 for the uniform law of large numbers

Proof. We prove the uniform weak law of large numbers in lemma 4 by verifying the four conditions of

Andrews’ theorem 4 in [3]. First, (i) The condition of total boundedness (BD) is ensured by assumption

TI1 for the compactness of the parameter space B.

(ii) Note that, since Esup
β∈B

|t(x, u;β)|1+δ < ∞, for some δ > 0,

t(xi, ui; β)I3(β;K1,K2)− E[t(xi, ui;β)I3(β;K1,K2)]
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are identically distributed by assumptions TD1 and TD2; they are also uniformly integrable. Thus, Andrews’

domination condition (DM) is satisfied.

(iii) Additionally, the pointwise convergence of

1
n

n∑

i=1

[t(xi, ui; β)I3(β; K1,K2)]− E[t(xi, ui;β)I3(β; K1,K2)]
p→ 0

at any β ∈ B and K1, K2 ∈ R follows from the weak law of large numbers for mixingales in [2].

(iv) The last condition of termwise stochastic equicontinuity (TSE) in Andrews’ Theorem 4 [3] that

lim
ρ→0

P
(

sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣tI(xi, ui;β′,K ′
1,K

′
2)− tI(xi, ui; β, K1, K2)

∣∣∣ > k
)

= 0 (31)

is satisfied for any k > 0, where tI(xi, ui; β, K1,K2) = t(xi, ui; β)I3(β; K1,K2) and the suprema β,K1,K2, β
′,K ′

1

and K ′
2 are taken over the sets B,R,R, U(β, ρ), U(K1, ρ) and U(K2, ρ).

To see that (31) holds, first notice that for all β ∈ B and K1,K2 ∈ R, we have

sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣tI(xi, ui; β′, K ′
1,K

′
2)− tI(xi, ui; β, K1,K2)

∣∣∣

≤ sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣t(xi, ui; β′)[I3(β′;K ′
1,K

′
2)− I3(β; K1, K2)]

∣∣∣ (32)

+ sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣[t(xi, ui; β′)− t(xi, ui; β)]I3(β;K1,K2)
∣∣∣. (33)

Now it is enough to show that given ε > 0, we can find ρ0 > 0 such that the probabilities of the expression

(32) and (33) exceeding given k > 0 are smaller than ε for all ρ < ρ0.

1. Consider the expression (32). First note that

sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣t(xi, ui; β′)[I3(β′;K ′
1,K

′
2)− I3(β;K1,K2)]

∣∣∣

≤sup
β∈B

∣∣∣t(xi, ui; β)
∣∣∣ sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′; K ′
1, K

′
2)− I3(β; K1,K2)

∣∣∣, (34)

where sup
β∈B

∣∣∣t(xi, ui; β)
∣∣∣ is a function independent of β with a finite expectation. In addition,

∣∣∣I3(β′; K ′
1,K

′
2)−

I3(β; K1,K2)
∣∣∣ is always less than or equal to 1, so (32) has an integrable upper bound independent of

β. Thus, if we can show that the probability

lim
ρ→0

P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′; K ′
1,K

′
2)− I3(β;K1,K2)

∣∣∣ = 1) = 0, (35)

then we get that (34) converges in probability to zero for ρ → 0 and n →∞ as well. So to prove (34)

it is enough to prove (35).

Our strategy for proving (34) has three steps. (1) We use Č́ıžek’s argument that G−1
β′ (λ) to G−1

β (λ)

uniformly on B for all λ by the absolute continuity of Gβ . (2) By the result of the uniform convergence

of G−1
β , we can find some ρ1 > 0 such that for 1/2 < λ ≤ 1,
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∣∣∣(G−1
β′ (1− λ) + K ′

1)− (G−1
β (1− λ) + K1)

∣∣∣ < ε(16M∗
gg)

−1

and

∣∣∣(G−1
β′ (λ) + K ′

2)− (G−1
β (λ) + K2)

