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ABSTRACT

This paper proposes using rth-order categorical Markov chains to study the oc-
currence of extremely high (above a threshold) and low temperatures (below zero).
Several stationary and non-stationary higher order Markov models are proposed and
compared using BIC. Partial likelihood theory is used to estimate the parameters
of these models. The models are then used to build confidence intervals for the
probability of a frost-free period in Medicine Hat.

Keywords: binary Markov processes; temperature model; frost; Markov model se-
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1 Introduction

This paper develops and demonstrates use of rth-order categorical Markov
chains theory developed in [5] to find models for extreme temperature events. A
fundamental premise is that temperature itself, which could be handled by standard
Gaussian space-time models, is not of specific interest. Instead its dichotomized
values play the central role. For example in agroclimate risk analysis and manage-
ment, the genesis of this paper, any temperature below zero destroys crops. Likewise
weather derivatives, which may be created as part of a risk management insurance
problem will be set on the attainment or not of a specific target-value stipulated in
the contract. Here we consider both low and high temperatures.

The paper develops a modeling strategy that can be used for such things as
calculating the likelihood of a long sequence of high temperature days that can, com-
ing at the wrong time of the growing season, reduce crop yield. The same approach
can be used for other climatological events, and in fact it was for precipitation in
Chapter 4 of [2]. Likelihoods that can be calculated with this approach can play a
role in setting crop insurance premiums and managing irrigation programs, which
are attaining increasing importance as the climate changes.

The models used here are an extension of the logistic regression for the inde-
pendent data to dependent case. [5] investigates the estimation of the coefficients
of rth order Markov chains with seasonal terms (non-homogenous) using partial
likelihood and picking the model using BIC. It shows that the partial likelihood
performs very well in picking the true model, the partial likelihood estimates are
close to the true values and the distribution of the parameter estimates are close to
normal distribution.

Throughout this paper, temperature is measured in degrees centigrade. We
call a day with minimum temperature (mt) less than zero “extremely cold” and
denote it by e. Thus:

() = 1 mt(t) <0 (deg C)
YT 0 mtt) >0 (deg ©)

Taking 0 (deg C) to be the cut-off for low temperature seems reasonable in
the absence of any other considerations, since it is the usual definition of a frost. In
agriculture, where most plants contain a lot of water this can be be considered as an
important cut-off. No seemingly natural cut-off like that for minimum temperature
exists for extremely high temperature.

Obviously that cut-off will depend on the purpose of the model. In farming,
the various crops have different tolerances to hot or cold weather, depending in part
on soil conditions. Clearly the definition of extreme may need to depend on the
time of the year or location.

Ralph Wright (personal communication) from the Alberta Agriculture Food
and Rural Development (AAFRD) made these points more concretely when he said



-2 -

about droughts that: “Drought is really defined by the impact that the moisture
deficit has on a specific use or uses. Its definition can vary both with time of year
and from place-to-place. Drought can be short-term or long-term. For example,
one month of hot dry weather can significantly reduce crop yields, despite the fact
that normal amounts of precipitation have been received over the past year. On the
other hand, crops may do fine in dry weather conditions if precipitation has been
received in a timely manner and temperatures have been favorable. However under
the same conditions, a dam operator in the same area may have severe shortages in
the reservoir and declare drought like conditions (e.g. with low winter snow-fall and
poor spring run-off). You will need to define your drought based on whom or what
is being impacted by the water shortage.”

Since we do not have any standard definition of an extremely hot day, we
use the data to find a plausible choice for the purpose of describing our modeling
approach, the central feature of this paper. For that purpose we rely on quantiles
since they have long been used to characterize extreme events. In our application,
we pick somewhat arbitrarily, the global spatial /temporal 95th percentile of ¢ = 27
(deg C) to dichotomize the data and define a binary process of (hot)/(not hot) for
temperature. This value is calculated using data from 25 stations over Alberta,
which had daily maximum temperature (M7T') data from 1940 to 2004. That choice
could be made more incisively once specific objectives have been specified in a specific
context. That percentile turns out to be . Moreover, we chose a global quantile
assuming the definition of a hot day should be the same over the province and
across the years. Then we define the binary process of extremely hot temperature
as:

?

