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Abstract

This report presents a Bayesian version of empirical orthogonal functions
(EOFs) and thereby overcomes a difficulty with the classical version of these
functions when an environmental process is autocorrelated as most are. The
approach partitions the spatial variation into long and short scale variation,
the latter including measurement errors. The most general version of our re-
sults incorporates the generalized Wishart prior distribution for the unknown
covariance matrices and thereby gains considerable flexibility. In particular,
the method can contend with situations in which the data exhibit a mono-
tone pattern of missingness. The report includes a simulation study that
demonstrates how the proposed method better characterizes spatial pattern
by removing the deleterious effect of autocorrelation.

Keywords: Hierarchical Bayesian models; space–time fields; empirical orthogonal
functions; orthogonal expansions.

1 Introduction

Empirical orthogonal functions (EOFs) have been used extensively to represent spa-
tial patterns in environmental processes (Wikle 2002). However the common method
for estimating these functions described in Section 2 can produce seriously distorted
patterns when a space–time process is strongly autocorrelated. This paper presents
a method for reducing those distortions.

To derive that method, some new theory is developed as an extension of a
Bayesian spatial prediction approach of Dou et al.(2009a). That approach partitions
the spatial variation into those with long scales like those captured by the EOFs and

∗The research reported in this paper was partially supported by a grant from the Natural
Sciences and Engineering Research Council of Canada.
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those with short scales that include measurement errors. The most general version of
our results incorporates the generalized inverted Wishart (GIW) prior distribution
for the unknown covariance matrix and thereby gains considerable flexibility. In par-
ticular, the method can contend with situations where the data exhibit a monotone
missing data pattern. However, the full generality of that extension is not needed in
this report, which presents the results of simulation studies that demonstrate both
the severity of distortions that can occur as well as how the proposed method better
characterizes spatial pattern by removing those distortions.

As a summary of the report, Section 2 describes the common method for com-
puting EOFs from environmental process data and discusses potential difficulties
with this method. One of its subsections presents Simulation Study 1, which shows
how distorted the spatial patterns can become. Another presents an alternative
method that produces corrected EOFs for a known temporal covariance in a separa-
ble space–time covariance structure. Finally at the end of that section, Simulation
Study 1 is revisited and the new method is seen to reduce those distortions. How-
ever, in practice uncertainty about the autocorrelation structure leads in Section 3
to the Bayesian EOF, the main contribution of this paper. In a subsection, those
results are extended by use of the generalized inverted Wishart prior distribution.
Another presents the results of Simulation Study 2 where the Bayesian approach
is shown to deal successfully with the unknown autocorrelation. Finally, Section 5
summarizes the results and states conclusions.

2 Empirical orthogonal functions

This section reviews the common method of constructing the empirical orthogonal
functions as estimates of components of a Karhunen–Loève (KL) expansion for a
continuous spatial process observed at discrete time points. Unless unless otherwise
stated, EOF will refer to the empirical orthogonal functions constructed by that
method, although for clarity they are in called “classical” or “traditional” in some
cases to distinguish them from other EOFs proposed below. To begin consider
an arbitrary spatio–temporal process {Z(s, t) : s ∈ D}, where s represents for
the spatial location in the finite domain D = {s1, . . . , sp} of interest while t =
1, . . . , n represents a time point. Assume E(Z(s, t)) = 0 and Cov(Z(si, t), Z(sj, t)) =
C0(si, sj) for all t. The KL expansion represents the covariance function as an infinite
linear combination of orthogonal functions, that is,

C0(u,v) =
∞∑

j=1

λjφj(u)φj(v), (1)

where {λj : j = 1, . . . ,∞} are the eigenvalues and {φj(.) : j = 1, . . . ,∞}, the
orthogonal eigenfunctions. For the complete set of orthonormal basis functions
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{φj(.) : j = 1, . . . ,∞}, the response can be represented as follows:

Z(s, t) =
∞∑

j=1

aj(t)φj(s), (2)

where V ar(aj(t)) > V ar(aj+1(t)) for j = 1, 2, . . . , and Cov(ai(t), aj(t)) = 0 for
i 6= j. In other words, the KL expansion allows one to represent the process by
an infinite set of separable orthonormal basis functions that optimally minimize the
mean square variance. The {φj(·)} successively represent different spatial patterns
of diminishing importance while the associated time series {aj(·)} are projections of
the process on the basis functions. The time series coefficients are called principal
time series components (Wikle 2002) or expansion coefficients, the terminology in
this paper.

Note that in the literature of climatology some authors define EOF differently.
Going further, any one of the infinitely many orthonormal bases could be used to
construct some version of the EOF. However the one we describe above is the only
one that leads to the principal components PCA property, that is, the one having
expansion coefficients of the EOFs that are uncorrelated (Björnsson and Venegas,
1997).

The KL integral equations can be solved approximately as a finite sum over equal
sized grid cells. In that case the KL equations reduce to a system of linear equations.
Their solution leads to a decomposition that is quite familiar in statistical science
and at the heart of principal component analysis (PCA), albeit with a covariance
matrix multiplied by the grid cell size.

However difficulties arise in practice since the continuous process Y (s, t) is usually
observed not at the center of the grid cells above, but at an irregularly distributed
discrete set of spatial points si ∈ D, i = 1, . . . , p. Nevertheless PCA can be and
is applied even though the result can no longer produces estimates of the (approx-
imated) eigenvectors from the KL decomposition. According to Wikle (2002), this
can give erroneous results in EOF analysis. In fact this

“distinction between EOFs on a regular grid and on an irregular grid is
the source of many incorrect applications of the technique in the litera-
ture,”

according to Wikle. However this difficulty can also be avoided by appropriately
weighting the estimated covariance matrix. Therefore this is not the issue addressed
in this report.

Instead this paper addresses a flaw in the method of computing EOFs that derives
from the way the covariance matrix is estimated. Usually this is done by implicitly
assuming the independence of the time sequence of observed replicates of vectors,
whose coordinates represent the responses at sites in a discretized spatial field. As a
simulation study in this report shows, these EOFs can greatly misrepresent spatial
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pattern when the vectors are strongly autocorrelated. This report also presents a
Bayesian method that addresses this difficulty.

To describe the flaw, we first note that EOFs are computed from data anomalies
rather than the values themselves. These anomalies are found by subtracting at
each site i ∈ D, the time average of measured responses at that site. More precisely,
let Zi(t) ≡ Z(si, t) for simplicity and the anomaly at site si and time t be defined as

Yi(t) = Zi(t)− 1

n

n∑
t=1

Zi(t), (3)

for i = 1, . . . , p and t = 1, . . . , n. Furthermore let Yt = (Yt(s1), . . . , Yt(sp))
′ : p × 1

represent the anomalies vector at t across all the spatial sites in the region. Finally
let Y = (Y1, . . . ,Yn) : p× n be the anomaly matrix.

