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ABSTRACT

This paper uses rth-order categorical Markov chains to model the probability of
precipitation. Several stationary and non-stationary high order Markov models are
proposed and compared using BIC. The number of parameters increases exponen-
tially by adding the Markov order. Several classes of high-order Markov models are
proposed which their increase of number of parameters are modest. The theory of
partial likelihood is used to estimate the parameters.
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1 Introduction.

This paper studies the Markov order of the 0-1 precipitation process (PN
from now on). Its genesis lies in agroclimate risk management and references to re-
lated work are given below. The paper develops a modeling strategy that can be used
for such things as calculating the likelihood of a long sequence on non-precipitation
days (drought). The same approach can be used for other climatological events such
as extreme temperatures, as shown in Chapter 10 of [9]. Likelihoods that can be
calculated with this approach can play a role in setting crop insurance premiums
and managing irrigation programs, which are attaining increasing importance as the
climate changes.

Many authors such as Anderson et al. in [2] and Barlett in [3] have developed
techniques to test different assumptions about the order of the Markov chain. For
example in [2], Anderson et al. develop a Chi-squared test to test that a Markov
chain is of a given order against a larger order. In particular, with it we can test
the hypothesis that a chain is Oth-order Markov against a 1st-order Markov chain,
which in this case is testing independence against the usual (1st-order) Markov
assumption. (This reduces simply to the well-known Pearson’s Chi-squared test.)
Hence, to “choose” the Markov order one might follow a strategy of testing Oth-
order against lst-order, testing lst-order against 2nd-order and so on to rth-order
against (r + 1)th-order, until the test rejects the null hypothesis and then choose
the last r as the optimal order. However, some drawbacks are immediately seen
with this method. To begin with, the choice of the significance level will affect our
chosen order. Moreover, the method only works for chains with several independent
observations of the same finite chain, a requirement that is certainly not met where
spatially correlated series are observed at multiple sites. Finally this theory does not
accommodate other explanatory variables such as for example the maximum daily
temperature.

Issues like this have led researchers to think about other methods of order
selection. Akaike in [1], using the information distance and Schwartz in [16] using
Bayesian methods develop the AIC and BIC, respectively. Other methods and
generalizations of the above methods have been proposed by some authors such as
Hannan in [7], Shibita in [17] and Haughton in [§].

Many authors have studied the order of precipitation processes at different
locations on Earth. Gabriel et al. in [6] use the test developed in Anderson et al.
[2] to show that the precipitation in Tel-aviv is a 1st-order Markov chain. Tong in
[18] used the AIC for Hong Kong, Honolulu and New York and showed that the
process is lst-order in Hong Kong and Honolulu but Oth-order in New York. In
a later paper, [19], Tong and Gates use the same techniques for Manchester and
Liverpool in England and also re-examined the Tel-aviv data. Chin in [4] studies
the problem using AIC over 100 stations (separately) in the United States over 25
years. He concludes that the order depends on the season and geographical location.
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Moreover, he finds a prevalence of first order conditional dependence in summer
and higher orders in winter. Other studies have been done by several authors using
similar techniques over other locations. For example, Moon et al. in [11] study this
issue at 14 location in South Korea.

This paper investigates the Markov order for a cold-climate region. The
Markov order of the precipitation in this region might be different due to a large
fraction of precipitation being being in the form of snowfall. The paper also drops
the homogeneity (stationarity) condition usually imposed in studying the Markov
order. In fact the model proposed here can accommodate both continuous (here
time and potentially geographical location and other explanatory variables) and
categorical variables (e.g. precipitation occurred/not occurred on a given day).

An issue with increasing the order of a Markov chain is the exponential in-
crease in number of parameters in the model. Here as a special case, we propose
models that increase with the order of Markov chain by adding only 1 parameter.
Other authors such as Raftery in [15] and Ching in [5] have proposed other methods
to reduce the number of parameters. The dataset used in this study contains more
than 100 years of daily precipitation for some stations. This allows us to look at
some properties of the precipitation process such as stationarity more closely.

The models used here are an extension of the logistic regression for the inde-
pendent data to dependent case. [14] investigates the estimation of the coefficients
of rth order Markov chains with seasonal terms (non-homogenous) using partial
likelihood and picking the model using BIC. It shows that the partial likelihood
performs very well in picking the true model, the partial likelihood estimates are
close to the true values and the distribution of the parameter estimates are close to
normal distribution.

The paper begins in Section 2 with an exploratory analysis of precipitation
data for the Province of Alberta, Canada. From there we turn in Section 3 to the
construction of a family of Markov statistical models for the binary daily precipita-
tion process. That leads in Section 4 to the model selection process. We give our
conclusions in Section 7.

2 Exploratory data analysis.

This section explores daily precipitation data collected over the years from
1895 to 2006 at 48 stations distributed over Alberta, Canada. Although we inves-
tigated other locations and report some of that work here, for brevity we highlight
those for Calgary, a site selected because of its comparatively long record of PN
measurements. For a more detailed exploratory analysis of Alberta’s climate vari-
ables, in particular similar plots for Banff see [12] and [13].

Figures 1 to 4 show plots for Calgary. Figure 1 plots the estimated 1st-order
transition probabilities py; (the probability of precipitation if precipitation occurs
the day before) and pp; (the probability of precipitation if it does not occur the



-3 -

day before). These transition probabilities are estimated using the observed data.
For example p;; for Jan 5th is estimated by nj;/n;, where ny; is the number of
pairs of days (Jan 4th, Jan 5th) with precipitation and n; is the number of Jan
5th’s with precipitation during the available years. Figure 2 shows similar plots for
estimated 2nd-order transition probabilities. Figure 3 gives the estimated annual
probability of precipitation for Calgary computed by dividing the number of wet
days of a year by the number of days in that year. The plot of the logit function
and the transformed estimated probability of precipitation in Calgary are shown in
Figure 4.