E(t) = 1 MT(t) >q
|0 MT(t) <q

where ¢ = 27 (deg C) here.
In order to study extreme events (e.g. for MT') three approaches are possible:

1. Model the whole daily MT process and use that to infer the extremes. For
MT, we have shown that a Gaussian distribution fits the daily values well.
However, in the tails, usually of paramount concern, the fit does not do well
as shown in the qq-plots in [4]. Another difficulty with this approach is picking
a covariance function to model the covariance over time. Also in [2], Hosseini
showed that even though two distributions are very close in terms of over-
all quantile distance, they might not be very close in terms of tail quantile
distance. This shows in order to study extremes (for example extremely hot
temperature) if we use a good overall fit, our results might not be reliable.

2. Use a specified threshold and model the values exceeding the threshold. This
approach has several drawbacks. Firstly we cannot answer the question of how
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often or in what periods of the year the extremes happen. This is because we
model the actual extreme values and ignore the non-extreme values. Secondly,
strong assumption of independence is needed for this method. Thirdly we need
to pick the threshold high enough to make the model reasonable. This might
not be an optimal threshold from a practical point of view.

3. Based on a real problem, use a threshold to define a new binary process of
(extreme)/(not extreme) values and then model that binary process. This
is the method we use and it does not have the issues mentioned in 1 and 2
because the threshold is not taken to satisfy some statistical property and we
make few assumptions about the binary chain. In any case, we introduce a
new method to investigate this chain.

2 rth-order Markov models for extreme minimum
temperatures

This section looks for appropriate models for the binary process e(t) of
cold/not cold temperature days. This is a binary process and the Categorical Ex-
pansion Theorem [2] gives the form of all such rth-order Markov chains. Here we
give an example.

Example 2.1 For the stationary binary (0-1) Markov chain of order r = 3 and
t > 3 and a fized transformation g : R — R*
There exist unique o parameters:

(Xt = 1|Xt—1 = Tt-1," " 7X0 — l’o)
(Xe =0[X; 1 =21, , Xo = 29)

=g+ Q1T—1 + XaTy—2 + Q3Ty_3

P
gt = 971{})

FQ12T1T¢—9 + Qo3Ty_2T43 + A13T4_1T¢—3

+Q1931 104 _2T¢_3.

Conversely every collection of arbitrary «’s corresponds to a unique Srd-order sta-
tionary binary (0-1) Markov chain. If we take g : R — R then g~'(z) = log(z) in
the abowve.

An advantage of this linear form is the ability to estimate the parameters using
the partial likelihood as discussed by Kedem and Fokianos in [3]. Another advantage
is its capacity to allow other linear terms needed to build non-stationary chains. For
example, we can add cos(wt) to model seasonality. In the theory of partial likelihood
the covariate process is denoted by Z;_;. We denote the 0-1 precipitation process
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by Y; and discuss a few models in the following. For notational simplicity we denote

Here we also consider other covariates such as the minimum temperature of
the previous day, two days ago as well as seasonal covariates (deterministic). The
next subsection uses graphical tools and exploratory techniques to investigate the
properties the model should have. Then we use the BIC criterion and compare sev-
eral proposed models. We use partial likelihood techniques to estimate parameters
as proposed by Kedem et al. in [3].

2.1 Exploratory analysis for binary extreme minimum tem-
peratures

Here we perform an exploratory analysis of the binary process e(t) using two stations
for this purpose, Banff and Medicine Hat which have data from 1895 to 2006. The
transition probabilities are computed from the historical data considering years as
independent observations. The results are summarized a follows:

e Figures 1 and 2 plot the probability of a freezing day over the course of a
year for the Banff and Medicine Hat stations, respectively. A regular seasonal
pattern is seen. Medicine Hat seems to have a much longer frost-free period.

e Figures 3 and 4 plot the estimated transition probabilities, py; and p;; for
the Banff and Medicine Hat stations. If the chain were a Oth-order Markov
chain then these two curves would overlap. This is not the case and Markov
chain at least of 1st-order seems necessary. In the pg; curve for both Banff and
Medicine Hat, high fluctuations are seen at the beginning and end of the year
which corresponds to the cold season. This is not surprising because there are
very few pairs in the data with a freezing day followed by a non-freezing day
in a cold season in Alberta.