The covariance estimate uses the anomalies described above, computed for a time
sequence of successive realizations of a vector of responses over a discrete spatial
domain. The estimate is just the usual covariance estimate obtained when the time
sequence is regarded as unautocorrelated. The resulting estimate of {φj(s) : s ∈ D},
obtained by PCA, is called the jth EOF and {aj(t) : t = 1, . . . , n}, the expansion
coefficients corresponding to the jth EOF.

Finding EOFs

Let Zt = (Z1(t), . . . , Zp(t))
′ : p × 1 be the response vector at time t. Assume the

matrix–variate response variable Z = (Z1, . . . ,Zn) : p × n follows a matrix–normal
distribution with a separable covariance structure in space and time, that is, Z ∼
Np×n(0,ΣS ⊗ ΣT ), where ΣS : p × p represents the spatial covariance matrix and
ΣT : n × n, the temporal covariance matrix. This separable covariance structure
implies no space–time interaction in spatial–temporal processes.

Based on these assumptions, the spatial covariance matrix can be estimated
by Σ̂S = 1

n
YY′, where Y is the anomaly matrix defined in (3). The spectral

decomposition theorem implies the existence of a unique decomposition for Σ̂S such
that Σ̂S = Ψ̂Λ̂2Ψ̂′, where Λ̂2 = diag{λ̂2

1, . . . , λ̂
2
p} where λ̂1 > . . . > λ̂p > 0 are the

eigenvalues for ZZ′ while each column of Ψ̂ is the eigenvector corresponding to the
associated eigenvalue. Hence, we can represent ΣS as

ΣS = ΨΛ2Ψ′

= (ΨΛ)(ΨΛ)′

= ΦΦ′, (4)

a form of the KL expansion. We then obtain the EOFs from Φ̂ = Ψ̂Λ̂.
However as noted above EOFs do not efficiently estimate the population level

counter parts in ΣS without temporal independence, an unrealistic assumption in
most cases. The effects are demonstrated in the simulation study that follows.
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Simulation study 1

This subsection presents the results of a simulation study involving simulated, sep-
arable state–space process with specified EOFs and temporal covariance matrices.
These results show that as commonly calculated, EOFs can severely misrepresent
spatial patterns.

For the study we need to construct an orthogonal matrix O in a spectral decom-
position, the Gram–Schmidt procedure being used to obtain an orthogonal basis.
The EOFs specified in the simulation study can then be constructed to have a spec-
ified diagonal matrix Λ and an orthonormal basis function Φ. The construction
starts with any given set of orthogonal vectors, say O1, . . . ,Ok, for 1 ≤ k ≤ n− 1,
and k ∈ Z. Lemma 1 gives the details.

Lemma 1 Given the orthogonal vectors Gj : p × 1, j = 1, . . . , k, we obtain an
orthogonal matrix G = (G1, . . . ,Gp) : p × p by repeating steps (i)–(iii) for j =
k + 1, . . . , p :

(i) Generate a realization yj from N(0, Ip).

(ii) Fit the linear regression model:

yj = A0 +

j−1∑
i=1

AiGi + εi,

and obtain the estimated coefficients {Âi : i = 0, . . . , j − 1}.
(iii) Let Gj be the fitted residuals yj−Â0−

∑j−1
i=1 ÂiGi such that Gj ⊥ {G1, . . . ,Gj−1}.

This lemma gives us the orthonormal basis function by normalizing the generated
orthogonal vectors G1, . . . ,Gp. We hereafter use O to represent the orthonormal
basis matrix using the Gram–Schmidt type expansion. Since ΣS = OΛ2O′, we then
obtain the spatial covariance function ΣS using the above constructed EOFs.

Simulated data

In this study the spatial region D is a square lattice consisting of 324 grid cells,
each of size 6 km squared. The zero mean spatial–temporal process over D has a
separable spatio–temporal covariance structure. After constructing the EOF matrix
using Lemma 1 and specifying a diagonal matrix, the spatial covariance function
is constructed from the spectral decomposition theorem. The temporal covariance
function is a causal, invertible AR(1) process with variance σ2

v and AR coefficient,
φ. The autocorrelation function (ACF) for the AR(1) process is given by

γ(h) =

{
σ2

v

1−φ2 h = 0
σ2

v

1−φ2 φ
||h|| h ≥ 1.
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We begin with two primary EOFs specified as p - dimensional orthogonal vectors
G(1) and G(2) where p = 4q2 for some positive integer q. Purely for expository
purposes we think of the first EOF as representing the north-south pattern in the
northern hemisphere’s ground level winter temperature while the second, lessor EOF
is the high - low contribution due to elevation. Thus

G
(1)
i =





1, i ∈ [1, p
2
]

−1, i ∈ [p
2

+ 1, p]
0, otherwise.

In contrast G2 has (1√p/2,−1√p/2) repeated
√

p times, 1√p/2 being a
√

p/2–dimensional
vector of 1s. Then application of Lemma 1 yields the orthogonal matrix needed for
our construction of the process covariance.

For the diagonal matrix Λ2 needed to complete that construction, we take the
first four diagonal entries in the specified as 40, 20, 15, and 10, respectively. The
remaining diagonal entries are a decreasing sequence which sums to 15 and has a
minimum (final) value of 0.023. The specific choices we have made for our construc-
tion are pretty much arbitrary and qualitatively similar results to those below would
be obtained for any choices following the same patterns.

Figures 1 and 2 plot the contours for simulated process data at t = 5 and t = 28,
respectively in the regions we study. These graphs show the north–south and high–
low spatial patterns. Moreover, this spatio–temporal field varies over space and
time.

To examine the temporal variations in the simulated data, we randomly select
four grid cells and plot their histograms, ACFs and PACFs in Figure 3. As expected
these graphs show a very strong autocorrelation in the time series data in all cells.

Results and comparisons

We first compute the EOFs and compare them with the true EOFs. Figure 4 plots
the contours for the true EOFs. As expected the first shows the north–south spatial
pattern and the second, the high–low elevation spatial pattern as the two principal
determinants of surface temperatures. However Figure 5 tells quite a different story.
There the estimated contours deviate substantially from the true EOFs. For example
while the values for the first true EOF in the northern region are close to be 0.35,
the first EOF puts them close to 0.6 in the northeastern region and 1.0 at the
northwestern region. Similar things are seen in comparing the true second EOF
against second EOF found in the traditional way. We conclude that EOFs can fail
to capture the true spatial patterns in a space–time field when the autocorrelation
is high. The latter can intertwine itself with and distort the spatial pattern in this
case.