Before proceeding to develop statistical models in Section 3 for binary pre-
cipitation processes, we summarize the conclusions suggested by our exploratory
data analyses. First, we find that that the binary PN process is not temporally
stationary. in fact, Figure 1 shows the transition probabilities changing over time
and season. Figure 1 also suggests the transition probabilities change continuously
over time.

Although a lot of variation is seen in the higher order probabilities, a generally
continuous trend is observed. We see a periodic trend for the transition probabilities
over the course of the year; a simple periodic function seems appropriate for modeling
these probabilities.

Figure 1 suggests p1; and pg; differ over the course of the year. Therefore a
Oth-order Markov chain (independent) does not seem appropriate.

Figures 2 depict the plots for the pair pi11, po11 and for Poo1, Pro1- They have
considerable overlap over the course of the year. Therefore a 2nd-order Markov
chain does not seem necessary.

Figure 3 shows the estimated probability of precipitation for different years,
computed by averaging through the days of a given year. The median probability
over all the available years is plotted to see the trends better. The probability of
precipitation seems to differ from year-to-year. Moreover consecutive years seem to
have similar probabilities. Hence assuming that different years are identically dis-
tributed and independent does not seem reasonable. The probability of precipitation
seems to have increased over the past century for Calgary, possibly a manifestation
of climate change.

Finally, Figure 4 shows the plot of the logit function applied to the estimated
probabilities. Observe how the logit function transforms the values between 0 and
1 to a wider range in R and since it s an increasing function, its peaks occur at the
same times as the original values.

3 Statistical model.

Let Xy, X1, X5, - -+ be a discrete-time stochastic process, where X; takes value
in M;, a finite subset of R. Also assume strict positivity of the joint probabilities,
which means every finite chain up to time ¢ is possible. In order to model such
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Figure 1: The transition probabilities for the Calgary site. The dotted line repre-
sents pj; (the estimated probability of precipitation if precipitation occurs the day
before) and the dashed represents py; (the estimated probability of precipitation if
precipitation does not occur the day before.)
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Figure 2: a) The solid curve represents pi1; (the estimated probability of precipi-
tation if during both two previous days precipitation occurs) and the dashed curve
represents po11 (the estimated probability that precipitation occurs if precipitation
occurs the day before and does not occur two days ago) for the Calgary site. b)
The solid curve represents pgo; (the estimated probability of precipitation occurring
if it does not occur during the two previous days) and the dotted curve is pjp; (the
estimated probability that precipitation occurs if precipitation does not occur the
day before but occurs two days ago) for the Calgary site.
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Figure 3: Calgary’s estimated mean annual probability of precipitation calculated
from historical data.
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Figure 4: (a) The logit function: logit(z) = log(z/(1 — x)). (b) The logit of the
estimated probability of precipitation in Calgary for different days of the year.
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processes it is more natural and desirable to use the conditional probabilities of the
present given the past, thus requiring a parametric collection of functions to repre-
sent them. However one needs to introduce a statistical model for the conditional
probabilities that are consistent in Kolmogorov’s sense so that they actually corre-
spond to a unique discrete-time categorical stochastic process. This requirement is
fundamental for inference about these models. Meeting that requirement, we can
start with a known stochastic process and follow the conceptual steps below to a
generalization of logistic regression for categorical time series:

1. Start with a categorical stochastic process Xy, X1, -+ where X; takes a value
in M;. Fix an element m? in each M.

2. Find its joint densities: p; = P(Xo = g, -+ , X¢ = xy).
3. Find its conditional densities P, = P(X; = x| Xy 1 = 241, -+, Xo = 20).
4. Find for each t:

P(Xt = fL“t|Xt—1 =T 1, ,Xo = $0)

h, = .
CP(Xy =X =2, Xo = 20)

5. Transform the result using the inverse of a bijective transformation g : R — R*
(for example g(z) = exp(x) = g~ (x) = log(x)):

(l‘ JI): _I{P(Xt:$t|Xt—1:$t—1;"',X():,IO)}
9t (Zo, -+, X)) =g P(Xy=ml X,y =241, -, Xog=10)

!/
(xo,"' ,a:t,l,xt) EMO X X Mt,1 X Mt‘

The above shows how to start with a stochastic process, fixed elements m?
in each M; and a prescribed function g to get a unique family of functions {g;}.
[9] shows the converse is also true, i.e. an arbitrary collection of functions g; with
the above relations correspond to a unique categorical process. Thus we have the
following theorems, that are included for completeness.

Theorem 3.1 Suppose My, My,--- C R, |[My| = ¢; < o0, t =0,1,---. Let Fy :
My — R be the density of a probability measure on My and more generally for n =
1,..., Py(zo, 21, -+ ,Tpn_1,.) be a positive probability density on M, ¥(zg,- -+ ,x,_1) €
My x -+ x M,_q. Then there exists a unique stochastic process (up to distributional
equivalence) on a probability space (2,3, P) such that

P(Xn = xann—l =Tn-1,""" >X0 = .T()) = Pn(xlhmla e 7$n—17$n)-
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Theorem 3.2 Let g : R — RT a bijection. For every choice of probability density

pon M= {my,- - ,m,}, n>2, there exists a unique function f : M —{m;} — R,
such that
() 1 (1)
pimy) = )
1+ erMf{mﬂ h(l’)
h(z)
p(l‘) = x 7é my, (2)
1+ ZxEM—{Tm} h(l’)

where h = go f. Moreover, h(z) = p(x)/p(my). Inversely, for an arbitrary function
f:M—{mi} — R, the p defined above is a density function.