e In Figure 4, pj; is missing for a period over the summer. This is because no
freezing day is observed over this period in the summer and hence p;; could
not be estimated.

e Figures 5 and 6 give the plots for the 2nd-order transition probabilities. They
overlap substantially and hence a 2nd-order Markov chain does not seem to
be necessary.
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Figure 1: The estimated probability of a freezing day for the Banff site for different
days of a year computed using the historical data.
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Figure 2: The estimated probability of a freezing day for the Medicine Hat site for
different days of a year computed using the historical data.
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Figure 3: The estimated lst-order transition probabilities for the 0-1 process of
extreme minimum temperatures for the Banff site. The dotted line represents the
estimated probability of “e(t) = 1 if e(t — 1) = 1”7 (pi1) and the dashed, “e(t) = 1 if
e(t—1) =07 (poy)-
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Figure 4: The estimated 1lst-order transition probabilities for the 0-1 process of ex-
treme minimum temperatures for the Medicine Hat site. The dotted line represents
the estimated probability of “e(t) = 1ife(t—1) = 1”7 (pj1) and the dashed, “e(t) =1
if et —1) = 0" (pia).
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Figure 5: The estimated 2nd-order transition probabilities for the 0-1 process of
extreme minimum temperature for the Banff site with p;1; (solid) compared with
Po11 (dotted) both calculated from the historical data.
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Figure 6: The estimated 2nd-order transition probabilities for the 0-1 process of
extreme minimum temperatures for the Banff site with pg; (solid) compared with
P1o1 (dotted) calculated from the historical data.
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Figure 7: The estimated 2nd-order transition probabilities for the 0-1 process of
extreme minimum temperatures for the Medicine Hat site with py1; (solid) compared
with po11 (dotted) calculated from the historical data.
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Figure 8: The estimated 2nd-order transition probabilities for the 0-1 process of
extreme minimum temperatures for the Medicine Hat site with pgo; (solid) compared
with pyg; (dotted) calculated from the historical data.
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Model: Z;_4 BIC parameter estimates

(1,N1) 1251.7  (-2.144, 4.260)
(1,N?) 1166.5  (-2.501, 2.490)
(1,N3) 11429  (-2.653, 1.755)
(1, N%) 1121.6  (-2.773, 1.371)
(1, N®) 1111.2  (-2.852, 1.125)
(1, N©) 1093.1  (-2.932, 0.961)
(1,N7) 1087.4  (-2.977, 0.835)
(1, N®) 1081.7  (-3.015, 0.739)
(1,N9) 1077.1  (-3.047, 0.663)
(1, N10) 1066.5  (-3.089, 0.605)
(1, N1 1056.4 (-3.130, 0.557)
(1, N12) 1059.5  (-3.135, 0.511)
(1, N13) 1062.3  (-3.140, 0.472)
(1, N1) 1072.8  (-3.126, 0.437)
(1, N15) 1080.9  (-3.118, 0.406)

Table 1: BIC values for models including N* for the extreme minimum temperature
process e(t) at the Medicine Hat site.

2.2 Model selection for extreme minimum temperature

This section finds models for the extreme minimum temperature process e(t).
Here Z;_; denotes the covariate process. We investigate the following predictors:

o cf(t) = e(t — k). Was it an extremely cold day k days ago?

mt*(t) = mt(t — k), the actual minimum temperature k days ago.

N* the number of freezing days during the k previous days.

SIN, COS, SIN2 and COS2 which are abbreviations for sin(wt), cos(wt),

sin(2wt) and cos(2wt), respectively (with w = 2%).

Table 1 compares models with a constant and N* as the covariate process.
The optimal model picked by the BIC' criterion is the model with the covariates
Zi_1 = (1, N1,

Table 2 compares several models some of which include seasonal terms and
continuous variables. The optimal model is (1,mt*, COS,SIN), which has the
temperature of the previous day and seasonal terms. The model (1,e!, COS, SIN)
has a larger BIC but is preferable to all models other than (1, mt!, COS, SIN) and
(1, mt', mt?>, COS, SIN). Note that it is not possible to compute the probability of
events in the long-term future using (1, mt', COS, SIN), since we do not know mt
except for perhaps the present time. Hence the optimal applicable model seems to

be (1,e!,COS, SIN).
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Model: Z;_4 BIC parameter estimates

