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Summary

Statisticians have long viewed the quest for more information, for example through

the acquisition of additional data, as being central to the goal of reducing uncer-

tainty about some aspect of the world. This paper explores that objective through

the variance, a common way of quantifying uncertainty. In particular, it examines

the relationship between information and uncertainty. Surprisingly it shows that in-

creasing the amount of information can in some cases increase the variance while in

others it can decrease it. Which of these occurs is not explained by the seductive

thesis that it depends simply on whether that uncertainty is merely aleatory - due to

chance alone - or epistemic - due to lack of knowledge. Through examples it shows

the relationship to be complex and a general theory elusive.
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1 Introduction

This paper continues an investigation begun in Zidek and van Eeden (2003; hereafter ZvE),

of the relationship between information and uncertainty. Our focus is on the effect of

increasing information on the prediction of a random object X. That object could be

a random variable, a parameter in the Bayesian framework adopted in this paper, or an

estimator. Our measure of uncertainty is the variance of X i.e. var(X), chosen both for its

simplicity as well as its popularity in statistical science where for example the standard error

is commonly used to index estimator uncertainty. In particular, we present the solution to

a problem posed by ZvE that has remained open until now: “Is the conditional variance

var(X; |X| < c) an increasing function of c as one intuitively expect, when X ∼ N(η, 1)

for some parameter η?”

The importance of uncertainty transcends its fundamental role in statistical science and

in fact, DeFinetti says
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The only relevant thing is uncertainty - the extent of our own knowledge and

ignorance. (de Finetti, 1970/1974, preface, xi-xii)

Both Google and Google Scholar, yield a huge number of sites concerned with uncertainty

or its cousin “information”. Yet despite its importance, it is not very well–defined, and in

that respect ZvE liken it to its cousin about which Basu (1975) said:

But, what is information? No other concept in statistics is more elusive in its

meaning and less amenable to a generally agreed definition.

Whatever its definition, the need to quantify uncertainty seems uncontroversial, as that

concept is commonly used in a comparative sense in ordinary communication where phrases

such as “greater uncertainty” and “more uncertain” are commonly encountered. ZvE discuss

ways of doing so. One such approach is through probability as in Frey and Rhodes (1996)

who propose the use of the probability distribution for that purpose. O’Hagan (1988) uses

probability as measure of “uncertainty”.

However, although probability provides a framework in which to discuss uncertainty, it

does not provide the index of uncertainty we need to make comparative statements of the

type referred to above. Thus Harris (1982) proposes the (relative) entropy of a probability

distribution as such an index. In fact that notion of entropy goes back at least as far as

Shannon (1948) when uncertainty and information were seen as identical; the quantitative

uncertainty U(X) about a randomly distributed object X is thought of as the amount of

information observing X would provide, since then all uncertainty about it would vanish.

While entropy is appealing, variance is simpler. Hence it is more widely used. Thus a

random variable with a large variance like one with large entropy, is one with an elevated

volatility, making it difficult to predict. This is the index used in this paper to explore the

impact of information on uncertainty.

One might naively expect that uncertainty would be reduced when some additional

information about X becomes available. More specifically, we might think that the con-

ditional variance g(c) = var(X; |X| < c) should decrease as c decreases since the latter

means increasingly more information is being provided about X. Surprisingly, examples in

Section 2 involving both discrete and continuous cases, show that this will not always be the

case. In that section we show why. Briefly this phenomenon is seen when that information

contradicts some aspect of a model that is confidently believed to generate X. In fact, this

insight suggests that such information would always lead to an increase in uncertainty.

But this would be another failed conjecture. Surprisingly that is not always true. While

the counter examples in Section 2 show that g(c) is not generally an increasing function of
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c, the claim is true for the family of normal distributions, as shown in Section 3. For them,

we show that g(c) in an increasing function of c when X has normal distribution with any

mean and variance.

The next section studies in some detail two complementary types of uncertainty and the

tradeoff between uncertainty and information with respect to each. However that tradeoff

is a complex one and the subject of our concluding section. There we highlight some issues

for future work.

2 Epistemic and aleatory uncertainty

This section examines important aspects of the uncertainty-information relationship through

a simple dichotomy of the forms of uncertainty. The first, epistemic uncertainty derives

from a lack of knowledge. It includes model as well as parameter uncertainty. Moreover

the amount of epistemic uncertainty changes as information is acquired and knowledge de-

veloped. The second type, aleatory uncertainty is due to chance. In contrast to epistemic

uncertainty, aleatory uncertainty does not change in the light of any new information that

could realistically be acquired.