∣∣∣ < ε(16M∗∗
gg )−1,

for any β ∈ B, β′ ∈ U(β, ρ1) and K ′
j ∈ U(Kj , ρ1) for j = 1, 2, where M∗

gg and M∗∗
gg , defined in

assumption TD3, are the uniform upper bounds in both sides for the probability density functions of

r2
i (β). (3) If we denote the product probability space of (xi, ui) by Ω and consider a compact subset

Ω1 ⊂ Ω, such that P (Ω1) > 1− ε/2, and choose ρ2 > 0 such that

sup
β∈B

sup
β′∈U(β,ρ2)

∣∣∣r2
i (β′, ω)− r2

i (β, ω)
∣∣∣ < ε(16max{M∗

gg, M
∗∗
gg })−1, (36)

for all ω ∈ Ω1 and ρ < ρ2 by assumption TH1.

Therefore, letting ρ0 = min{ρ1, ρ2} and ρ < ρ0, we can apply steps (1), (2) and (3) to get the following

sequence of inequalities. We have that

P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′;K ′
1,K

′
2)− I3(β; K1, K2)

∣∣∣ = 1)

= P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′;K ′
1,K

′
2)− I3(β; K1, K2)

∣∣∣ = 1, Ω1)

+ P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′; K ′
1, K

′
2)− I3(β; K1,K2)

∣∣∣ = 1, Ω|Ω1)

≤ P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′;K ′
1,K

′
2)− I3(β; K1, K2)

∣∣∣ = 1, Ω1) + P (Ω|Ω1)

≤ P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣I3(β′;K ′
1,K

′
2)− I3(β; K1, K2)

∣∣∣ = 1, Ω1) + ε/2

= P (∃β ∈ B : r2
i (β) ∈ [G−1

β (λ) + K2 − ε(8M∗∗
gg )−1, G−1

β (λ) + K2 + ε(8M∗∗
gg )−1]

∪ [G−1
β (1− λ)−K1 − ε(8M∗

gg)
−1, G−1

β (1− λ)−K1 + ε(8M∗
gg)

−1]) + ε/2

≤ M∗∗
gg (

ε

4M∗∗
gg

) + M∗
gg(

ε

4M∗
gg

)

=
ε

2
.

Thus, (35) is proved, and finally, the expectation of (32) converges to zero for ρ → 0 in probability.

2. Now we turn to expression (33) and prove that for any given k > 0,

lim
ρ→0

P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣[t(xi, ui; β′)− t(xi, ui; β)]I3(β;K1,K2)
∣∣∣ > k) = 0. (37)

By Č́ıžek’s result that

E
{

sup
β,β′

∣∣∣t(xi, ui; β′)− t(xi, ui;β)
∣∣∣
}
≤ kε,
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we have

P ( sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣[t(xi, ui;β′)− t(xi, ui;β)]I3(β; K1, K2)
∣∣∣ > k)

≤ 1
k

E
[

sup
β,K1,K2

sup
β′,K′

1,K′
2

∣∣∣[t(xi, ui; β′)− t(xi, ui; β)]I3(β; K1,K2)
∣∣∣
]

≤ kε/k = ε,

for any ρ < ρ0. Thus, (B.7) is proved.

Consequently, the assumption of TSE in [3] is valid and the proof of this lemma is completed by applying

the uniform weak law of large numbers.

B.2 Proof of Proposition 1 on Asymptotic Linearity

Now we can prove Proposition 1.