(1) 2539.9 (-0.0251)

(1,e!) 1251.7  (-2.144, 4.260)

(17 ) 1473.6  (-1.856, 3.683)

(1, el ) 1157.7  (-2.501, 3.085, 1.896)

(1,6 e, ele?) 1162.4 (-2.586, 3.389, 2.190, -0.593)

(1, mt!) 963.7  (0.109, -0. 400)

(1, mt!, mt?) 954.0  (0.091, -0.329, -0.082)
(1,COS,SIN) 984.0 (0070 4.292, 1.324)
(1,COS,SIN,COS82,SIN2) 984.2 (-0.502, 4.505, 1.399, -0.464, -0.493)
(1,COS,SIN, COSQ) 986.7  (-0.258, 4.359, 1.335, -0.353)
(1,COS,SIN,SIN2) 984.4  (-0.217, 4.365, 1.360, -0.402)

(1, mt!, mt2 mt3) 940.7  (0.062, -0.319, -0.009, -0.094)

(1, mt1 mt?, mtimt?) 943.4  (0.211, -0.339, -0.084, -0.0091)
(1,el, COS’ SIN) 901.5 (-1.008, 1.840, 3.325, 1.013)

(1, mt1 COS,SIN) 855.3 (-0.074, -0.234, 2.394, 0.746)

(1, mtt, mt?,COS, SIN) 861.9  (-0.076, -0.247, 0.023, 2.504, 0.785)

Table 2: BIC values for several models for the extreme minimum temperature e(?)
at the Medicine Hat site.

3 rth-order Markov models for extreme maximum
temperatures

This section finds appropriate models for the binary process of extremely hot
temperature F(t) as defined above. To define a hot day, we use the 95th percentile
of data from 25 stations over Alberta that had daily MT data from 1940 to 2004.
The 95th percentile turns out to be ¢ = 27 (deg C). Once we used the fast algorithm
developed in Chapter 7 of [2] to pick the quantile and once we used an exact method;
the algorithm gave us the approximate value ¢ = 26.7, which is very close to the
exact value.

3.1 Exploratory analysis for extreme maximum tempera-
tures

This section uses explanatory data analysis techniques to study the binary
process E(t). Again we use two stations for this purpose, the Banff and Medicine Hat
sites that have data from 1895 to 2006. The transition probabilities are computed
using the historical data considering years as independent observations. The results
are summarized as follows:

e Figures 9 and 10 plot the probabilities of a hot day over the course of a year for
the Banff and Medicine Hat stations respectively. A regular seasonal pattern
is seen. Medicine Hat seems to have a much longer period of hot days.
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e Figures 11 and 12 plot the estimated transition probabilities, py; and p;; for
Banff and Medicine Hat. If the chain were a Oth-order Markov chain then
these two curves would overlap. This is not the case so Markov chain of at
least 1st-order seems necessary. In the py; curve for both Banff and Medicine
Hat, large fluctuations are seen in the middle of the year, which corresponds
to the warm season. This is not surprising because there are very few pairs
in the data with a hot day followed by a not—hot day in the warm season in

Alberta.

e In Figure 12, pj; is missing for a period over the cold season. This is because
no hot day is observed during this period in the cold season and hence pi;
could not be estimated.

e Figures 13 and 14 give the plots for the 2nd-order transition probabilities.
They overlap heavily and hence a 2nd-order Markov chain does not seem to
be necessary.
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Figure 9: The estimated probability of a hot day (maximum temperature > 27 (deg
C)) for different days of the year for the Banff site calculated from the historical
data.
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Figure 10: The estimated probability of a hot day (maximum temperature > 27
(deg C)) for different days of the year for the Medicine Hat site calculated from the
historical data.
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Figure 11: The estimated 1st-order transition probabilities for the binary process
of extremely hot temperatures for the Banft site. The dotted line represent the
estimated probability of “E(t) = 1if E(t—1) =17 (p11) and the dashed, “E(t) = 1
if E(t—1) =07 (po1)-
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Figure 12: The estimated 1st-order transition probabilities for the binary process of
extremely hot temperatures for the Medicine Hat site. The dotted line represents the
estimated probability of “E(t) = 1if E(t—1) =1” (p11) and the dashed, “E(t) =1
if E(t—1) = 07 ().
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Figure 13: The estimated 2nd-order transition probabilities for the binary process
of extremely hot temperatures for the Banff site with pj1; (solid) compared with
Po11 (dotted) calculated from the historical data.
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Figure 14: The estimated 2nd-order transition probabilities for the binary process
of extremely hot temperatures for the Banff site with pgg; (solid) compared with
P1o1 (dotted) calculated from the historical data.
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Figure 15: The estimated 2nd-order transition probabilities for the binary process
of extremely hot temperatures for the Medicine Hat site with pj1; (solid) compared
with po11 (dotted), calculated from the historical data.
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Figure 16: The estimated 2nd-order transition probabilities for the binary process
of extremely hot temperatures for the Medicine Hat site with pgo; (solid) compared
with pyg; (dotted) calculated from the historical data.