Example Consider the binomial distribution with a trials and probability of success
7 and the transformation g(z) = expaz. Then M = {0,1,--- ,a}. Let my = 0. Then
for x # 0

Fa) = g7 (h(a)) = Yo p(o)/p0) = tog () (L= /(1= )" =

og () + loxo/(1 - )}

The above theorems show how we can characterize discrete-time categorical
stochastic processes using free functions g; on a finite domain. In order to find a
parametric form for these function Hosseini in [9] proved the following theorem

Theorem 3.3 (Categorical Expansion Theorem) Suppose M; is a finite subset of R
with |M;| = ¢;, i =1,2,---,r. Letd; =¢; — 1,M =[[,_, .. ., M; and consider the
vector space of functions over R, V.= {f : M — R} with the function addition as
the addition operation of the vector space and the scalar product of a real number to
the function as the scalar product of the vector space. Then this vector space is of
dimension C' = Hi:1,~--,r ¢; and {z% - T Yo<iy<dy o 0<iv<d, Jorms a basis for it.

Hosseini used the above theorems to find parametric forms for all discrete-
time categorical stochastic processes and in particular rth-order Markov chains. In
the following we give a specific example of stationary binary 3rd-order Markov chains
with M, = {0,1, } for clarity.

Example 3.1 For the stationary binary (0-1) Markov chain of order r = 3 and
t > 3 and the fized transformation g : R — R*
There exist unique o parameters:
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(Xi=1Xeo1 =249, , Xo = 330)}
(X =0|Xio1 =221, -, Xo = 20)

= Oy + 01Xy + Qoxy_o + 3Tl¢_3

P
gt = 9_1{P

FQ12%_1T4_2 + Q3T _2X—3 + 13T 1T¢—3

F Q23T 1T4_2T4_3.

Conversely every collection of arbitrary o’s corresponds to a unique Srd-order sta-
tionary binary (0-1) Markov chain. If we take g : R — R™, g(x) = exp(x) then
g ' (x) =log(x) in the above.

An advantage of this linear form is the ability to estimate the parameters
using the partial likelihood as discussed by Kedem and Fokianos in [10]. Another
advantage is its capacity to allow other linear terms needed to build non-stationary
chains. For example, we can add cos(wt) to model seasonality. In the theory of
partial likelihood the covariate process is denoted by Z; ;. We denote the 0-1 pre-
cipitation process by Y; and discuss a few models in the following. For notational
simplicity we denote Y;_; by Y.

Examples of stationary Markov models of at most order 2:

o /,_1=1:
The probability of PN’s occurrence does not depend on the previous days’
states. In other words days are independent.

[ ] Zt—l = (1,Y1):
The probability of PN today depends only on the day before and given the
latter’s value, it is independent of the other previous days.

® thl = (1,Y2) :
The probability of PN given the information for the day before yesterday is
independent of other previous days, in particular yesterday! This does not
seem reasonable.

o Z, 1 =(1,Y'Y?):
This model includes both Y! and Y?2. One might suspect that it contains
all relevant information and therefore that it is the most general 2nd-order
Markov model. However, note that in the model, the transformed conditional
probability is a linear combination of the past two states:

logit{ P(Y = 1|lY',Y?)} = ap + au Y' + apY?,

which implies,

logit{ P(Y = 1|]Y' =0,Y? = 0)} = a,



logit{ P(Y =1|Y' =1,Y? =0)} = ag +

logit{ P(Y = 1|Y' =0,Y? = 1)} = ag + ay,

and
logit{P(Y =1]Y'=1,Y? = 1)} = ag + a1 + as.

We conclude that

logit{ P(Y = 1|]Y' =1,Y? =0)} — logit{ P(Y = 1]Y' =0,Y* = 0)}
= logit{P(Y =1[Y' = 1,Y?> = 1)} — logit{P(Y = 1|Y' =0,Y* = 1)}

= .

In other words, the model implies that no matter what value Y2 may have,
the differences between the conditional probabilities given Y! = 1 and given
Y1 =0 (in the logit scale) are the same.

[ ] Zt—l == (]_,YIYQ):
Among other things, this model implies that the conditional probabilities given
Y'=0,Y2=1),(Y'=1Y2=0)or (Y!=0,Y2?=0) are the same.

o Z, 1 =(1,YLY2YY?):
This is the full 2nd-order stationary Markov model with no restrictive assump-
tions as shown by Categorical Expansion Theorem.

Remark. The above explanations show that one must be careful about the assump-
tions made about any proposed model. Including or dropping various covariates can
lead to implications that might be unrealistic.

[14] investigates the estimation of the coeflicients of rth order Markov chains
with seasonal terms (non-homogenous) using partial likelihood and picking the
model using BIC. It shows that the partial likelihood performs very well in picking
the true model, the partial likelihood estimates are close to the true values and the
distribution of the parameter estimates are close to normal distribution.

3.1 Models for the 0-1 precipitation process.

In the light of Categorical Expansion Theorem 3.3, we know all the possible
forms of rth-order Markov chains for binary data. Since this theorem gives us linear
forms, time series following generalized linear models (TGLM) as discussed in [10]
provides a method to estimate the parameters. However, it is worthwhile to study
simpler models rather than the full model. For one thing, the full model contains a
very large number of parameters, making their estimation difficult. Not only that,
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interpreting those parameters proves more difficult than in their more parsimonious
alternatives.