The next section provides what we call “corrected” EOFs, a fix when the tem-
poral covariance matrix, ΣT .
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Figure 1: Contour plot for the simulated process data at day t = 5 over the 324 grid cell
locations. The AR coefficient for the simulated data is φ = 0.9. (White=-4.0; Black=4.0)

Corrected EOFs

If the autocovariance ΣT were known, an alternative to the EOF that we call the
“corrected EOF” would present itself. While that assumption is unrealistic, the
analysis below based on it shows the serious distortions possible with the EOF,
can be eliminated by filtering out that autocorrelation. In other words, the results
demonstrate that those distortions result from effects that autocorrelation has on
the spatial structure. Finally it was this analysis that suggested the methodology
presented in the sequel.

To find the corrected EOFs, suppose given a matrix–variate normal distribution
for Y ∼ Np×n(0,ΣS ⊗ΣT ). Then Y∗ = YΣ

−1/2
T ∼ Np×n(0,ΣS ⊗ In), as a standard

property of the matrix–variate normal distribution. It is then straightforward to
estimate ΣS using 1

n

∑n
t=1 Y∗

t (Y
∗
t )
′ = 1

n
Y∗(Y∗)′. In other words,

Σ̂S =
1

n
YΣ−1

T Y′. (5)
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Figure 2: Contour plot for the simulated data at day t = 28 in the 18× 18 grid locations.
The AR coefficient in the simulated data is set to be φ = 0.9.

The corrected EOFs are then constructed using the spectral decomposition theorem,
as for EOFs. To obtain unique EOFs, we restrict the eigenvectors to form an
orthonormal matrix that has positive elements in its first row.

Simulation study 1 revisited

This subsection revisits the example in Section 2 to compare the corrected EOFs
with the EOFs with respect to the true EOFs. The goal is to see if the corrected
EOFs represent better, the principal spatial patterns in the simulated data. Figures
4–5 show the first two EOFs for true, classical and corrected, respectively. These
figures suggest that the corrected EOFS capture spatial patterns in the two true
EOFs much better than the EOFs.

To get a more objective comparison, Table 1 presents the percentage of the
spatial variation ascribable to the first ten EOFs by the true, traditional and cor-
rected methods. The latter are much closer to the true values than the traditional
ones. A different approach, which defines the distance between matrices through
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Figure 3: The histogram (first row), ACFs (second row), and PACFs (third row) for the
simulated data at four randomly selected grid cells in the region. The AR coefficient for
the simulated data is φ = 0.9.

the Frobenious norm, leads to Table 2. There the separation between the traditional
as well as corrected EOFs relative to the true EOFs, all represented as matrices,
are tabulated. Again, the corrected EOFs prove to be closer than the classical ones
to the true EOFs . Thus overall these quantitative assessments both point to the
superiority of the corrected EOFs over the EOFs.

Conclusions

The standard method of finding the EOFs may lead to severe distortions in the
primary spatial patterns of space–time fields. The corrected EOFs behave much
better than the standard ones as we showed in Example 2. However, since the
autocorrelations needed to make that correction will generally not be known, the
method used above will not be of practical value. So how can the temporal patterns
be taken into account in this case? In other words, can we find a good estimated
substitute for ΣT or possibly, a MCMC method whose posterior samples of ΣT
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Figure 4: The contour plots for the first two true EOF vectors: (a) the first EOF; (b) the
second EOF. (White=-1.7; Black=1.4)

converge to its true autocorrelation matrix value as the number of iterations goes
to infinity? An answer is provided in the next section.

3 Bayesian EOFs

In practice the corrected EOFs are incomputable because of uncertainty about the
required temporal covariance matrix for the spatial–temporal matrix–variate re-
sponse Z : p × n, where p is the total number of spatial locations in the domain
of interest and n, the total number of time points. Hence this section develops a
Bayesian version of the corrected EOFs.

Underlying model

The Bayesian EOF model we adopt here is given by

Z = µ⊗ 1′n + ΦX + ε, ε ∼ Np×n(0,ΣS ⊗Σε) (6)
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Figure 5: The contour plots for the first two EOFs: (a) the first EOF; (b) the second
EOF. (White=-1.7; Black=1.4)

and
X |θ ∼ Np×n(0, Ip ⊗ΣT ) (7)

where we assume both spatial and temporal covariance matrices ΣS and ΣT have
full rank, that is, are nonsingular. Moreover, we consider two cases for the tempo-
ral covariance matrix ΣT : (i) it is randomly distributed with an inverted Wishart
distribution; and (ii) it has a semi–parametric form, that is, ΣT = σ2ρ(., θ), with
a known temporal correlation form for ρ(., .) but unknown parameters σ2 and θ.
We assume that the temporal correlation matrix, ρ(., θ), decreases as the difference
between two time points increases, such that ρ(ti − tj, θ) → 1 as ti − tj → 0. More-
over we are forced to assume σ2 = 1 due to the non–identifiability property of the
Kronecker product. The semi–parametric form for ρ(., θ) is then estimable using
the MCMC method. For simplicity, we assume no small–scale spatial variation and
measurement error, that is, no ε term in (6), deferring such refinements to future
work.

In (6), Φ can be treated as a constant matrix for a known ΣS by the Karhunen–
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Figure 6: The contour plots for the first two corrected EOFs: (a) the first EOF; (b) the
second EOF. (White=-1.7; Black=1.4)

Loeve (KL) expansion. Given the positive definite spatial covariance function ΣS :
p × p, we have the unitary orthogonal matrix O : p × p, with its first row being
positive, and diagonal matrix Λ = diag {λ1, . . . , λp} : p × p, with λ2s being the
eigenvalues for ΣS satisfying λ1 > . . . > λp > 0, such that

Σ−1
S = OΛ−2O′.

Hence, we have the Karhunen–Loeve (KL) expansion as follows:

Σ−1
S = (λ−1

1 O1, . . . , λ−1
p Op)(λ−1

1 O1, . . . , λ−1
p Op)′

= (Φ1, . . . ,Φp)(Φ1, . . . ,Φp)′

=

p∑
j=1

ΦjΦj ′

= ΦΦ′,

where Φj = λ−1
j Oj, for j = 1, . . . , p, and Φ = (Φ1, . . . ,Φp) : p× p.
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Index of EOFs True Traditional Corrected
1 40.000 40.833 39.507
2 20.000 20.230 20.178
3 15.000 15.890 15.072
4 10.000 9.165 10.267
5 0.023 0.544 0.189
6 0.024 0.519 0.183
7 0.024 0.481 0.178
8 0.024 0.434 0.178
9 0.024 0.431 0.173

10 0.024 0.405 0.171

Table 1: Percentage of spatial variation (%) captured by the first ten EOFs of the true,
classical and corrected methods when the autocorrelation in the simulation study is high
(ρ = 0.9).