3.2 Model selection for extreme maximum temperature
Here, we use the following abbreviations:
o EF(t) = E(t — k). Was it an extreme day k days ago?

o MT*(t)= MT(t— k), the actual maximum temperature k days ago.
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e N* COS, SIN, COS, SIN2 and COS?2 as previous sections.

Table 3 compares several models containing N*. The optimal model turns out
to be (1, N'1) which is the same as the result for the extreme minimum temperature
process e(t).

Model: Z;_y BIC  parameter estimates

(1, N1 955.7  (-2.95, 3.82)
(1,N?) 965.9  (-3.00, 2.16)
(1,N3) 942.5  (-3.11, 1.60)
(1, N%) 921.8  (-3.20, 1.29)
(1, N®) 926.8  (-3.23, 1.05)
(1, N9) 931.6  (-3.24, 0.89)
(1,N7) 932.5 (-3.26, 0.78)
(1, N®) 939.0  (-3.26, 0.69)
(1, N? 931.6  (-3.29, 0.63)
(1, N19) 925.9  (-3.31, 0.57)
(1, N11) 911.7 (-3.35, 0.49)
(1, N12) 917.5  (-3.34, 0.46)
(1, N13) 922.8 (-3.33, 0.42)
(1, N) 926.0 (-3.32, 0.39)
(1, N12) 932.1  (-3.31, 0.37)

Table 3: BIC values for models including N* for the extremely hot process E(t).

Table 4 compares several models. We observe that major reductions are seen if
we use MT* instead of E*. The optimal model turns out to be (1, MT*, COS, SIN)
which is combination of seasonal terms and the temperature of the day before.

Model: Z;_4 BIC  parameter estimates

(1) 1520.3  (-1.774)

(1, EY) 955.8  (-2.95, 3.82)

(1, E?) 1170.5 (-2.581, 2. 924)

(1, E', E?) 941.3  (-3.034, 3.179, 1.099)

(1, E', E?, E'E?) 929.0 (-3.202, 3.895, 2.137, -1.877)

(1, MTl) 683.8  (-10.040, 0.362)

(1, MT*, MT?) 689.1 (-10.135, 0.333, 0.034)
(1,COS,SIN) 830.8  (-5.484, -5.616, -2.452)
(1,COS,SIN,COS2,SIN2) 837.5 (-4.343,-4.255, -0.993, 0.113, 1.016)
(1,COS,SIN, C’OS2) 837.9 (-5.850, -6.231, -2.406, -0. 292)
(1,COS,SIN,SIN2) 830.0  (-4.481, -4.492, -0.978, 1.011)

(1, MT*, MT?, MT?) 669.2  (-10.885, 0.338, -0.061, 0.120)

(1, MT*, MT? , MT*MT?) 681.9  (-21.003, 0.763, 0.452, -0.0162)

(1, E*, C’OS SIN) 731.3  (-4.963, 2.005, -4.096, -1.685)

(1, MT1 COS,SIN) 649.9 (-10.281, 0.283, -2.829, -1.079)

(1, MT1 MT? COS,SIN) 657.3  (-10.109, 0.294, -0.011, -2.609,-1.072)

Table 4: BIC values for several models for the extremely hot process E(t).
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Figure 17: Medicine Hat’s estimated mean annual probability of frost calculated
from the historical data.