Within a Bayesian framework, variance captures both types of uncertainty. To see that,

let θ stand ambiguously for both the model as well as its parameters. Then a familiar

identity tells us that the overall uncertainty is given by

U(X) ≡ var(X) = E[var(X; θ)] + var[E(X; θ)]. (1)

The first term is the aleatory uncertainty averaged over all possibilities for the uncertain

θ. The second assesses the epistemic uncertainty through the model’s ability to predict X.

We see great economy in this identity, in that the second term re-uses the variance in a

another role, the assessment of uncertainty in the predictor.

We assume that information comes from data that are thought to inform us about X,

more specifically from the observation of a random object Z = z. The posterior uncertainty

would now become U(X; z) ≡ var(X;Z = z) once z has been observed and this paper

investigates whether knowing that Z = z has reduced our uncertainty.

The following example illustrates these ideas.

EXAMPLE 1 In an experiment a subject’s uncertainty about the event X = 1 that a die

toss yields an ‘ace’ is assessed. That subject, convinced that the toss is fair, gives probability

θ = 1/6 to the event {X = 1}. Using variance to express that subject’s uncertainty, we
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find var(X) = var(X; p = 1/6) = 5/36, all aleatory uncertainty, the second term of the

Equation (1) being zero.

A second subject, recalling Lindley’s version of Cromwell’s rule, is unwilling to as-

sume the toss is fair. That subject puts a uniform distribution on θ to reflect com-

plete ignorance about its value. Equation (1) now gives the uncertainty as var(X) =

E[var(X; θ)] + var[E(X; θ)]. Here E[var(X; θ)] = E[θ(1 − θ)] = 1/2 − 1/3 = 6/36, it

being the expected aleatory uncertainty and higher than the first subject’s 5/36. At the

same time, var[E(X; θ)] = var(θ) = 1/3 − (1/2)2 = 3/36, the epistemic uncertainty that

was 0 for the first subject. In sum Subject 2’s uncertainty is quantified as 9/36 in contrast

to Subject 1’s 5/36.

Now new information arrives in the form of a list of the outcomes of a sequence of

n die tosses that yielded r occurrences of the event {X = 1}. Unlike the first subject’s

uncertainty, the second’s must change as the prior is transformed into the posterior beta

distribution with density proportional to θr(1− θ)(n−r). In fact, regarding both E and var

as conditional on the new information,

E[var(X; θ)] = E[θ(1 − θ)] =
(r + 1)(n − r + 1)

(n + 3)(n + 2)
≈ r

n
(1 − r

n
)

and

var[E(X; θ)] = var(θ) =
(r + 1)(n − r + 1)

(n + 2)2(n + 3)
.

Thus the epistemic uncertainty approaches 0 as would be expected while if indeed the tosses

are fair, the expected aleatory uncertainty approaches that of the first subject. �

REMARK 1 This example demonstrates the impact information can have through changes

on the epistemic uncertainty. A θ̂ substantially different from 1/6 would erode Subject 1’s

certainty in his or her model and force change. Subject 2 would be in the same position

if it turned out that application of Cromwell’s rule had not been aggressive enough. For

example, the appearance of an 11 anywhere in the sequence of tosses would yield a 0

likelihood under any one of Subject 2’s classes of models and rule out use of Bayes rule

for updating the prior. In fact such an outcome leads to so–called “deep uncertainty” that

represents amongst other things, the “unknown unknowns” envisioned by the former US

Secretary of Defense, Donald Rumsfeld. �

The following two examples continue this theme and show that uncertainty can increase

due to more subtle effects of data than those seen in the previous example. Moreover, they

show these effects can obtain in the case of both discrete and continuous random variables

4



X. In both cases Z = I{|X| < c} and interest focuses on the effect of increasing information

by reducing c.

EXAMPLE 2 Suppose X has probability mass function:

P (X = 0) = q/2; P (X = 1) = q/2, P (X = 2) = p

where p ∈ (0, 1) and q = 1− p. When c = 1.5, the conditional distribution is binomial with

parameters (1, 0.5). Thus,

var(X; |X| ≤ 1.5) = 0.25.

When c = 2.5, the condition |X| < c no longer constrains. We find

var(X) ≤ E(X − 2)2 = 5q/2.

Thus, when q is sufficiently small,

g(1.5) > g(2.5)

which implies that g(c) is not a decreasing function in c in general. �

In the next example

var(X; |X| ≤ c1) < var(X; |X| ≤ c2) for c1 > c2. (2)

It extends the previous example for discrete distributions to continuous ones.