Matrix discrepancies
Traditional vs True 4.347
Corrected vs True 0.137

Table 2: Matrix discrepancies between the traditional and true EOFs as well as that
discrepancy for the corrected EOFs.

However, when ΣS is a random matrix, the EOFs represented by the columns of
Φ are also random. Moreover, the orthogonal matrix can be treated as either con-
stant or random in the KL expansion. The distribution for the random orthogonal
matrix has been obtained by James (1954a), as an invariant uniform distribution
on the Stiefel manifold. Moreover, he also obtained the independent distribution of
the diagonal entries in Λ2 in the KL expansion.

Then a Bayesian version of EOFs can be implemented either by using the MCMC
method or through an empirical Bayes approach. The first level of a hierarchical
model places no restriction on the form of our Bayesian EOFs, and so is a nonpara-
metric approach. When the prior for the purely spatial covariance matrix, ΣS, has
been determined, Φ can be obtained using the KL expansion and Lemma 2 below.

Therefore, the Bayesian EOF model (6)–(7) is completed by specifying prior
distributions for the model parameters: p(µ), p(ΣT ) for Case (i) [or p(θ) for Case
(ii)] and p(ΣS). Lacking specific prior information, we assume p(µ) ∝ 1 and Σ−1

S ∼
Wp(δS,ΞS), δS and ΞS being hyperparameters.

For Case (i), we assume Σ−1
T ∼ Wn(δT ,ΞT ). The collection of hyperparameters

can be denoted by H1 = {δS, δT , ΞS, ΞT}. The joint posterior distribution we are
interested in is given by p(µ,ΣT ,ΣS|Y).

For Case (ii), we assume θ ∼ Nk(θ0,Σ0). The collection of hyperparameters here
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can be denoted by H2 = {δS,ΞS, θ0, Σ0}. The joint posterior distribution we need
for inference is then given by p(µ, θ,ΣS|Y).

In summary, we consider the following two Bayesian models to obtain the Bayesian
EOFs for each of the two cases under consideration:

(i) The Bayesian model is given by

Z = µ⊗ 1′n + ΦX (8)

X ∼ Np×n(0, Ip ⊗ΣT ) (9)

Φ = OΛ−1, (10)

where Σ−1
S = OΛ−2O′ by the above KL expansion. And the priors for the

model parameters are assumed mutually independent and given as follows:

p(µ) ∝ 1 (11)

Σ−1
S ∼ Wp(δS,ΞS) (12)

Σ−1
T ∼ Wn(δT ,ΞT ). (13)

(ii) The Bayesian model is given as in (8)–(10), but ΣT can be written as ρ(., θ),
where ρ(., .) is the known temporal correlation matrix, decreasing as the differ-
ence between any two time points increases, and θ is an unknown parameter.
The priors for µ and Σ−1

S are given in (11)–(12), respectively, and they are
mutually independent. Model specification is completed with the prior for the
temporal covariance function given by:

θ ∼ Nk(θ0,Σ0). (14)

Notice that we assume both ΣS and ΣT are valid covariance matrices and non–
singular, that is, the rank for ΣS is p and for ΣT , n.

Decomposing Y ∼ Np×n(0,ΣS ⊗ In)

We first describe the celebrated results of James (1954a), who discovers that the
distribution of the random matrix Y ∼ Np×n(0,ΣS ⊗ In) can be uniquely decom-
posed into three independent parts, specifically, one part being Wishart distributed,
one part being uniformly distributed on a Grassmann manifold and the last part
being uniformly distributed on a Stiefel manifold, that is, an orthogonal group in
this setting. He constructs invariant measures on the orthogonal group (that is, the
Haar measure), the Grassmann and Stiefel manifolds. James also finds the distribu-
tion of a non–central Wishart distribution using the Haar measure (1954b) and the
distribution of the latent roots for a covariance matrix (1960). We now introduce
some basic notation from James (1954a) and Chikuse (2006).
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Definition 1 The orthogonal group, O(n), is the set of all orthogonal matrices with
the operation of matrix multiplication.

Definition 2 The Stiefel manifold, Vk,n = {V : n × k;V′V = Ik}, is a set of k
(k ≤ n) orthonormal vectors in Rn.

Definition 3 The Grassmann manifold, Gk,n−k, is the set of all k–dimensional hy-
perplanes in Rn that pass through the origin.

James notes that the Grassmann and Stiefel manifolds may be regarded as coset
spaces of the orthogonal group (1954, p.63), an important property in their rela-
tionships. The main result from James is summarized by the following lemma.

Lemma 2 (James, 1945) Suppose Y = (y1, . . . ,yn) ∼ Np×n(0,ΣS ⊗ In). Then we
have

Y = OLP, (15)

where O : p × p represents an orthogonal matrix that is uniformly distributed over
the Grassmann manifold, P : p × n, a semi–orthogonal matrix that is uniformly
distributed over the Stiefel manifold and L : p× p, a diagonal matrix with diagonal
entries {l1, . . . , lp} such that l21, . . . , l

2
p are the eigenvalues for YY′ with l1 > . . . >

lp > 0.

Mardia and Khatri (1977) develop the exact and asymptotic distributions for
the random matrix uniformly distributed on a Stiefel manifold. They also discuss
the matrix form of the von Mises–Fisher distribution on a Stiefel manifold. We
will not discuss those applications of the work of James in this report but leave the
construction of the posterior distributions on Stiefel and Grassmann manifolds for
future research. Instead we use just the basic elements of his decomposition.

Theoretical results

We now present inference for Bayesian EOFs in the following lemmas and theorems.
All proofs in this section are given in Appendix A.1.

Lemma 2 and the KL expansion below provide the basis for the theoretical results
needed to obtain Bayesian EOFs. It leads to the prior distribution as a special case
when ΞS = Ip, as shown in following lemma.

Lemma 3 If Σ−1
S ∼ Wp(n, Ip) for some n ∈ Z+, by the KL expansion and Lemma

2, we have that the λ−2’s are mutually independently distributed with λ−2
j ∼ χ2

n, for
j = 1, . . . , p, and O : p× p is uniformly distributed on the Stiefel manifold.

15



Lemma 3 provides one way to sample the random matrix Σ−1
S from its prior

distribution Wp(δS, Ip).

Theorem 1 Consider the data matrix Y : p × n ∼ Np×n(0,ΣS ⊗ ΣT ). Given the

nonsingular spatial and temporal covariance matrices ΣS and ΣT , let Y∗ = YΣ
−1/2
T .