We now introduce some processes that can be useful in developing simple
models for the precipitation process:

e Y, represents the occurrence of precipitation on day t. Here Y; is a binary
process with 1 denoting precipitation and 0 denoting its absence on day t.

o N, = 22:1 Y,_; represents the number of PN days in the past [ days.

e Seasonal processes (deterministic):

cos(wt) and sin(wt), w = —.

We can also consider higher order terms in the Fourier series cos(wnt) and
sin(wnt), where n is a natural number.

Some possibly interesting models present themselves when Z;_; is a covari-
ate process. The probability of precipitation today depends on the value of that
covariate process, and those processes might include:

e 7, 1 = (1,N! }). This model assumes that the probability of PN today only
depends on the number of PN days during [ previous days.

e Z, 1 = (1,N}!_,,Y, ;). This model assumes that the PN occurrence today
depends on the PN occurrence yesterday and the number of PN occurrences
during [ previous days.

o 7, 1 = (1,cos(wt),sin(wt), N\, Y;_1).
o 7,1 = (1,cos(wt),sin(wt), Y;_1).

o 7y 1= (1Y, ---,Y,,). This is a special case of Markov chain of order r.
No interaction between the days is assumed. In this model increasing the order
of Markov chain by one corresponds to adding one parameter to the model.

e 7, 1=(1,Y, 1, .Y, Yi 1Y, 5). In this model, the interaction between the
previous day and two days ago is included.

o 7, 1 = (1,cos(wt),sin(wt), Y;_1, -+ ,Y;). In this model, two seasonal terms
are added to the previous model.
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4 Comparing the models using BIC

This section uses the methods developed previously to find appropriate mod-
els for the 0-1 PN process. We use the PN data for Calgary for just five years, from
2000 to 2004. This restriction is in part to ensure that the parameter estimates are
current and hence, that the methodology developed here is of current value. In part
if is to cut down computational time, recognizing that even with the restriction, five
years yield quite a lot of daily process data. We compare several models using the
BIC criterion. The partial likelihood is computed and then maximized using the
“optim” function in “R”.

Using the method called “Time Series Following Generalized Linear Model”
as described by Kedem et al. in [10], applied to binary time series with the canonical
link function, we have:

P(Y; =1|Z,_1) = logit " (aZ,_,),

and,
P(Y; = 01Z,-1) = 1 — logit™" (aZ).

We conclude that the log partial likelihood is equal to:

N
> log P(Yi|Zy) =
t=1
Z log(logit " (aZ;—1)) + Z log(1 — logit™ ' (aZ;_1)).
1<t<N,Yi=1 1<I<N,Y;=0

To ensure that the maximum picked by “optim” in the R package is close to
the actual maximum, several initial values were chosen randomly until stability was
achieved.

In order to find an optimal model to describe a binary (0-1) PN process, we
can include several factors such as previous values of the process, seasonal terms,
previous maximum temperature values and so on. We have done this comparison in
several tables. The smallest BIC in the tables is shown by boldface.

Table 1 shows the constant process 1 and N!, the number of wet days during
[ previous days, as predictors. Note that N! = Y. The BIC criterion in this case
picks the simplest model which includes only the previous day. Hence a 1st-order
Markov chain is chosen among these particular [th-order chains.

In Table 2 we see a refinement of the previous model, where now in addi-
tion to the number of days we add information about whether or not precipitation
occurred during the previous day. More precisely it compares models with predic-
tors: (1,Y'and N'), I =1,2,---,30. Since Y! = N the first row is obviously an
over—parameterized model. The smallest BIC corresponds to the model (1,Y!, N28).
However, the primary gains are seen in going from N'! to N® and in fact in going
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Model: Z;_4 BIC parameter estimates

(1,N1) 2268.1 (—1.03,1.26)
(1,N?) 2294.5  (—1.09,0.73)
(1,N3) 2293.4  (—1.18,0.56)
(1, N1) 2340.5 (—1.35,0.15)
(1, N15) 2342.6  (—1.36,0.14)

Table 1: BIC values for models including N!, the number of precipitation days
during the past [ = 1,...,15 days for the Calgary site.

Model: Z;_4 BIC parameter estimates

( ) 2275.6  (-1.04,-0.40, 1.67)
( ) 22702 (-1.10, 0.94, 0.255)
(LLY!,N3) 22583 (-1.21, 0.88, 0.279)
( ) (- )
( ) (- )

22475 (-1.32, 0.91, 0.221
2248.2  (-1.34, 0.95, 0.187

( ) 22462 (-1.60, 1.10, 0.062)
(1,1, N28) 22447 (-1.62, 1.10, 0.061)
( ) 22454 (-1.62, 1.10, 0.059)
( ) 22462 (-1.62, 1.11, 0.057)

Table 2: BIC values for models including N', the number of wet days during the
past [ days and Y'!, the precipitation occurrence of the previous day for the Calgary
site.

beyond | = 5 we see some inconsistency and little change. Thus we have confined
our subsequent modeling to the case of [ < 5. Note that the model (1, Y, N°) shows
a subsequent improvement over (1,Y?'). Hence by adding the number of PN days
to the simple model (1,Y), an improvement is achieved. However, we might expect
seasonality to play an important role and this we now investigate.

Thus Table 3 compares models with predictors (1, N',COS, SIN) that cap-
ture the seasonality in the precipitation pattern over a year through their harmonic
terms. By including both the sine and the cosine, the model allows for phase changes.