EXAMPLE 3 Let f(x), x ≥ 0 be given by

f(x) =







p for x ∈ (0, 1)

h for x ∈ (2, 2 + ε),

for some p ∈ (0, 1), ε ≥ 0, h > 0 and hε = 1 − p.

Then, for c = 1.5, var(X; |X| ≤ c) = 1/12 and for c ≥ 2 + ε,

var(X; |X| ≤ c) = var(X)

and there exist (p, ε) such that var(X) < 1/12.

This can be seen as follows:

E(X) =
p

2
+ (1 − p)(2 +

ε

2
),
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E(X2) =
p

3
+

1 − p

3
(12 + 6ε + ε2),

var(X) =
p

3
+

1 − p

3
(12 + 6ε + ε2) −

(p

2
+ (1 − p)(2 +

ε

2
)
)2

.

Note that when p = 0,

var(X) =
ε2

12
<

1

12

for every ε ∈ (0, 1). Because var(X) is continuous in p, for every ε ∈ (0, 1), there exists an

interval of small p-values for which the condition

var(X; |X| ≤ c) <
1

12
= var(X; |X| ≤ 1.5) when c > 2 + ε

is satisfied. �

REMARK 2 In the foregoing example, the shapes of the two parts of the density do not

have to be uniform. What is needed is that the lefthand part carries a small part of the

total mass and has a large conditional variance while the righthand side is a large part of

the total mass and has a small conditional variance. �

This section has demonstrated the benefits of the Bayesian framework for studying

uncertainty since it accommodates both aleatory and epistemic uncertainty. In fact there is

no need to distinguish between them and this feature can be exploited to achieve parsimony

and hence computational efficiency in constructing and implementing process models.

However, ignoring the distinction can also lead to difficulties since the epistemic com-

ponent of uncertainty may well be reduced or even disappear as information comes in. The

result can be models which fail to preserve the process’s marginal aleatory uncertainty. The

following example illustrates the problem.

EXAMPLE 4 A process {Xit, i = 1, . . . , n, t = 1, . . . , T} is measured over time t at a

number of sites p and the goal is a model for this space-time process. The analyst chooses

the following one:

Xit|β = βit + ǫit, i = 0, 1, . . . , p, t = 1, . . . , T + 1, or

Xi|β = βi + ǫi, i = 0, 1, . . . , p, with

βi ∼ N(µ01T+1, σ
2
β IT+1), i = 0, 1, . . . , p

µ0 ∼ N(µ∗, σ2
µ),

where the variances are known while the ǫ’s are independent of one another. For parsimony,

the model thus puts all the spatial correlation into that of the β’s. Some of the randomness
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in the β’s might be due to chance, such things as fluctuations in temperature or wind

direction. This randomness and hence uncertainty about the coefficients would thus be

aleatory. But some of their uncertainty would be due to their unknown baseline level µ0

and would be epistemic.

However the parsimony comes at considerable cost. For as data are acquired, the epis-

temic uncertainty is lost and a posteriori, the processes become spatially uncorrelated. More

precisely if we let X = (X′

1, . . . ,X
′

T )′ : pT×1 denote the column vector of observed responses

to time T , the spatial covariance between sites i and j at time T + 1 is

cov(Xi(T+1),Xj(T+1);X) = var(β; X)

= σ2
µ − σ2

µ1′[σ2I + σ2
µJ]−11σ2

µ

where 1 stands for the pT vector all of whose element are 1, I the corresponding identity

matrix, J = 11′ and σ2 = σ2
β + σ2

ǫ . Using the familiar matrix identity, [A + B′CB]−1 =

A−1 − A−1B′[C−1 + BA−1B′]−1BA−1 the previous equation implies

cov(Xi(T+1),Xj(T+1)|X) = [σ−2
µ + pTσ−2]−1 → 0, as T → ∞.

As a representation of the analyst’s belief, this last result would be completely unrealistic.

�

REMARK 3 Bayesian models used to represent space–time processes are substantially

more sophisticated than the simple one in the example. Nevertheless the loss of epistemic

uncertainty will occur over time and the impact of that losses needs to assessed as a standard

diagnostic test of the model. �

Section 4 will discuss the lessons learned from the examples in this section.

3 The main result

The following theorem contains the main technical result of this paper.

THEOREM 1 Let X be a normally distributed random variable with mean θ and variance

σ2. Then the conditional variance, var(X; |X| ≤ c) is an increasing function of c. �

When θ = 0, the result is easy to prove. It has also been shown that var(X; |X| ≤
c) < σ2 for any θ (Zidek and van Eeden, 2003). We present the proof in several steps which

begin with one that symmetrizes the problem.
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If var(X; |X| ≤ c) is an increasing function in c, then its derivative must be positive.