Proof. Recall that

D1
n(t) = S′n(β0 − n−1/2t)− S′n(β0)

= −2
n∑

i=1

[
{yi − h(xi, β0 − n−1/2t)}h′β(xi, β0 − n−1/2t)I2(β0 − n−1/2t)

− {yi − h(xi, β0)}h′β(xi, β0)I2(β0)
]
,

Here, I2(β) = I2(r2
i (β)) = I[r2

[n−hn+1](β),r2
[hn](β)](r2

i (β)) and t ∈ TM = {t ∈ Rp : ‖t‖ ≤ M}. For any M > 0,

there is an n0 ∈ N such that β0 − n−1/2t ∈ U(β0, δ), for all n ≥ n0 and t ∈ TM . Therefore, using Taylor’s

expansion for n > n0 and t ∈ TM , we have

h(x, β0 − n−1/2t) = h(x, β0)− h′β(x, ξ)T n−1/2t

and

h′β(x, β0 − n−1/2t) = h′β(x, β0)− h′′ββ(x, ξ′)T n−1/2t,

where ξ and ξ′ are between β0 and β0 − n−1/2t. Let B1(x) = h(x, β0), B2(x) = h′β(x, ξ)T n−1/2t, C1(x) =
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h′β(x, β0) and C2(x) = h′′ββ(x, ξ′)T n−1/2t. Thus, D1
n(t) can be rewritten as

D1
n(t)
−2

=
n∑

i=1

[
{yi −B1(xi)}C1(xi)I2(β0 − n−1/2t)− {yi −B1(xi)}C1(xi)I2(β0)

− {yi −B1(xi)}C2(xi)I2(β0 − n−1/2) + B2(xi)C1(xi)I2(β0 − n−1/2t)

−B2(xi)C2(xi)I2(β0 − n−1/2t)
]

=
n∑

i=1

[
{(yi −B1(xi))C1(xi)}[I2(β0 − n−1/2t)− I2(β0)]

]
(38)

−
n∑

i=1

[
(yi −B1(xi))C2(xi)I2(β0)

]
(39)

−
n∑

i=1

[
(yi −B1(xi))C2(xi)[I2(β0 − n−1/2t)− I2(β0)]

]
(40)

+
n∑

i=1

[
B2(xi)C1(xi)I2(β0)

]
(41)

+
n∑

i=1

[
B2(xi)C1(xi)[I2(β0 − n−1/2t)− I2(β0)]

]
(42)

−
n∑

i=1

[
B2(xi)C2(xi)I2(β0 − n−1/2t)

]
(43)

Using techniques substantially like those in Č́ıžek’s proofs for his (42)-(47), we can show that the sums in

(39), (40), (42) and (43) are Op(n1/4) or op(n1/2), and therefore, are asymptotically negligible in comparison

with (38) and (41), which are Op(n1/2). Thus, we omit the proofs here, except for (38) and (41).

37



To deal with (38), let vi(n, t) = I2(β0 − n−1/2t)− I2(β0). So (38) can be rewritten as

n∑

i=1

(
{(yi −B1)C1}[I2(β0 − n−1/2t)− I2(β0)]

)

=
n∑

i=1

(
{(yi − h(xi, β0))h′β(xi, β0)}[I2(β0 − n−1/2t)− I2(β0)]

)

=
n∑

i=1

ri(β0) · h′β(xi, β0) · vi(n, t)

=
1
2

n∑

i=1

[
{ri(β0)− sgn ri(β0) · qλ}+ {ri(β0)− sgn ri(β0) · q1−λ}

+ sgn ri(β0)[qλ + q1−λ]
]
· h′β(xi, β0) · vi(n, t)

=
1
2

[ n∑

i=1

{ri(β0)− sgn ri(β0)qλ} · h′β(xi, β0) · vi(n, t) (44)

+
n∑

i=1

{ri(β0)− sgn ri(β0)q1−λ} · h′β(xi, β0) · vi(n, t) (45)

+
n∑

i=1

sgn ri(β0)(qλ + q1−λ) · h′β(xi, β0) · vi(n, t)
]
. (46)

Again, using techniques substantially like those of Č́ıžek with our Lemmas 9 and 10, (44) and (45) multiplied

by n−1/4 can be shown to be bounded in probability for λ ∈ (1/2, 1). Moreover (46) can be rewritten as

n∑

i=1

sgn ri(β0)(qλ + q1−λ) · h′β(xi, β0) · vi(n, t)

=n1/2(qλ + q1−λ)[H(λ)−H(1− λ)]Qht + O(1) + op(n1/2).