Note its superiority over its simpler cousin (1, Y!), and even over (1,Y!, N%®).
Furthermore these results suggest that nothing is gained by counting the number of
precipitation days beyond the previous day, once seasonality is included.

But what if in addition to seasonality and precipitation day counts, we add
knowledge of what happened on the previous day? Table 4 includes Y!, sea-
sonal terms and N' for [ = 1,2,---,10 as predictors. The model with predictors
(1,Y!, N5, COS, SIN) which includes a combination of seasonal terms and number
of precipitation days has the smallest BIC so far. It seems that once it is freed of
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Model: Z;_4 BIC parameter estimates

(1, N,COS,SIN) 2222.5 (-1.00, 1.10, -0.59, 0.100)
(1, N2,COS,SIN)  2254.6 (-1.02, 0.59, -0.56, 0.097)
(1, N3,COS,SIN)  2260.1 (-1.07, 0.44, -0.54, 0.096)

(1, N'9,COS,SIN) 23022 (-1.07, 0.14, -0.52, 0.107)

Table 3: BIC values for models including N', the number of wet days during the
past [ =1,...,10 days and seasonal terms for the Calgary site.

Model: Z;_1 BIC parameter estimates

(1,YY, N1, COS,SIN)  2230.0 (-1.00, -2.31, 3.41, -0.589, 0.0999)
(1,YY, N2, COS,SIN) 22292 (-1.03, 0.977, 0.0997, -0.576, 0.0985)
(1,Y', N3 COS,SIN)  2224.8 (-1.10, 0.895, 0.156, -0.546, 0.0946)
(1,Y, N4 COS,SIN)  2222.1 (-1.14, 0.89, 0.147, -0.525, 0.0941)
(1,Y, N5, COS,SIN)  2221.7 (-1.16, 0.922, 0.124, -0.515, 0.0934)
(1,YY, N6, COS,SIN) 22233 (-1.16, 0.959, 0.0954, -0.517, 0.0946)
( ) (-

( ) (-

( (-

( (-

LYY, N7,COS,SIN) 22237 (-1.17, 0.978, 0.0822, -0.513, 0.0947)
1LY, N8 COS,SIN) 22247 (-1.16, 0.997, 0.0682, -0.515, 0.0945)
1L,Y!, N9, COS,SIN) 22255 (-1.16, 1.0129, 0.0582, -0.515, 0.0961)
LYY, N COS,SIN) 22260 (-1.16, 1.026, 0.0502, -0.517, 0.0958)

Table 4: BIC values for models including N, the number of PN days during the
past [ = 1,...,10 days, Y'!, the precipitation occurrence of the previous day and
seasonal terms for the Calgary site.

its responsibility to cover for Y'!, N' is able to bring valuable additional information
into play and thus improve the model, N° making the key contribution, presumably
because this agrees roughly with the synoptic scales of meterological events that
generate precipitation. However both the seasonal terms and the number of precip-
itation days prior to the day contribute to the statistical representation of “weather
conditions”. This is because climate has natural cycles throughout the year that
can help predict weather on a particular day of the year. These natural cycles are
modeled by the periodic functions COS and SIN. By looking at a short period
prior to the current day (short-term past), we are able to learn about those weather
conditions. At the same time, the best predictors (seasonal or short-term past) are
important or necessary will depend on factors such as location.

We next investigate the effect of the order of a Markov process model used
in conjunction with varying numbers of previous day indicators of precipitation or
no-precipitation. More precisely Table 5 compares models with predictors ranging
from (1,Y1') to (1,Y',---,Y7). The first model is a 1st-order Markov chain and
the last one is a Tth-order chain. The optimal choice proves to be : (1,Y1, Y2 Y?3).
Comparing this table to Table 2, we see that (1,Y? N3) is superior to (1,Y?),
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Model: Z;_4 BIC parameter estimates
1,YhH 2268.1 1.03, 1.27)

( (-

(1,Y1,7?) 2270.2  (-1.11, 1.20, 0.23)

(1,YLv2v3) 2263.3 (-1.21,1.19, 0.140, 0.410)

(L,YL, .- YY) 22639 (-1.28, 1.16, 0.133, 0.334, 0.281)

(L,YL,... )Y®) 22685 (-1.32, 1.15, 0.121, 0.328, 0.232, 0.192)

(1YY ... Y% 23354 (-1.34, 1.15, 0.0837, 0.357, 0.213, 0.135, 0.115)
(LYl ... )YT) 2286.7 (-1.51, 1.33,-0.113, 0.378, 0.418, 0.204, -0.0050, 0.214)

Table 5: BIC values for Markov models of different order with small number os
parameters for the Calgary site.

Model: Z;_4 BIC parameter estimates

(1,COS,SIN,Y?!) 2222.6 (-1.0,-0.5, 0.1, 1.1)

(1,COS,SIN,Y! Y?) 2229.1 (1.0, -0.5, 0.1, 1.0, 0.1)
(1,COS,SIN, Y Y2, Y3) 22304 (-1.1,-0.5, 0.1, 1.0, 0.02, 0.3)
(1,COS,SIN,Y!, ... Y*) 22473 (-1.1,-0.5, 0.1, 1.0, 0.03, 0.2, 0.15)
(1,COS,SIN,Y' ... [ Y®) 22434 (-1.3,-0.4, 0.2, 1.4,-0.4, -0.1, 1.0, -0.15)
( 1) (-

( YT) (-

1,C08,SIN,Y!, .-, 2501.6  (-1.2,-1.5, 0.4, 0.2, 0.8, 0.9, 0.9, -0.6, -0.2)
1,COS,SIN, Y, -, 2447.3  (-1.1,-0.2, 0.07, 0.8, -0.02, 0.3, 0.4, -0.07, 0.4, -0.3)

Table 6: BIC values for Markov models with different order plus seasonal terms for
the Calgary site.