However proving that fact by a straightforward approach proves difficult because the rel-

evant quantities do not have easy–to–handle analytical forms. In particular, subtracting

the square of the conditional mean makes the expression of the conditional variance messy.

Instead we approach the problem by an indirect route that bypasses the need to examine

the conditional mean.

The alternative route relies on identically distributed and independent random vari-

ables, Y1 and Y2, each having the conditional distribution of X given |X| ≤ c. Clearly

2var(X; |X| ≤ c) = E(Y1 − Y2)
2. Thus the required monotonicity becomes that of

g(c) = E{(Y1 − Y2)
2}.

For notational simplicity, we replace the conditioning event by |X| ≤ c/
√

2. In addition,

without loss of generality, we assume θ > 0 and σ = 1. Given |X| ≤ c/
√

2, the conditional

density of X is found to be

φ(x − θ)I(|x| ≤ c/
√

2)

Φ(−θ + c/
√

2) − Φ(−θ − c/
√

2)

where φ(x) and Φ(x) are the density function and cumulative distribution function of the

standard normal distribution. Let Z be a standard normally distributed random variable.

The denominator can then be written as

P (|Z + θ| ≤ c/
√

2).

and the density is proportional to φ(x − θ) within the specified range.

Let

U = (Y1 − Y2)/
√

2 and V = (Y1 + Y2)/
√

2.

This transformation has Jacobian equal to 1 and the range of (u, v) is given by

{(u, v) : |v| < c − u, 0 < u < c}

and its mirror image with respect to the u = 0 axis. The joint density function of U and V

is (within the range specified earlier)

exp{−1
2 [u2 + v2 − 2

√
2θv + 2θ2]}

2πP 2(|Z + θ| ≤ c/
√

2)

and the marginal density function of U is, for 0 < u < c given by

h(u; c) = φ(u)
P (|Z +

√
2θ| ≤ c − u)

P 2(|Z + θ| ≤ c/
√

2)
.
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This density function is, for −c < u < 0 given by symmetry: h(u, c) = h(−u, c).

For any 0 < c1 < c2, let U1 and U2 be two random variables with distribution h(u; c1)

and h(u; c2) respectively. Our task now becomes showing that

g(c1) = E{U2
1 ) < g(c2) = E{U2

2 }.

We show this result is true in the following lemma.

LEMMA 1 There exists a u∗ between 0 and c1 such that

h(u∗, c1) = h(u∗, c2)

and (u − u∗){h(u, c1) − h(u, c2)} ≤ 0 for any u ≥ 0.

REMARK 4 Before proving this lemma, it is useful to note that, when such a u∗ exists,

we have

E{U2
1 } − E{U2

2 }

= 2

∫ u∗

0
u2{h(u; c1) − h(u; c2)}du + 2

∫ c2

u∗

u2{h(u; c1) − h(u; c2)}du

≤ 2(u∗)2
∫ u∗

0
{h(u; c1) − h(u; c2)}du + 2(u∗)2

∫ c2

u∗

{h(u; c1) − h(u; c2)}du

= 0.

Thus, the theorem is proved once this lemma is proved. �

Proof of Lemma 1. We first show that log h(u; c) is a decreasing function of u in the

range (0, c) for any given c > 0. This is straightforward because

log h(u, c) = −1

2
u2 + log{Φ(

√
2θ + c − u) − Φ(

√
2θ − c + u)}

+2 log P (|Z + θ| ≤ c/
√

2) − 1

2
log(2π)

and
d log h(u, c)

du
= −u − φ(

√
2θ + c − u) + φ(

√
2θ − c + u)

Φ(
√

2θ + c − u) − Φ(
√

2θ − c + u)
< 0.

Next, we claim that the above derivative at any given u is increasing in c. This claim is

equivalent to
φ(
√

2θ + c − u) + φ(
√

2θ − c + u)

Φ(
√

2θ + c − u) − Φ(
√

2θ − c + u)
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being a decreasing function of c, i.e. to the derivative of

log{φ(
√

2θ + c − u) + φ(
√

2θ − c + u)} − log{Φ(
√

2θ + c − u) − Φ(
√

2θ − c + u)}

being non-positive. For simplicity, we replace
√

2θ by θ and c − u by t. Then the function

becomes

w(t) = log{φ(θ + t) + φ(θ − t)} − log{Φ(θ + t) − Φ(θ − t)}

and we show that its derivative with respect to t is non-positive taking note of the fact that

both θ and t are positive.