Then Y∗ ∼ Np×n(0,ΣS ⊗ In). Consequently, Y∗ = Σ
1/2
S OLP, where O, L, and P

are given in Lemma 2. The Bayesian EOFs are then obtained as W = 1
n
Σ

1/2
S OL.

Theorem 2 Consider the random matrix Y : p× n ∼ Np×n(0,ΣS ⊗ΣT ). Suppose
the temporal covariance matrix ΣT is nonsingular and known. Then we have Y∗ =
YΣ

−1/2
T ∼ Np×n(0,ΣS ⊗ In). Assume Σ−1

S ∼ Wp(δS,ΞS). The posterior distribution
for the spatial precision matrix Σ−1

S is given as follows:

Σ−1
S |Y ∼ Wp(δ

o,Ξo), (16)

where δo = δS + n, and

Ξo = ΞS −ΞSY(Y′ΞSY + ΣT )−1Y′ΞS. (17)

The Bayesian EOFs can be obtained when ΣS is estimated or sampled from its
posterior distribution.

Consequently from Theorem 2, we can either obtain the estimates for ΣS using
an empirical method such as that of the Sampson–Guttorp (SG) or sample it from
its posterior distribution in (16). In other words, we can either use empirical Bayes
or hierarchical Bayesian methods to obtain the estimates for the model parameters.

If the spatial covariance matrix were known, valid and nonsingular, we would
have a similar result for the posterior distribution of the temporal covariance matrix,
ΣT . The next theorem tells us its posterior distribution if the prior for Σ−1

T is
assumed to be Wishart distributed, that is, Case (i).

Theorem 3 Consider the data matrix Y : p× n ∼ Np×n(0,ΣS ⊗ΣT ). Suppose the
spatial covariance matrix ΣS is known, valid and nonsingular. Assume the prior for
Σ−1

T is Wn(δT ,ΞT ). Then the posterior distribution for Σ−1
T is given by

Σ−1
T |Y ∼ Wn(δ∗,Ξ∗), (18)

where δ∗ = δT + p and

Ξ∗ = ΞT −ΞTY
′(YΞTY

′ + ΣS)−1YΞT . (19)

In Case (ii) where the temporal covariance matrix is assumed to have a known
parametric form but unknown parameters, we can obtain the posterior distribu-
tion for these parameters given a valid and known spatial covariance matrix. This
posterior distribution is given in the following theorem.
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Theorem 4 Given the same condition as in Theorem 3 and the fully Bayesian
model in Case (ii) with the priors for θ in (14), the conditional posterior distributions
for θ are given as follows:

p(θ|Y) ∝ exp

{
−1

2

[
1

σ2
tr(V′Vρ(., θ)−1) + (θ − θ0)

′Σ−1
0 (θ − θ0)

]}
,

(20)

where V = Σ
−1/2
S Y.

In practice, both temporal and spatial covariance matrices are unknown, and so
conditions in Theorems 1 and 4 do not hold. Although the nonsingularity condition
for these two covariance matrices might be difficult to verify due to challenging
numerical problems, we need the condition to obtain the posterior samples for both
matrices in this report. Future research will be devoted to improving on these
results.

To obtain posterior samples for both parameters in the MCMC framework, we
can either use a mixture of MCMC and empirical Bayes methods or use pure MCMC
runs. We will illustrate the algorithm for both cases next. But the idea here is to
obtain the conditional posterior samples for µ, ΣS and ΣT . The empirical Bayes
method will be used to obtain the estimate for ΣS given the data matrix, µ, and ΣT .
We use the Gelman and Rubin R statistics as a device to check the convergence of
the Markov chains (Gelman et al., 2004, p. 296–297). The estimates for the model
parameters are then obtained as the mean of the posterior samples after the burn–in
period.

We next develop the posterior conditional distributions for the model parameters
for Cases (i) and (ii). The Bayesian EOFs can be obtained by Theorem 1 in which
the mean field, spatial and temporal covariance matrices are estimated from their
posterior distributions or by the empirical Bayes method.

Posterior conditional distributions

The posterior conditional distributions for µ, Σ−1
S , and Σ−1

T can be obtained for
Cases (i) and (ii) in the fully Bayesian framework. The proofs of the theorems in
this section are presented in Appendix A.1. We first present the conditional posterior
distributions for model parameters for Case (i) in the following theorem.

Theorem 5 Given the Bayesian hierarchical model in (8)–(13), the posterior con-
ditional distributions for these model parameters are given as follows:

(i) The conditional posterior distribution for µ is given by

µ|Z,ΣS,ΣT ∼ Np(M, Σ∗ΣS) (21)

where Σ∗ = {tr(1′n1nΣ
−1
T ) }−1 and M = ZΣ−1

T 1′nΣ∗.
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(ii) The conditional posterior distribution for Σ−1
S is given by

Σ−1
S |Z, µ,ΣT ∼ Wp(δ1,Ξ1), (22)

where δ1 = δS + n,

Ξ1 = Ξs −ΞsY(Y′ΞSY + ΣT )−1Y′Ξs, (23)

and Y = Z− µ⊗ 1′n.

(iii) The conditional posterior distribution for Σ−1
T is given by

Σ−1
T |Z, µ,ΣS ∼ Wn(δ2,Ξ2), (24)

where δ2 = δT + p,

Ξ2 = ΞT −ΞTY
′(YΞTY

′ + ΣS)YΞT , (25)

and Y = Z− µ⊗ 1′n.

In the same way, the posterior conditional distributions for the model parameters
for Case (ii) are obtained in the next theorem.

Theorem 6 Given the Bayesian hierarchical model in (8)–(12) and (14), the pos-
terior conditional distributions for µ and Σ−1

S are given in Theorem 5. Let V =

Σ
−1/2
S (Z − µ ⊗ 1′n). Moreover, the posterior conditional distribution for θ is given

by:

p(θ|Z, µ,ΣS) ∝ exp

{
−1

2

[
tr

(
VV′ρ(., θ)−1

)
+ (θ − θ0)

′Σ−1
0 (θ − θ0)

]}
.

(26)

After obtaining the estimates for the spatial and temporal covariance matrices,
as well as other model parameters for both cases, the Bayesian EOFs can then be
obtained by Theorem 1, Lemma 2 and the KL expansion.

Next we illustrate how the MCMC algorithm can be used to obtain the posterior
samples from the joint posterior distribution p(µ,Σ−1

S ,Σ−1
T |Z) and p(µ,Σ−1

S , θ|Z)
for Cases (i) and (ii), respectively.