(1,Y1Y?) and (1,Y!, Y2 Y3). Note that (1,Y', N3) is equivalent to (1,Y*' Y2 +
Y3). Hence, including Y2 and Y? and giving them the same weight is better than
not including them, including one of them or including both of them.

Our Markov order analysis continues, but now with seasonality thrown in.
Table 6 compares models with different Markov orders plus seasonal terms. The
model (1,Y!, COS,SIN) is the winner. Hence, whether we include the seasonal
terms or not, the model that only depends on the previous day is the winner.

Table 7 shows the results of further analysis of seasonality where we consider
the possibility of other harmonics in the precipitation cycles over the year. It turns
out that the model with (1,Y!, COS) is the optimal model so far - surprisingly one
term seems sufficient to model the seasonal nature of the process. Table 8 compares
all stationary 2nd-order Markov models. The smallest BIC corresponds to (1,Y!).

Table 9 compares all 2nd-order Markov chains with a seasonal COS term.
The model (1,Y!, COS) proves to be the winner.

Table 10 also includes the maximum and minimum temperature of the day
before, as predictors of some of the models which performed better in the above
tables. We have also included the annual intercepts A!,--., A5 for the 5 years
under investigation. Finally, we have included the model (1,Y?* N° COS). This
model has a combination of the seasonal term C'OS and the short-term past process
N?®, which did best when combined with the seasonal terms and Y*! in Table 4. It
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Model: Z;_4 BIC parameter estimates

(1,C0S) 2322.7  (-0.556, -0.717)

(1, SIN) 2424.3  (-0.523, 0.115)

(1,COS,SIN) 2327.3  (-0.568, -0.738, 0.119)

(1,Y1,COS) 2216.9 (-1.00, 1.10, -0.587)

(1,Y',SIN) 2273.9  (-1.03, 1.26, 0.0933)

(1,Y1,COS,SIN) 2222.6  (-1.004, 1.102, -0.589, 0.100)
(1,Y',COS,SIN,COS2) 2229.7  (-1.00, 1.10, -0.586, 0.0998, 0.0247)

(1, Y1 COS,SIN,SIN2) 2230.0  (-1.00, 1.10, -0.590, 0.101, 0.0125)

(1, Y1 COS,SIN,C0OS2,SIN2) 2237.2 (-1.01, 1.11, -0.575, 0.0978, 0.0236, -0.0101)

Table 7: BIC values for models including seasonal terms and the occurrence of
precipitation during the previous day for the Calgary site.

Model: Z;_4 BIC parameter estimates
(1) 2419.6  (-0.528)

(1, Y1) 2268.0 (-1.04, 1.27)

(1,Y?) 2392.8  (-0.76, 0.590)
(1,Y1,7?) 2270.2  (-1.11, 1.20, 0.26)
(1,Y1Y?) 2335.5  (-0.78, 1.13)

(1, Y1 Y1y?) 2272.7  (-1.04, 1.11, 0.28)
(1,Y2,Y1Y?) 2342.3  (-0.76, -0.11, 1.22)

(1, YL Y2 viy?) 2277.7 (-1.10, 1.18, 0.23, 0.05)

Table 8: BIC values for 2nd-order Markov models for precipitation at the Calgary
site.

Model: Z;_4 BIC parameter estimates
(1,C0S8) 2322.7  (-0.57,-0.74)

(1,CO8,Y1) 2216.8 (-1.0, -0.59, 1.10)
(1,C08,Y?) 2317.4  (-0.71, -0.68, 0.37)
(1,CO8,Y'Y?) 2223.5  (-0.76, -0.62, 0.90)
(1,CO8, Y, Y?) 2276.1  (-1.0, -0.57, 1.08, 0.10)
(1,CO8, Y Y1lY?) 2223.9  (-1.0, -0.58, 1.0, 0.12)
(1,CO8,Y2,Y'Y?) 2280.9  (-0.70, -0.63, -0.24, 1.0)
(1,CO8, Y1, Y2, YlY?) 2231.0 (-1.0,-0.57, 1.0, 0.08, 0.04)

Table 9: BIC values for 2nd-order Markov models for precipitation at the Calgary
site plus seasonal terms.
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Model: Z;_4 BIC parameter estimates

(1,CO8,Y1) 2216.8 (-1.0, -0.59, 1.10)

(1,YY,COS,MT") 2221.7  (-0.84, 1.0, -0.74, -0.01)
(1,YL,COS,mt!) 2224.2  (-1.0, 1.0, -0.65, -0.005)

(1,YL,COS, MT*, mt') 2227.4  (-0.65, 0.99, -0.67, -0.025, 0.02)
(1,YL,COS, AL, ...  AD) 2241.2  (1.1,-0.5,-0.9, -1.2, -1.1, -1.0, -0.7)
(1,YY, N5, COS,MT") 2297.3  (-2.1, 0.9, 0.4, 0.6, 0.2, 0.04)
(1YY, N5, COS,SIN,MT* mt') 2516.8 (1.4,0.04,0.2,0.7, 0.8, -0.2, 0.3)