Therefore, we conclude that

sup
t∈TM

‖
n∑

i=1

{ri(β0)}h′β(xi, β0)vi(n, t)

− 1
2
n1/2(qλ + q1−λ)[H(λ)−H(1− λ)]Qht‖ = op(1),

as n →∞.

Finally we split (41) into two parts :

B2C1I2(β0) =
n∑

i=1

h′β(xi, ξ)T n−1/2t · h′β(xi, β0)I2(β0)

=
n∑

i=1

h′β(xi, β0)T n−1/2t · h′β(xi, β0)I2(β0) (47)

+
n∑

i=1

n−1/2tT h′′ββ(xi, ξ
′′) · n−1/2t · h′β(xi, β0)I2(β0), (48)
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where ξ′′ is between β0 and β0 − n−1/2t.

Note that the supremum of (48) over t ∈ TM is Op(1). Since

∣∣∣
n∑

i=1

n−1/2tT h′′ββ(xi, ξ
′′) · n−1/2t · h′β(xi, β0)I2(β0)

∣∣∣

≤
n∑

i=1

‖n−1/2tT · h′′ββ(xi, ξ
′′) · n−1/2t · h′β(xi, β0)‖,

by the law of large numbers for mixingales in [2] and the uniform law of large numbers in [3] for the right

hand side of the inequality over β′′ ∈ U(β, δ), we have

1
n

n∑

i=1

∣∣∣tT h′′ββ(xi, β
′′)t · h′β(xi, β0)

∣∣∣ p→ E
∣∣∣tT h′′ββ(xi, β

′′)t · h′β(xi, β0)
∣∣∣,

as n → ∞. Moreover, (48) is bounded in probability because the expectation is bounded uniformly over

t ∈ TM by assumption TH5 and ‖t‖ ≤ M .

Next we turn to (47). Similarly, split it into three parts :
n∑

i=1

h′β(xi, β0)T n−1/2t · h′β(xi, β0)I2(β0)

=
n∑

i=1

h′β(xi, β0)T n−1/2t · h′β(xi, β0)
[
I2(β0)− IG

2 (β0)
]

(49)

+
1√
n

n∑

i=1

{
h′β(xi, β0)h′β(xi, β0)T IG

2 (β0)− E[h′β(xi, β0)h′β(xi, β0)T IG
2 (β0)]

}
t (50)

+
1√
n

n∑

i=1

E[h′β(xi, β0)h′β(xi, β0)T IG
2 (β0)]t, (51)

where IG
2 (β0) = I{G−1(1−λ)≤r2

i (β0)≤G−1(λ)} with λ ∈ (1/2, 1). The supremum of (49) taken over t ∈ TM is

Op(n1/4) as n →∞, and (50) is bounded in probability by applying the central limit theorem to (50). Again,

the proofs are omitted here because they are so similar to Č́ıžek’s.

Finally, since

E[h′β(xi, β0)h′β(xi, β0)T IG
2 (β0)]

= EXi [h
′
β(xi, β0)h′β(xi, β0)T · {EI{G−1(1−λ)≤r2

i (β0)≤G−1(λ)}|Xi}]
= (2λ− 1)EXi [h

′
β(xi, β0)h′β(xi, β0)T ]

= (2λ− 1)Qh, (52)

(51) can be rewritten as n1/2(2λ− 1)Qht, where λ ∈ (1/2, 1). Thus, we can conclude that

sup
t∈TM

∥∥∥
n∑

i=1

h′β(xi, β0)n−1/2t · h′β(xi, β0) · I2(β0)− n1/2(2λ− 1)Qht
∥∥∥ = Op(1),

as n →∞.

The proof of Proposition 1 is completed by combining all of the above results.
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