For this goal, we compute the derivative with respect to t and find

w′(t) =
(θ − t)φ(θ − t) − (θ + t)φ(θ + t)

φ(θ + t) + φ(θ − t)
− φ(θ + t) + φ(θ − t)

Φ(θ + t) − Φ(θ − t)

=
θ{φ(θ − t) − φ(θ + t)}

φ(θ + t) + φ(θ − t)
− t − φ(θ + t) + φ(θ − t)

Φ(θ + t) − Φ(θ − t)

≤ (θ − t) − φ(θ + t) + φ(θ − t)

Φ(θ + t) − Φ(θ − t)
.

When θ − t ≤ 0, w′(t) is clearly negative. When θ − t > 0, we have

Φ(θ + t) − Φ(θ − t) ≤ 1 − Φ(θ − t) ≤ φ(θ − t)

(θ − t)

by the well-known inequality 1 − Φ(x) ≤ x−1φ(x) for any x > 0. This again implies that

w′(t) is negative.

To conclude, we have seen that for given 0 < c1 < c2 and θ > 0, both log h(u, c1) and

log h(u, c2) are decreasing functions of u. In addition,

∂h(u, c1)

∂u
<

∂h(u, c2)

∂u

for any u ∈ [0, c1].

Because the area under two density functions are equal, they must intersect at some u∗.

At the same time, because the rate of decrease of log h(u, c1) is always larger than that of

log h(u, c2), there can be at most one intersection between h(u, c1) and h(u, c2). This proves

Lemma 1 and subsequently also the main theorem. �

4 Discussion

The effect of additional information on the uncertainty about a random object X is difficult

to characterize even when that information comes in the form of an observed value of
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Z = I{|X| < c}. This paper has shown the naive expectation that decreasing c, and hence

increasing the amount of information about X, would decrease var(X; |X| < c) is shown in

Section 2 to be false in general. As well, we see in that section the reason why and that is

because the additional information can be in conflict with some feature of the model that is

thought to generate X. Thus the validity of the model is thrown into doubt. This discovery

leads to the conjecture that this is true in general.

Not true. In Section 3 we see the conjecture fails for an important family, the class

of normal distributions, making a general theory elusive. From a design perspective when

prediction of X is the inferential objective, one might ask if observing Z is worthwhile. The

answer to that is positive if cost is ignored since

var(X) − E[var(X;Z)] = var[E(X;Z)] > 0 (3)

except when X and Z are uncorrelated. Thus observing Z should reduce uncertainty

about X. Nevertheless, as the above examples show, the result could well be an increase

in uncertainty, the likelihood of that happening depending on the degree of correlation

between the predictor and the predictand, pointing anew to the new to select the predictor

Z optimally.

To conclude we return to the case alluded to in Section 1 where uncertainty U(X) and

information are regarded as equal, the latter being what is gained when X is observed and

all uncertainty about it is lost. Originally, the entropy in the distribution of X seems to have

been thought of in that way. Moreover Fisher’s information bears the same hallmark. There,

if Y has density f , the point θ̂ at which f(Y ; θ) or alternatively log f(Y ; θ) is maximized

would be the θ best supported by Y . Furthermore if the random score function X =

−∂ log f(Y ; θ)/∂θ is large at that point, Y would discriminate well between it and its local

neighbors at least. Since E(X) = 0, a large value of Fisher’s information I(θ) = var(X; θ),

which measures the aleatory uncertainty in the score function, says that observing X would

greatly reduce uncertainty about θ. Thus uncertainty is information in this case. Curiously,

the uncertainty about the maximum likelihood estimator as measured by its asymptotic

variance is approximately the reciprocal of the I(θ) = var(X; θ) where X is now computed

from that sample.

In practice, θ would be subject to epistemic uncertainty as well, suggesting an extension

of Fisher’s information: I = var(X) = E[I(θ)] + var[E(X; θ)] = E[I(θ)]. However this

version of I does seem to have been proposed elsewhere.
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5 Conclusions

The paper leaves us with a complex picture about the relationship between uncertainty and

information. Clearly the type of information and the type of uncertainty play a role in

determining that relationship. But as the variety of examples in this paper show, a general

theory seems elusive and further study is needed. Furthermore, it is clear that even the

simplest questions can lead to very challenging technical problems.

References

1. Basu, D. (1975). Statistical information and likelihood. Sankhyā, Ser A, 37, 1-71.
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