(1, YL, N5, COS, MT", mt') 2393.9 (1.4, 0.7,-0.1,-0.5, 0.5, -0.1, 0.2)
(Y1, N5 COS,MT* At ... [ A%)  2697.1 (1.2,-0.64,-2.0,-0.10, 2.0, 1.2, 2.2, 1.2, 1.8)
(Y, N5 COS, A, ...  AD) 2447.1 (0.1, 0.1, -0.7, -0.39, -0.01, -0.2, -0.9, -1)
(1, Y, MTY) 2251.5  (-1.2, 1.3, 0.021)

(1,Y, N5,COS) 2215.8 (-1.1, 0.9, 0.1, -0.5)

(1,Y, N5, COS,MT") 2223.8 (-1.2, 0.9, 0.1, -0.4, 0.0)

Table 10: BIC values for models including several covariates as temperature, sea-
sonal terms and year effect for precipitation at the Calgary site for the five years
under investigation, 2000-2004.

turns out that including M7T and mt does not improve the BIC as well as does the
annual intercept terms. However, (1,Y?!, N°, COS) has the smallest BIC in all the
models, which is a seasonal Markov chain of order 5 with only 4 parameters. Also
the simpler model (1,Y?, COS) has a BIC close to that of (1,Y!, N5 COS).

5 Changing the location and the time period.

This section investigates the robustness of our findings to changes in the five
time period and monitoring site. More specifically we examine several models seen
in the previous section by changing the five year time period from that studied there,
to 1990 to 1994 in one case and the site from Calgary to Medicine Hat in another.
Table 11 presents the results for the new time period, and Table 12 , for the new
site.

For the new time period (Table 11) model (1,Y!, COS) has the smallest BIC.
In fact particular the BIC for this model is smaller than the BIC for (1, Y, N° COS),
which has the smallest BIC for Calgary 2000-2004. However (1,Y! COS) ranked
second in the latter case, so in fact, the results change little. Including the maximum
and minimum temperature to the model increases the BIC again as it did in the
previous section.

When we change the location to Medicine Hat, (Table 12) the smallest BIC
corresponds to (1, Y, COS). However, several models have very similar BIC values.
Once again, including the maximum and minimum temperature increases the BIC
here.

In all the three cases Calgary 2000 — 2004, Calgary 1990-1994, and Medicine
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Model: Z;_4 BIC parameter estimates

(1, Y1) 2312.7  (-0.93, 1.3)

(1,Y1Y?) 2318.8  (-0.97, 1.2, 0.13)

(1,YL,COS8) 2228.8 (-0.86, 1.03, -0.71)

(1,Y!, N%) 2303.3  (-1.17, 1.012, 0.17)

(1,Y1 N1O) 2287.9  (-1.6, 1.01, 0.13)

(1, Y1 N5) 2282.7  (-1.5, 1.04, 0.10
(1,Y',COS,SIN) 2231.9  (-0.85, 1.03, -0.71 , 0.15)
(1,YL, N5 COS) 2236.4  (-0.86, 1.03, 0.004, -0.70)
(1,Y', N5 SIN) 2307.8  (-1.2, 1.01, 0.16, 0.12)

(1, Y1 N5,COS,SIN)  2239.4 (-0.85, 1.03, -0.004, -0.72, 0.15)
(1, Y1 N0 ,COS) 2236.4  (-0.84, 1.03, -0.002, -0.72, 0.15)
(1,YL, N9 COS,SIN) 2239.4 (-0.85, 1.03, -0.002, -0.72, 0.15)
(1, Y1, N3, COS MTl) 2244.3  (-0.43, 1.04, -0.096, -1.07, -0.021)
(1,YL, N5 COS, mt!) 2244.1  (-0.91, 1.01, 0.03, -0.58, 0.006)

Table 11: BIC values for several models for the binary process of precipitation in
Calgary, 1990-1994

Model: Z;_4 BIC parameter estimates

(1, Y1) 2202.9  (-1.138, 1.094)

(1,Y1Y?) 2207.9  (-1.183, 1.051, 0.181)

(1,Y! N?) 2203.6  (-1.275, 0.921, 0.119)

(1, N1O) 2228.9  (-0.858, 1.036, -0.712)

(1,Y!, N15) 2200.5  (-1.420, 0.980, 0.065)

(1,1 N29) 2202.5  (-1.421, 1.008, 0.048)

(1,YL,COS) 2201.2 (-1.134, 1.067, -0.224)
(1,Y',COS,SIN) 2202.9  (-1.132, 1.052, -0.225, 0.177)
(1,YY, N5,COS) 2203.9  (-1.252, 0.924, 0.101, -0.201)

(1, Y1 N® SIN) 2206.6  (-1.263, 0.922, 0.109, 0.158)
(1,Y', N5, COS,SIN)  2206.6 (-1.239, 0.925, 0.091, -0.204, 0.163)
(1,4 N10 ,COS) 2201.9  (-1.336, 0.958, 0.073, -0.183)

(1, Y, N9 COS,SIN) 2205.1 (-1.311, 0.958, 0.065, -0.187, 0.151)
(1,Y* N5, COS MTl) 2306.5  (-1.455, 2.099, -0.130, 0.041, 0.004)
(1, Y, N5,COS,mt!) 2211.1  (-1.238, 0.937, 0.087, -0.267, -0.005)
(1,4 N15 ,COS) 2202.7  (-1.363, 0.981, 0.053, -0.175)

Table 12: BIC values for several models for precipitation occurrence in Medicine
Hat, 2000-2004
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Figure 5: The circles represent pj; (the estimated probability of precipitation if
precipitation occurs the day before) and the crosses represent pp; (the estimated
probability of precipitation if precipitation does not occur the day before.) The
fitted transition probabilities are also plotted.

