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ABSTRACT

This report is the second of two exploratory analyses of climate data for the Province
of Alberta (precipitation and temperature) with the ultimate goal of developing
new stochastic models for the processes involved. Its predecessor, Part I, presents
a large number of findings that, like their confirmations in this report as well as
its additional conclusions, provide foundations for statistical modeling these climate
data and derivatives from them such as extreme values. However the data explored
in Part I unlike those investigated here, had not been homogenized, that is adjusted
for anomalies due to such things as changes in instrumentation over time. Thus
its conclusions might better be viewed as hypothesis for further investigation and
confirmation. However, on the positive side that data came from a very large number
of monitoring sites covering the Province extensively.

Like Part I, Part II uses standard tools for exploratory data analysis. The
lessons learned from that analysis are summarized as a basis for future modeling.
Some of background material in Part I is repeated in this report for completeness.



1 Introduction

This report is the second of two exploratory analyses of climate data for the Province
of Alberta (precipitation and temperature). Its predecessor, Part I, presents a large
number of findings that, like their confirmations in this report, provide foundations
for statistical modeling these climate data and derivatives from them such as extreme
values. However the data explored in Part I unlike those investigated here, had not
been homogenized, that is adjusted for anomalies due to such things as changes in
instrumentation over time. Thus its conclusions might better be viewed as hypothe-
sis for further investigation and confirmation. However those data come from a very
large number of monitoring sites and cover the Province more extensively than the
data addressed in Part II. Although the findings in this Part II differ in detail, they
are broadly in agreement with those of Part I in spite of the differences in the two
datasets involved. Moreover this second part gives the more detailed analysis the
homogenized data support support and hence it includes additional findings.

The data includes measurements for daily maximum temperature (MT), daily
minimum temperature (mt) and precipitation (PCPN). The temperature data have
been provided to us by L.A. Vincent and the precipitation data, by Eva Mekis
both at Environment Canada. This data set has been homogenized for changes of
instrument, changes of station location and so on. More information about these
data can be found in [3] and [4].

This report, like its predecessor, uses graphical and analytical tools to ex-
amine the behavior of selected climate variables. Looking at the data, we will see
some interesting features that suggest future research and provide a foundation for
statistical modeling.

Section 2 describes our data and in particular, provides plots of the geographi-
cal location of the stations from which the recorded measurements derive. In Section
3, we look at the daily and annual time series of temperatures and PCPNs. The
normality of the distribution of annual values are investigated and the associations
between different variables is investigated using simple regression analyses. We have
also investigated how the seasonal patterns for different variables have changed over
the course of the years. For example, the mean summer daily minimum temper-
ature shows a significant increasing pattern over the course of the past century in
Calgary and some other locations. Section 4 looks at the distribution of the daily
values. For example, a normal distribution seems to describe well the temperature
and a Gamma distribution, the daily precipitation values. Confidence intervals for
the mean/standard deviation in the normal case and shape/scale parameters in the
Gamma case are given. Section 5 looks at the spatial temporal correlation of differ-
ent variables. In Section 6, we look at the extreme values, such as maximum annual
temperature and annual minimum temperature.
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Figure 1: Alberta site locations for temperature (deg C) data. There are just 25
stations available with temperature data over Alberta, substantially fewer than in
Part I.

2 Data description

The temperature data come from 25 stations operating between 1895 and 2006,
that are distributed over Alberta. Their 47 precipitation counterparts recorded
the PCPN data from 1895 to 2006 over variable recording intervals. For example,
Caldwell provided PCPN data from 1911 to 1990. Figures 1 and 2 respectively
depict the locations of the stations for temperature (both MT and mt) and PCPN.
The number of years available for each station is plotted against the location in
Figures 3 and 4. Another available variable for the location of the stations is the
elevation and Figures 5 as well as 6 show their elevation in meters.