MCMC algorithms

To obtain the posterior samples from the joint posterior distribution of model pa-
rameters, µ,ΣS and ΣT (or θ), the MCMC algorithm is used to draw samples from
their posterior distributions. For Case (i), we use Gibbs sampling method based on
the full conditional distributions we obtained before. For Case (ii), a Metropolis–
within–Gibbs algorithm is used because the posterior conditional distribution for θ
does not have any closed form.
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Algorithm 1 For Case (i), Gibbs sampling can be used to draw the posterior sam-
ples from p(µ,ΣS,ΣT |Z) :

1. Initialization: set

µ(1) = Z
row

,

sample

Σ−1
S

(1) ∼ Wp(δS,ΞS),

and

Σ−1
T

(1) ∼ Wn(δT ,ΞT ).

2. Given the (j − 1)th values, µ(j−1), Σ−1
S

(j−1)
, Σ−1

T

(j−1)
, and Z:

(1) Sample µ(j) from p(µ|Z,ΣS
(j−1),ΣT

(j−1)) from (21).

(2) Sample Σ−1
S

(j)
from p(Σ−1

S |Z, µ(j),ΣT
(j−1)) from (22).

(3) Sample Σ−1
T

(j)
from p(Σ−1

T |Z, µ(j),ΣS
(j)) from (24).

3. Repeat until convergence.

The Metropolis–within–Gibbs algorithm is omitted here because we present a
similar result in Dou et al. (2007, 2008). In this section, we give the algorithm for
a very special case when the temporal process is assumed to be an AR(1) process.
Hence we have φ as the parameter that characterizes the AR(1) process. Assume
that φ ∼ N(φ0, σ

2
φ0

). Then the collection of hyperparameters can be denoted by
H = {φ0, σ

2
φ0

, δS,ΞS}. Since there is no closed form for the posterior conditional
distribution in (26), the Metropolis–within–Gibbs algorithm could then be used to
draw posterior samples of interest.

The next section includes a straightforward extension on the Bayesian EOFs
results where its spatial covariance is assumed to have a GIW distribution instead
of IW (see Le and Zidek (2006), for example).

Extension: Bayesian EOFs

We can extend the above results about Bayesian EOFs to incorporate the GIW
prior for the spatial covariance structure in such a way that the GIW prior reflects
some characteristics of the data matrix. Le & Zidek (1992–2006) develop theoretical
results for modelling spatio–temporal processes, i.e., the BSP approach in Dou et
al. (2008, 2009a).
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In such a Gaussian GIW framework, the spatial covariance matrix ΣS can be esti-
mated by the SG–method or Damian SG–method (Damian et al., 2002). Therefore,
the estimates for the ΣS can be updated at each iteration in the MCMC sampling.
This will be carried out in future work.

The next section includes two simulation examples that help assess the perfor-
mance for the Bayesian, classical and corrected EOFs.

4 Simulation study 2

The Bayesian EOF models we consider above have a very general structure. Note
that ε in (6) represents small scale spatial variation or measurement error. If ε is close
to 0, or equivalently to a very small value for Σε, we then have approximately Y =
µ⊗1′n+ΦX, where Φ’s columns are the EOFs for ΣS and X|θ ∼ Np×n(0, Ip⊗ΣT (θ)).
If ΣT (θ) = In, then we have the classical EOFs in Section 2. If ΣT (θ) 6= In but
known, we then have the corrected EOFs in Section 2. If ΣT (θ) is unknown, we can
use the Bayesian EOFs obtained in Section 3.

This section compares three different types of EOFs for a separable state–space
process with specified spatial and temporal covariance matrices. To do that, we
first simulate the matrix–variate data set. We then compute these three EOFs and
compare them with the true EOFs by contour plots and the matrix discrepancies or
separations based on the distance obtained from the Frobenious norm.

To briefly review these three types of EOFs, suppose Y : p × n represents the
anomaly matrix for p sites and n time points, and follows a multivariate normal
distribution Np×n(0,ΣS ⊗ΣT ). Recall that the classical EOFs estimate the sample
spatial covariance matrix by 1

n
YY′. Given the temporal dependence structure,

that is, the temporal covariance matrix, the corrected EOFs estimate the sample
spatial covariance matrix by YΣ−1

T Y′. Given the priors for the spatial and temporal
covariance matrix, the Bayesian EOFs estimate the sample spatial covariance matrix
in the hierarchical model by means of the corresponding posterior mode.

We consider two cases in this section to assess the performance of the EOFs for
two different temporal dependence structures. For both cases, we assume a separable
space time covariance structure, that is, an exponential spatial covariance function
and an AR(1) temporal covariance function. In particular, the spatial covariance
function is given by

(ΣS)ij = exp(−Vij/λ), (27)

where Vij is the Euclidean distance between si and sj, for i, j = 1, . . . , p and λ,
a scale parameter. The temporal covariance function between tk and tl is given
by σ2

vφ
2||tk−tl||, for tk, tl ∈ {1, . . . , T}. Note that |φ| < 1 corresponds to a causal

AR(1) process. If φ ' 0, then yt are approximately independent; if φ ' 1, then
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{yt : t = 1, . . . , n} is a highly autocorrelated AR(1) process. We consider Case (i),
φ = 0.1, and Case (ii), φ = 0.9.

The geographical region in this simulation study is set to be [0.1, 1.0]× [0.1, 1.0].
We select 100 grid points in this region to be the locations of interest, i.e., p = 100.
We then choose n = 120 time points at each of these 100 sites.

The initial settings for the separable space–time covariance functions are given
as follows: λ = 0.4, σ2

v = 1.0, and φ = 0.1 for Case (i), and 0.9 for Case (ii).
We define Y (s, t) = Z(s, t) − µ̂(s), the anomaly at site s and time t, where

µ̂(s) = 1
n

∑n
t=1 Z(s, t). We obtain the classical, corrected, and Bayesian EOFs using

Y (s, t).
We now compare the corrected, classical and “true” EOFs in the these two cases:

(i) φ = 0.1, and (ii) φ = 0.9, respectively.

Simulated data

Suppose Y : p×n ∼ Np×n(0,ΣS⊗ΣT ). One way to generate the simulated data is by
first simulating Y∗ = YΣT

1/2 = (y∗1, . . . ,y
∗
n). Thus, y∗t ∼ Np(0,ΣS), independently

for t = 1, . . . , n. We then generate Y by Y∗ΣT
−1/2.