Hat 2000-2004 (1,Y',COS) is either optimal or the second to the optimal (using
BIC) pointing to it as the best choice. To validate that choice, we repeated our
analysis for Calgary over a long time period of close to 100 years. The same simple

model (1,Y! COS) proved optimal.

6 Applying the model

At first we use the Calgary data from 1900 to 2000 and fit the optimal model with
covariates Z; 1 = (1,Y!,COS). Then we compare the fitted 1st-order transition
probabilities with the calculated transition probabilities using the historical data.
Figure 5 shows a good fit. However the peak of the precipitation season is somewhat
underestimated.

Next we show how the approach developed above can be used in applications.
This time we use the data for Calgary site from 1980 to 2000. Using BIC shows the
superiority of the model Z; 1 = (1,Y;_1, 1) to the above discussed models again. We
use the developed methodology to compute two probabilities:

e 7, : The probability of no precipitation in the first week of October at the
Calgary site.

e 75 : The probability of at least 5 days without precipitation in the first week
of October at the Calgary site.

The first day of October is the 275th day of the year in a leap year and the
274th day of the year in a non-leap year. We compute the probabilities for the week
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Covariate Theoretical sd Experimental sd

1 0.033 0.034
y! 0.051 0.057
coS 0.037 0.032

Table 13: Theoretical and simulation estimated standard deviations for extremely
cold process PN(t) at the Calgary site.

between 274th day and 281th day which corresponds to the first week of October in
a non-leap year. We prefer this option to computing the probability for the actual
first week of October, since this corresponds better to the natural cycles. Of course
with a little modification one could compute the probability for the first week of
October, for example by introducing a probability of 1/4 for being in a leap year.

We compute the standard deviations once using simulations by generating
chains from the fitted model with covariates (1,Y?, COS), and once by computing
the partial information matrix, Gy, using partial likelihood theory. The results are
given in Table 13. The variance-covariance matrix calculated using partial likelihood
theory is given below:

0.0011  —0.0011 0.0000
—0.0011 0.0026  0.0003
0.0000  0.0003 0.0013

We also find the variance-covariance matrix using simulations. To do that
we generate 50 chains over time using the estimated parameters. The variance-
covariance matrix using the simulations is given by:

0.0011  —0.0014 —0.0001
—0.0014 0.0033  0.0007
—0.0001  0.0007  0.0012

We see that the simulated variance-covariance matrix has close values to the par-
tial likelihood, all entries having the same sign. We also look at the distribution
of the estimators using the 50 samples. Figure 6 shows the parameter estimates
approximately follow a normal distribution.

To estimate the desired probabilities, we generate samples (10000) from the
parameter space using the mean of the parameters and variance-covariance matrix
from a multivariate normal. To fix ideas suppose we want to compute the proba-
bility of no frost between (and including) the 274th day and the 280th day of the
year. For every vector of parameters, we then compute the probability of observing
(0,0,0,0,0,0,0) exactly once given it was dry on the 273th day and once it wet. In
other words we compute

P(Y(274) =0,--- ,Y(281) = 0|Y(273) = 1),
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betal beta3 beta3

Figure 6: Normal curved fitted to the distribution of 50 samples of the estimated
parameters.

and
P(Y(274) =0,---,Y(281) = 0|Y(273) = 0).

We also use the historical data to estimate py = P(Y(273) = 1). Then the desired
probability would be

P(Y(274) =0,--- ,Y(281) = 0) =
poP(Y(274) = 0,--- Y (281) = 0]Y(273) = 1) +
(1 —po)P(Y(274) =0,---,Y(281) = 0|Y(273) = 0)

Then in order to get a 95% confidence intervals we use (¢(0.025), ¢(1—0.025)), where
q is the (left) quantile function of the vector of the probabilities.

Using the historical data, we obtain py = P(Y(273) = 1) = 0.428. Then for
every parameter generated from the multivariate normal with mean and the above
variance-covariance matrix we can estimate the two probabilities 71 and m. We
sample 10000 times from the multivariate normal, compute 10000 probabilities and
take the 0.025th and 0.975th (left) quantiles to get the following confidence intervals
for m; and 7y respectively:

(0.115,0.141),

and
(0.577,0.624).

If we use the simulated variance-covariance matrix, we’ll get the following confidence

intervals for m; and 9
(0.115,0.141),
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and
(0.579,0.622),

which are very similar to the aforementioned intervals.

7 Summary and conclusions.

In all the three cases Calgary 2000-2004, Calgary 1990-1994, and Medicine
Hat 2000-2004 (1,Y',COS) is either optimal or the second to the optimal (using
BIC) pointing to it as the best choice. To validate that choice, we repeated our
analysis for Calgary over a long time period of close to 100 years. The same simple
model (1,Y!, COS) proved optimal.

This seems surprising since the absence of the SIN term in the model means
that the model does not allow for phase changes. However, the presence of the
COS only with a negative coefficient, agrees with what we see in Figure 4. That
figure shows that the likelihood of precipitation is low at the beginning of the year,
maximized in the middle and finally low at the end. While the shape of the cosine
may not be ideal, it captures the precipitation likelihood pattern very parsimoniously
with just a single parameter, its amplitude, making it attractive by the BIC criterion.

The work reported in this paper has focussed on a single site to identify good
models. However, the precipitation is a space-time field. Current work is directed
at the problem of modeling the spatial dependence between sites, and mapping that
field between monitoring sites to give an integrated picture of the overall risk of such
things as drought.
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