3 Temperature and precipitation

To get initial impressions of the data, we look at the time series of MT, mt, and
PCPN at a single fixed location, the Calgary site since it has a long period of
data available and includes both temperature and precipitation. Looking at the
maximum and minimum temperature, we see a periodic trend over the year as
shown in Figures 7 and 8, illustrating the MT and mt daily values from 2000 to
2003. A regular seasonal trend is seen in both processes.
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Figure 2: Alberta site locations for precipitation (mm) data. In all 47 monitoring
stations provide data for the homogenized dataset.
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Figure 3: This “skyscraper plot” shows the number of years available for sites pro-
viding temperature (deg C) data.
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Figure 4: The number of years available for sites with PCPN (mm) data available.
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Figure 5: The elevation (meters) of sites with temperature data available.
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Figure 6: The elevation (meters) of the sites with precipitation data available.
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Figure 7: The time series of daily maximum temperature (deg C) for the Calgary
site, 2000 to 2003. The dark band along the horizontal axis represents the zero
precipitation days.
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Figure 8: The time series of daily minimum temperature (deg C) for the Calgary
site, 2000 to 2003.
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Figure 9: The time series of daily precipitation (mm) for Calgary 2000-2003.
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Figure 10: The time series of monthly maximum temperature (deg C) for Calgary
1995-2005.
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Figure 11: The time series of monthly minimum temperature means (deg C) for
Calgary 1995-2005.
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Figure 12: The time series of monthly precipitation means (mm) for Calgary 1995-
2005.

Looking at the PCPN plot in Figure 9, we observe a large number of zeros.
Moreover, seasonal patterns are hard to see by looking at daily values. To illustrate
the seasonal patterns better, we look at the monthly averages for M'T, mt and PCPN
over the period 1995 to 2005 in Figures 10, 11 and 12. The seasonal patterns for
precipitation can be seen clearly in Figure 12.

Next we look at the mean annual values of the three climate variables for all
available years that have less than 10 missing days (Figures 13, 14 and 15). Table
1 gives a summary of these annual means.

Variable min  1st Quartile median mean 3rd Quartile max
MT (deg C) 7.59 9.64 10.37  10.36 11.19 13.46
mt (deg C) -4.83 -3.40 -2.54 -2.66 -1.95 0.07
PCPN (mm)  0.68 1.12 1.28 1.29 1.39 2.51

Table 1: The summary statistics for the annual means of the three climate variables
of central interest in our analysis.

Assuming stochastic normality and independence of the observations, we can
obtain confidence intervals for the annual means of all three variables and these are
given in Table 2. The confidence intervals are fairly narrow.
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Figure 13: The annual mean maximum temperature (C) for Calgary site for all
available years.
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Figure 14: The annual mean minimum temperature (C) for Calgary site for all
available years.
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Figure 15: The annual mean precipitation (mm) for Calgary site for all available
years.

Variable 95% confidence interval
MT (deg C) (10.14, 10.57)
mt (deg C) (-2.85, -2.47)
PCPN (mm) (1.24, 1.35)

Table 2: Confidence intervals for the annual means of each of the climate variables
in our study.

To investigate the shape of the distribution of annual means, we look at the
histogram of each variable with a normal curve fitted in Figures 16, 18 and 20. The
corresponding normal qq-plots are also given in Figures 17, 19 and 21 to asses the
normality assumption. Both the histogram and the qg-plots for MT validate the
normality assumptions. The histogram for mt is slightly left skewed. For PCPN,
some deviation from the normality assumption is seen. This is expected since the
daily PCPN process is very far from normal to start with. Hence, even averaging
through the whole year has not quite given us a normal distribution.

We plot all three variables (annual mean MT, mt and PCPN) in the same
graph, Figure 22. As shown in that figure, MT and mt show the same trends over
time. To get an idea of how the two variables are related, we fit a regression line,
taking mt as response and MT as the explanatory variable. As seen in Figure
23, the regression fit looks very good. We repeat this analysis, this time taking
MT as explanatory variable and PCPN as response. As shown in Figure 24, the
fit remains reasonably good, although the association is not as strong. As shown
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Figure 16: The histogram of annual maximum temperature means (deg C) for Cal-
gary with a normal curve fitted to the data.
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Figure 17: The normal qg-plot for annual maximum temperature means (deg C) for
Calgary.
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Figure 18: The histogram of annual minimum temperature means (deg C) for Cal-
gary with normal curve fitted to the data.
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Figure 19: The normal qqg-plot for annual minimum temperature means (deg C) for
Calgary.
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Figure 20: The histogram of annual precipitation means (mm) for Calgary with
normal curve fitted to the data.
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Figure 21: The normal qg-plot for annual precipitation means for Calgary.
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Figure 22: The time series plots of maximum temperature (deg C), minimum tem-
perature (deg C) and precipitation (mm) annual means for Calgary. The time series
plot in the bottom is minimum temperature, the one in the middle is precipitation
and the top is maximum temperature.
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Figure 23: The regression line fitted to maximum temperature and minimum tem-
perature annual means for Calgary.
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Figure 24: The regression line fitted to maximum temperature and precipitation
annual means for Calgary.

in Table 3, both fits are significant. One can criticize use of a simple regression
since the independence assumption might not be satisfied. Finding a more reliable
and sensible relationship between the variables needs a multivariate model taking
account of correlation and other aspects of the processes. Also note that these are
annual averages which are not as correlated as daily values over time as seen in the
annual time series plots.