An alternative for obtaining the simulated data uses James’s result and the KL
expansion. Given both ΣS and ΣT , we first illustrate this method for generating
the simulated data in any given region. Given the spatial covariance matrix ΣS,
the Karhunen–Loeve expansion gives the unique orthogonal matrix O : p× p with a
positive first row and the unique diagonal matrix Λ2 : p×p with decreasing diagonal
entries, the eigenvalues of ΣS such that

ΣS = OΛ2O′

= (ΛO′)′ΛO′

= (λ1O
(1), . . . , λpO

(p))(λ1O
(1), . . . , λpO

(p))′

= (Φ(1), . . . ,Φ(p))(Φ(1), . . . ,Φ(p))′

=

p∑
j=1

Φ(j)(Φ(j))′

= ΦΦ′, (28)

where Φ = (Φ(1), . . . ,Φ(p)) : p× p and Φ(j) = λjO
(j) for j = 1, . . . , p.

Given ΣT : n× n, the corresponding Karhunen–Loeve expansion is given by

ΣT = PL2P′

=

p∑
j=1

Ψ(j)(Ψ(j))′

= ΨΨ′, (29)
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where P : n × n represents the orthogonal matrix with positive first row, L2 is
a diagonal matrix with decreasing but positive diagonal entries l21, . . . , l

2
n; Ψ =

(Ψ(1), . . . ,Ψ(n)) and Ψ(i) = liP
(i) for i = 1, . . . , n.

Consequently, if Y : p×n ∼ Np×n(0,ΣS ⊗ΣT ), and Ξ ∼ Np×n(0, Ip⊗ In). Thus
Y = ΦΞΨ′ where Φ and Ψ are given by (28) and (29), respectively. Let Ξ∗ = ΞΨ′.
Then Ξ∗ ∼ Np×n(0, Ip ⊗ΣT ) and Y = ΦΞ∗.

In short, the simulated data can be generated for known spatial and temporal
covariance matrices as follows:

(i) Uniquely obtain Φ and Ψ as in (28) and (29) for known ΣS and ΣT , respec-
tively.

(ii) Generate Ξ ∼ Np×n(0, Ip ⊗ In) by n samples independently distributed from
the multivariate normal distribution Np(0, Ip).

(iii) Obtain the simulated data matrix Y : p× n by ΦΞΨ′.

Results for Case (i): ρ = 0.1

Table 3 presents the percentage of the spatial variance of each spatial pattern cap-
tured by the EOFs relative to the total spatial variance. It shows that these per-
centages are quite close to each other for all three EOFs the true, the classical and
the corrected. Table 4 shows that the matrix discrepancy between the corrected
and true EOFs closely resembles that for classical EOFs (with the classical doing
slightly better).

Index of EOFs True Classical Corrected
1 33.584 31.913 31.883
2 11.122 13.476 13.457
3 11.122 8.963 8.996
4 5.108 6.193 6.201
5 3.853 4.732 4.747
6 3.638 3.467 3.467
7 2.274 2.733 2.735
8 2.274 2.333 2.329
9 1.537 1.946 1.945

10 1.537 1.719 1.724

Table 3: Percentage of spatial variation (%) captured by the first ten EOFs by the true,
classical and corrected methods when the autocorrelation is weak (ρ = 0.1).

Figures 7–9 plot the contours for the three type of EOFs. They show the classical
EOFs are quite similar to the corrected ones when the autocorrelation is weak (i.e.
φ is small.
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Matrix discrepancies
Classical v.s. True 0.230
Corrected v.s. True 0.233

Table 4: Matrix discrepancies between the classical and true EOFs as well as that dis-
crepancy for the corrected EOFs when the autocorrelation is weak (ρ = 0.1).

These results validate our expectation that both EOFs would work well in this
situation since the “true” data are approximately independent over time at all lo-
cations.
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Figure 7: Contour plots for the first six true EOFs when the autocorrelation is weak
(ρ = 0.1). (White=-0.6; Black=0.9)

Results for Case (ii): ρ = 0.9

Table 5 gives the percentages of the spatial variation captured by each of the three
type EOFs: true, classical, and corrected. This graph shows that the corrected
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Figure 8: Contour plots for the first six classical EOFs when the autocorrelation is weak
(ρ = 0.1). (White=-0.6; Black=0.9)

EOFs give more accurate estimates on the major diagonal elements of Λ in the KL
expansion. Table 6 shows the matrix discrepancies between the corrected and the
true EOFs to be much smaller than that discrepancy for classical EOFs, pointing
to the former’s superiority in this case where that autocorrelation is strong.

Figures 10–11 present the first six classical and corrected EOFs for this case.
Comparing them with Figure 7, it is obvious that the corrected EOFs can estimate
the main types of spatial patterns better than the classical ones. Moreover, the ratio
of matrix discrepancies between the classical and true EOFs matrix is 5.79, while
that between the corrected and true ones, is just 0.21. It shows that the classical
EOFs are far from the “truth” for the highly autocorrelated data base.

5 Summary and conclusions

We have developed Bayesian EOFs in this report and given the corresponding the-
oretical results as well as the MCMC algorithm to obtain the posterior samples of

24



0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

La
tit

ud
e

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

Longitude

La
tit

ud
e

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)

Longitude

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

Longitude

Figure 9: Contour plots for the first six corrected EOFs when the autocorrelation is weak
(ρ = 0.1). (White=-0.6; Black=0.9)

the model parameters. Our two simulation studies have shown that the corrected
EOF method can give much better representations of principal spatial patterns than
classical EOFs. We conclude that classical EOFs can severely misrepresent spatial
patterns in highly temporally correlated space–time processes. Corrected EOFs
greatly improve the performance of the EOFs and capture the principal spatial pat-
terns better than the classical EOFs. The BEOF offers a practical way of realizing
those improvements in reality when the correction factors needed for the corrected
BEOF are unknown. However, further improvements in the BEOF method are
needed and will be the subject of future work, along with a more complete com-
parative assessment of the perform of the BEOFs against corrected and classical
EOFs.
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Index of EOFs True Classical Corrected
1 33.584 33.572 37.702
2 11.122 20.789 11.868
3 11.122 9.660 11.005
4 5.108 7.835 6.204
5 3.853 4.341 4.344
6 3.638 3.302 3.405
7 2.274 2.870 2.038
8 2.274 2.287 1.910
9 1.537 1.746 1.521

10 1.537 1.583 1.460

Table 5: Percentage of spatial variation (%) for the first ten EOFs captured by the true,
classical, and corrected methods when the autocorrelation is strong (ρ = 0.9).

Matrix discrepancies
Classical vs True 4.978
Corrected vs True 0.332

Table 6: Matrix discrepancies between the traditional and true EOFs as well as that
discrepancy for the corrected EOFs when the autocorrelation is strong(ρ = 0.9).