Variables Intercept Slope p-value for Intercept p-value for slope
mt (deg C) -10.40  0.746 2 x10716 2 x10716
PCPN (mm) 213 -0.082 1.49 x 10714 0.0005

Table 3: Lines fitted to annual mean minimum temperature and annual mean pre-
cipitation against annual mean maximum temperature.

Next we look at the change in the seasonal means for all three variables. As
we noted above there are missing data, particularly near the beginning of the time
series. This has caused the gap at the beginning of most plots. To get a longer
time series of means, we first compute the monthly means allowing 3 missing days
and then compute the yearly mean using the monthly means. This procedure is
reasonable since days close to each other have similar values. We do the regression
analysis for three locations: Calgary, Banff and Medicine Hat. We fit the regression
line to annual means, spring means, summer means, fall means and winter means
for each of MT, mt and PCPN with respect to time. The results are given in Tables
4, 5 and 6. (We have only included fits that turned out to be significant.) Note
that PCPN does not appear in any of the tables. Annual minimum temperature
and summer mean temperature show an increase in all three locations. Figure 25
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Figure 25: The regression line fitted to summer minimum temperature means against
time for Calgary.

depicts one of the time series (mt summer mean for Calgary) with the regression
line fitted.
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Variable Season  Intercept Slope p-value for the intercept p-value for the slope
mt (deg C) Year -24.72 0.112 2 x 10—-05 0.0001

mt (deg C)  Spring -30.05 0.138 0.0008 0.0024

mt (deg C) Summer  -20.11  0.0144 6x 1077 3x 1071

Table 4: The regression line parameters for the fitted lines for each variable with
respect to time for the Calgary site.

Variable Season  Intercept  Slope  p-value for the intercept p-value for the slope
MT (deg C) Year -12.99 0.0105 0.019 0.0002

MT (deg C)  Spring -17.0 0.0048 0.075 0.009

MT (deg C) Summer 255.5 -1.1 0.0006 0.646

MT (deg C) Fall -12.64 0.0106 0.19 0.0326

mt (deg C) Year -37.0 0.01666 2 x 10-10 2x 1078

mt (deg C)  Spring -49.8 0.0229 5x107° 1077

mt (deg C)  Summer -36.8 0.0212 2 x 10715 2 x 10716

Table 5: The regression line parameters for the fitted lines for each variable with
respect to time for the Banff site.

Variable Season  Intercept Slope p-value for the intercept p-value for the slope
MT (deg C) Year -24.6 0.0185 0.00102 3x 1076

MT (deg C)  Spring -34.24 0.0235 0.009 0.0005

mt (deg C) Year -39.98  0.0197 5 x 10—10 2 x 1077

mt (deg C) Spring -39.81 0.0196 5x 107° 9 x107°

mt (deg C)  Summer  -10.93  0.0112 0.0199 7x 1076

mt (deg C) Fall -24.66 0.0122 0.0110 0.0137

Table 6: The regression line parameters for the fitted lines for each variable with
respect to time at the Medicine Hat site.

4 Daily values and their distributions

This section focuses on daily values for all three variables. To that end, we pick four
days, Jan 1st, April 1st, July 1st and October 1st, to span the year’s climate. Let
us look at the time series, histograms and normal qqg-plots for each variable over the
years. Figures 26 to 31 give the results. In fact the plots validate the assumption of
normality for daily MT and mt for the selected days of the year. We also tried the
first day of each month and observed similar results.

We plot the histogram for PCPN as well (Figure 33). The distribution is far
from normal because of high frequency of no PCPN (dry) days.
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Figure 26: The time series over the years of daily maximum temperatures for Calgary
for four given dates: January 1st, April 1st, July 1st and October 1st. Observe the
appreciable amount of noise and lack of any distinct overall trends,
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Figure 27: The histograms of daily maximum temperature for Calgary for four given
dates over the years of our study: January 1st, April 1st, July 1st and October 1st.
Notice the symmetry of the histograms as shown by comparison with best fitting
normal distribution.
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Figure 28: The normal qg-plots of for the data distribution shown in the previous
figure, shows in some cases a modest departure from normality in the tails of the
data distributions. Surprisingly, the all important right hand tails seem lighter than
the best fitting normal tails: the 97.5" % ile of the empirical distribution is reached
earlier than that of the corresponding normal, as one moves into the righthand tail.
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Figure 29: The time series of daily minimum temperature for Calgary for four given
dates: January 1st, April 1st, July 1st and October 1st.



- 21 —

Jan 1st Apr 1st
< / ©
o 4 o 4
o o
2 7 2 7
3 3
g 8] g 3]
= =}
8 8
o I T T T 1 o I T T T T T T 1
-40 -30 -20 -10 0 -25 -15 -5 0 5 10
July 1st Oct 1st
mn
-
c ©
S
o
S
2 i 2
g 2
[ [ <
fa} o 3
8 IS
o
o o
S S
S T T T T T T 1 S | E— —
2 4 6 8 10 12 14 16 -5 0 5 10
mt (deg C) mt (deg C)

Figure 30: The histograms of daily minimum temperature for Calgary for four given
dates: January 1st, April 1st, July 1st and October 1st.
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Figure 31: The normal qg-plots of daily minimum temperature for Calgary for four
given dates: January 1st, April 1st, July 1st and October 1st.
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Figure 32: The time series of daily precipitation for Calgary for four given dates:
January 1st, April 1st, July 1st and October 1st.
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Figure 33: The histograms of daily precipitation for Calgary for four given dates:
January 1st, April 1st, July 1st and October 1st.

Next we use the available years to compute the confidence intervals for the
mean of every given day of the year for MT and mt. For PCPN, we construct
the confidence intervals for the probability of a PCPN day, one with PCPN> 0.2
(mm). This threshold is justified in Part I (Hosseini et al. 2009) and amounts below
are negligible. Figures 34 to 36 give the confidence intervals for the means. The
confidence interval for the standard deviations (obtained by bootstrap techniques)
are given in Figures 37 to 39. A regular seasonal pattern is seen. For example
the maxima for MT and mt happen around the 200th day of the year (in July)
and the minima, at the beginning of the year. Comparing the plots of means and
standard deviations, we observe that warmer days have smaller standard deviation
than colder days. For example the minimum standard deviations for the maximum
and minimum temperatures happen around the 200th day of the year which corre-
spond to the warmest period of the year. The plots also show that a simple periodic
function seems to suffice for modeling the seasonal patterns. Unlike MT and mt,
for the 0-1 PCPN process, the standard deviation is the highest in June, when the
probability of precipitation is close to %

As shown above, the estimated distribution of daily PCPN values is far from
normal. Thus this time, after removing the zeros, we fit a Gamma distribution to
PCPN (Figure 42). The Gamma qqg-plots are given in Figure 43 and reveal a good
fit.
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Figure 34: The confidence intervals for the daily mean maximum temperature (deg
C). Dashed line shows the upper bound and the solid line the lower bound of the
confidence intervals.
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Figure 35: The confidence intervals for the daily mean mt (deg C). The dashed
line shows the upper bound and the solid line, the lower bound of the confidence
intervals.
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Figure 36: The confidence intervals for the estimated probability of PCPN (mm)
for the days of the year. The dashed line shows the upper bound and the solid line,
the lower bound of the confidence intervals.
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bound and the solid line, the lower bound of the confidence intervals.
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Figure 38: The confidence intervals for the standard deviation of each day of the year
for minimum daily temperature (deg C). The dashed line shows the upper bound
and the solid line, the lower bound of the confidence intervals.
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Figure 39: The confidence intervals for standard deviation of each day of the year
for the probability of precipitation (mm) (for the 0-1 PCPN process). The dashed
line shows the upper bound and the solid line, the lower bound of the confidence
intervals. The plot shows sd < 1/2, the maximum value of sd = y/p(1 — p).
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Figure 40: The estimated distribution of MT (C) for each day of the year from Jan
1st to Dec 1st. The year has been divided to two halves. In each half rainbow colors
are used to show the change of the distribution.
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Figure 41: The estimated distribution of mt (C) for each day of the year from Jan
1st to Dec 1st. The year has been divided to two halves. In each half rainbow colors
are used to show the change of the distribution.
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Figure 42: The histograms of daily precipitation greater than 0.2 mm for Calgary
on which is superimposed, the best fitting gamma density curve obtained using the
maximum likelihood method.
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Figure 43: The qqg-plots of daily precipitation greater than 0.2 mm for Calgary with
the gamma distribution fitted using the maximum likelihood method.
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Figure 44: The gamma fit to the empirical distribution of precipitation (mm) for
each day over a 4 month period. In each month rainbow colors are used to show the
change of the distribution.