A Supplementary results

A.1 More results for Section 3

Definition 4 Suppose the random matrix response X : r × q has a matrix normal
distribution, denoted by X ∼ Nr×q(M,C,Σ), where C : r×r > 0, and Σ : q×q > 0.
Then the probability density function of X is given by

p(X) = (2π)−rq/2|C|−q/2|Σ|−r/2 exp{−1

2
tr[(X−M)′C−1(X−M)Σ−1]}.

(30)

Definition 5 Suppose the random matrix X : q × q is symmetric, positive definite
and follows an inverted Wishart distribution with degrees of freedom δ and scale
matrix S. Then the probability density function of X is given by

p(X) = k|X|−( δ
2
+q) exp

{
−1

2
tr

[
SX−1

]}
, (31)

where S is positive definite and

k−1 = 2qv/2πq(q−1)/4

q∏
j=1

Γ

(
v − j − 1

2

)
|S|−v/2,
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Figure 10: Contour plots for the first six classical EOFs when the autocorrelation is
strong (ρ = 0.9). (White=-1.6; Black=2.2)

with v = δ + q − 1.

Proof 1 (Lemma 3) By the KL expansion and Lemma 2, we have Λ−2 = OΣ−1
S O′

and moreover, Λ−2 ∼ Wp(n, Ip). Hence, the {λ−2
j : j = 1, . . . , p} are mutually

independent and λ−2
j ∼ W1(n, 1), that is, χ2

n, for j = 1, . . . , p.

Proof 2 (Theorem 1) Given Y : p × n ∼ Np×n(0,ΣS ⊗ ΣT ), denote Y∗ to be

YΣ
−1/2
T . Consequently, Y∗ ∼ Np×n(0,ΣS ⊗ In). Similarly, we have Σ

−1/2
S Y∗ ∼

Np×n(0, Ip ⊗ In).

By Lemma 2, Σ
−1/2
S Y∗ = OLP, where O represents an orthogonal matrix that

is uniformly distributed over the Grassmann manifold, P, an orthogonal frame that
is uniformly distributed over the Stiefel manifold, and L, a diagonal matrix with
entries {l1, . . . , lp} such that l21, . . . , l

2
p are the eigenvalues for (Σ

−1/2
S Y∗)(Σ−1/2

S Y∗)′.

Hence, Y∗ = Σ
−1/2
S OLP. Moreover, since

E[(Y∗)(Y∗)′] = Σ
1/2
S E[OL2O′]Σ1/2

S

= nΣS,
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Figure 11: Contour plots for the first six corrected EOFs when the autocorrelation is
strong (ρ = 0.9). (White=-1.6; Black=2.2)

the Bayesian EOFs can then be given by W = 1
n
Σ

1/2
S OL.

Proof 3 (Theorem 2) By Definition 5, we have

p(Σ−1
S ) ∝ |ΣS|−(

δS
2

+p) exp{−1

2
tr(Ξ−1

S Σ−1
S )}.

Given ΣT , Y∗ = YΣ
−1/2
T ∼ Np×n(0,ΣS ⊗ In). By Definition 4, we have

p(Y∗|ΣS) ∝ |ΣS|−n/2 exp{−1

2
tr[Y∗(Y∗)′Σ−1

S ]}.

Then the posterior distribution for Σ−1
S given Y∗, that is, Y for known ΣT is given

as follows:

p(Σ−1
S |Y) ∝ p(Y∗|ΣS)p(Σ−1

S )

∝ |ΣS|−(
δS+n

2
+p) exp

{
−1

2
tr

[
(Ξ−1

S + Y∗(Y∗)′)Σ−1
S

]}
.
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In other words, Σ−1
S |Y ∼ Wp(δ

o,Ξo), where δo = δS + n and

Ξo = {Ξ−1
S + Y∗(Y∗)′}−1

= (Ξ−1
S + YΣ−1

T Y′)−1

= ΞS −ΞSY(Y′ΞSY + ΣT )−1Y′ΞS.

Proof 4 (Theorem 3) This proof resembles Proof 3, and so is omitted here.

Proof 5 (Theorem 4) Let V = Σ
−1/2
S Y. Then V ∼ Np×n(0, Ip ⊗ ΣT ). Hence, we

have

p(Y|ΣS, µ, θ) ∝ exp

{
−1

2
tr

[
V′Vρ(., θ)−1

]}
.

Given the prior for θ, Nk(θ,Σ0), the posterior conditional density for θ can be
represented by

p(θ|Y,ΣS, µ) ∝ p(Y|ΣS, µ, θ)p(θ)

∝ exp

{
−1

2

[
tr(VV′ρ(., θ)−1) + (θ − θ0)

′Σ−1
0 (θ − θ0)

]}
.

Proof 6 (Theorem 5)

(i) Since
Z ∼ Np×n(µ⊗ 1′n,ΣS ⊗ΣT ),

and p(µ) ∝ 1, we have the posterior conditional distribution for µ as follows:

p(µ|Z,ΣS,ΣT ) ∝ p(Z|µ,ΣS,ΣT )p(µ)

∝ exp{−1

2
tr[(µ⊗ 1′n − Z)Σ−1

T (µ⊗ 1′n − Z)′Σ−1
S ]}

∝ exp{−1

2
tr[(µ⊗ 1′n)Σ−1

T (µ⊗ 1′n)′Σ−1
S − (µ⊗ 1′n)

×Σ−1
T Z′Σ−1

S − ZΣ−1
T (µ⊗ 1′n)′Σ−1

S ]}
= exp{−1

2
tr[(µµ′tr( 1′n1nΣ

−1
T )− µ1nΣ

−1
T Z′

−ZΣ−1
T 1′nµ′)Σ−1

S ]}
∝ exp{−1

2
tr[(µ−M)(Σ∗)−1(µ−M)′Σ−1

S ]},

where Σ∗ = {tr(1′n1nΣ
−1
T ) }−1 and M = ZΣ−1

T 1′nΣ∗. Therefore, we have

µ|Z,ΣS,ΣT ∼ N1×p(M, Σ∗ ⊗ΣS),

that is, Np(M, Σ∗ΣS) since Σ∗ is a scalar.
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(ii) Let Y = Z− µ⊗ 1′n. Consequently, we have YΣ
−1/2
T ∼ Np×n(0,ΣS ⊗ In). By

Theorem 2, the posterior distribution for Σ−1
S |Z,ΣT is Wp(δ

o,Ξo), given by
(16), where Y = Z− µ⊗ 1′n.

(iii) Similarly as in (ii), by Theorem 3 the posterior conditional distribution for
Σ−1

T |Z,ΣS is given by (18), where Y = Z− µ⊗ 1′n.

Proof 7 (Theorem 6) The proof for this theorem follows Theorem 4 but letting

V = Σ
−1/2
S (Z− µ⊗ 1′n).
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