Figures 40, 41 and 44 reveal the result of our investigation of the change in
the distribution over a period of time. For MT and mt, we have done that for the
course of the year. The figures show how the distribution deforms continuously over
the year. We can also notice changes in the mean and standard deviation over the
year. For PCPN, we have done the same only for 4 different months because of high
irregularity in the process.

Next we look at the parameters of the Gamma distribution fitted to the
PCPN distribution over the course of a year. If we use maximum likelihood (ML)
parameter estimates, as we have done to select the gamma density curve, the con-
fidence intervals obtained by bootstrap method will be very wide (and tend rapidly
to infinity). Hence, we use the simpler method of moments (MOM) estimates to
obtain confidence intervals. The MOM confidence intervals are given in Figure 46.
Since there is no closed form for the ML estimates, we need to use Newton’s method
to compute the required maxima. However MOM gives us closed form solutions.
This advantage might explain the better behavior of MOM estimates in forming
the confidence intervals. However even the MOM confidence intervals do not look
satisfactory and are rather wide and irregular specially at the beginning and end of
the year.

We can also consider the 0-1 process of PCPN (1 for wet and 0 for dry)
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Figure 45: The maximum likelihood estimates for the gamma distribution’s shape
parameter.
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Figure 46: The confidence interval for the method of moments estimate for the
gamma distribution’s shape parameter. The dotted line is the upper bound and the
solid line the lower bound.
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Figure 47: The Markov chain transition probabilities when the PCPN process is
viewed as a binary sequence of precip—noprecip days (1 and 0 respectively). The

dotted line is the “PCPN if PCPN=1" (p};) and the dashed is “PCPN if PCPN=0"
(po1) on the previous day.

and compute the transition probabilities for PCPN (Figure cal-PN-transition). The
figure shows the probability of PCPN is changing continuously over the year and
can be parameterized by a simple periodic function.

Considering the 0-1 process induced by PCPN as a Markov chain leads to
the interesting question as its order. In search of an answer, denote by 1 and 0
respectively, a PCPN occurrence and nonoccurrence. Also let p,, ..., (f), where
x; = 1,0, denote the probability of observing x; on day ¢ of the year conditional
on the chain (x;_, ---z4-1). In Figure 47, we have plotted the estimated pi;(¢) and
po1(t) for different days of the year. The clear gap between these two estimated
probabilities indicate that a first order Markov chain should be preferred to a 0"
order chain. Figures 48 and 49 show py1; plotted against pg;; and pgg; against pio;.
The estimated probabilities seem to be close and overlap heavily over the course
of the year. Hence a first order Markov seems to suffice for describing the binary
process induced by PCPN.

5 Correlation

The correlation in a spatial-temporal process can depend on time and space. In
this section, we study the temporal and spatial patterns of the correlation function
separately.
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Figure 48: This figure plots the 3" order transition probabilities, p11; (solid) against
Po11 (dotted), for the binary process induced by the PCPN process.
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Figure 49: This figure plots the 3" order transition probabilities, poo; (solid) against
p1o1 (dotted), for the binary process induced by the PCPN process.
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Figure 50: The correlation and covariance plots for the maximum daily temperature
(deg C) at the Calgary site on Jan 1st and that on each of the 732 subsequent days.

5.1 Temporal correlation

Here we look at the correlation/covariance of the variables as a function of time.
The location is taken to be the Calgary site for reasons given above in an earlier
analysis in this report. First we look at the correlation/covariance of a given day and
its subsequent days, starting with Jan 1st and computing its correlation/covariance
with the following days: Jan 2nd, Jan 3rd and so on. Figures 51 to 53 show the
results, in particular a decreasing trend over time. However the increase is far from
linear and in fact it looks to be exponentially decreasing. The plots also show that
only a few subsequent days are possibly correlated and in particular two days that
are one year apart can be considered independent, a refined version of the conclusion
reached in Part I (Hosseini et al. 2009). This conclusion will be used in building a
spatial-temporal model.
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Figure 51: The correlation plot for the maximum daily temperature (deg C) at the
Calgary site on Jan 1st and that for each of the 732 subsequent days.
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Figure 52: The correlation plot for minimum temperature (deg C) at the Calgary
site on Jan 1st and that for each of the 732 subsequent days.
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Figure 53: The correlation plot for precipitation (mm) at the Calgary site on Jan
1st and that for each of the 732 subsequent days.

Next we look at the correlation of responses on other days of the year with
that on their 30 consecutive days. Our goal: to see if the correlation function has
the same behavior over the course of a year. We pick, Feb 1st, April 1st, July 1st,
Oct 1st as our start days for this analysis. Figures 54 and 56 show similar patterns.

Finally, we look at the correlation of two fixed locations over the course of
the year (by changing the day). The results are given in Figures 57 and 58. Strong
correlation and clear seasonal patterns are seen for MT and mt. This seems to
indicate in particular that the temperature process is not stationary. The correlation
in the middle of the year around day 200 which correspond to the summer season
seems to be smaller than the correlation at the beginning and end of the year which
corresponds to the cold season.

5.2 Spatial correlation

This subsection looks at spatial correlation by fixing a few dates: January 1st, April
1st, July 1st and Oct 1st distributed over the year’s climate regimes. We plot the
correlation with respect to the geodesic distance (km) on the surface of the earth.
Figures 59 to 62 show the results for MT, mt, PCPN and the 0-1 PCPN binary
process respectively. For MT and mt, we observe a clear decreasing trend with
respect to distance. The trend for PCPN does not seem to be regular.
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Figure 54: The correlation plot for maximum temperature (deg C) over Calgary for
Feb 1st (solid), April 1st (dashed), July 1st (dotted) and Oct 1st (dot dash) and 30
consequent days.
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Figure 55: The correlation plot for minimum temperature (deg C) over Calgary for
Feb 1st (solid), April 1st (dashed), July 1st (dotted) and Oct 1st (dot dash) and 30
consequent days.
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Figure 56: The correlation plot for precipitation (mm) over Calgary for Feb 1st
(solid), April 1st (dashed), July 1st (dotted) and Oct 1st (dot dashed) and 30
consequent days.
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Figure 57: The correlation plot for maximum temperature and minimum tempera-
ture (deg C) between Calgary and Medicine Hat.
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Figure 58: The correlation plot for precipitation (mm) between Calgary and
Medicine Hat.
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Figure 59: The correlation plot for maximum temperature (deg C) with respect to
distance (km).
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Figure 60: The correlation plot for minimum temperature (deg C) with respect to
distance (km).
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Figure 61: The correlation plot for precipitation (mm) with respect to distance
(km).
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Figure 62: The correlation plot for precipitation (mm) 0-1 process with respect to
distance (km).



— 492 —

6 Lessons learned and concluding remarks

In this report we performed some analysis on the homogenized data. Some of that
was a repetition of the analysis done on the non-homogenized data [1]. The following
conclusions confirm the results of the analysis on the non-homogenized data. It also
includes some new conclusions based on the analysis on the homogenized data:

e There is a strong seasonal trend in temperature and precipitation processes.
See Figures 7, 8, 11 and 36.

e The summer average min temperature has increased over several locations over
the past century. See Figure 25.

e mt and MT highly correlated. See Figure 23.

e The distribution of daily maximum temperature and minimum temperature is
close to Gaussian with some deviations seen on the tails. See Figures 27 and
29.

e The temperature process in Alberta is less variable in the warm seasons and
the converse holds for the precipitation process. See Figures 37, 38 and 39.

e The distribution of the daily temperature varies continuously over the course
of the year. This could not be shown for precipitation. (It might be because
we need more data.)

e The correlation between two sites depends on the time of the year. They are
more correlated in cold seasons. This might be because there are more global
weather regimes in the cold seasons influencing the whole region.

e The correlation over time for MT, mt and PCPN seems stationary and is
decreasing with a nonlinear trend (exponentially) with the time difference.

e The spatial correlation for MT and mt is strong and is decreasing almost
linearly with respect to the geodesic distance.

e The spatial correlation for PCPN is not strong. It might be because the sites
are too faraway to capture the spatial correlation for PCPN.

These results should help researchers build spatial-temporal models to make
inference about the climate.
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