4 Probability of a frost-free period for Medicine
Hat

This section shows how the approach developed above can be used in appli-
cations. We use the developed methodology to compute two probabilities:

e 7 : The probability of no frosts in the first week of October at the Medicine
Hat site.

e 75 : The probability of at least 5 days without frost in the first week of October
at the Medicine Hat site.

The first day of October is the 275th day of the year in a leap year and the
274th day of the year in a non-leap year. We compute the probabilities for the week
between 274th day and 281th day which corresponds to the first week of October in
a non-leap year. We prefer this option to computing the probability for the actual
first week of October, since this corresponds better to the natural cycles. Of course
with a little modification one could compute the probability for the first week of
October, for example by introducing a probability of 1/4 for being in a leap year.

Figure 17 plots the probability of a frost for each day of years since 1985.
Only years with more than 355 days of data are considered. The figure shows that
the probability of a frost is fairly consistent over the years, so we assume a constant
probability of frost for all years. Table 5 compares models with various N*. The
optimal model is (1, N!). Table 6 includes two seasonal terms as well as N*. The
optimum this time (1, N',COS,SIN), showing that in the presence of seasonal
terms, the short-term past modeled by N* is not necessary.
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Model: Z;_; BIC

(1,N1) 5072.2
(1,N?) 4634.8
(1, N3) 4465.9
(1, N%) 4407.4
(1, N®) 4366.0
(1,N%) 4357.4
(1,N7) 4356.2
(1, N®) 4342.6
(1, N?) 4330.5
(1, N19) 4329.1
(1, N1 4328.4
(1,N'2) 43324
(1, N13) 4330.8
(1, N 4345.1
(1, N1%) 4362.9

Table 5: BIC values for models including N* for the extremely cold process e(t) at
the Medicine Hat site.

Model: Z;_4 BIC

(1, N',COS,SIN) 3601.3
(1, N2,COS,SIN)  3654.8
(1, N3,COS,SIN)  3693.9

(1, N1°.COS,SIN) 3843.6
(1, N'1,COS,SIN)  3849.8
(1, N'2,COS,SIN) 3855.5

Table 6: BIC values for several models including N* and seasonal terms for the
extremely cold process e(t) at the Medicine Hat site.
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Model: Z;_4 BIC parameter estimates

(1) 10122.4  (-0.0858)

(1, el) 5072.2 (-2.13, 4.18)

(1,el,e 4598.2 (-2.530, 2.977, 2.00)

(1,el,e2, ete?) 4582.8  (-2.65, 3.41, 2.43, -0.855)
(1,COS,SIN) 3916.870  (-0.3, 4.301, 1.139)
(1,COS,SIN,C0OS2,SIN2) 3865.6 (-0.746, 4.643, 1.253 -0.550 -0.504)
(1,e!,COS, SIN) 3601.3 (-1.116, 1.760, 3.332, 0.856)
(1,e',COS,SIN,C0OS2,SIN?2) 3566.7  (-1.49, 1.71, 3.65, 0.96, -0.48, -0.42)
(1,e1 2 C0S,SIN) 3601.6 (-1.22, 1.66, 0.33, 3.19, 0.810)
(1,e!,e2,COS,SIN,COS2,SIN?2 3571.7 (-1.8, 1.7, 4.4, 1.26, -0.78, -0.74, 0.21, 0.44)
,COS3, SINS)

(1,

1,mt',COS, SIN,COS2,SIN2)  3356.4 (-0.66, -0.22, 2.85, 0.73, -0.56, -0.42)

Table 7: BIC values for several models for the extremely cold process e(t) at the
Medicine Hat site.

Covariate Theoretical sd Experimental sd

1 0.090 0.093
el 0.097 0.100
coS 0.125 0.139
SIN 0.060 0.059
C0OS2 0.089 0.094
SIN2 0.081 0.077

Table 8: Theoretical and simulation estimated standard deviations for extremely
cold process e(t) at the Medicine Hat site.

Table 5 compares various models. The winner is
(1,mt',COS, SIN,COS2, SIN?2).

However, it is not possible to compute the desired probabilities using this model since
we do not know mt! (perhaps except at the start of the chain). Among all other
models, the optimal is (1,e!, COS, SIN,COS2,SIN2) which we use to compute
the probabilities.

We compute the standard deviations once using simulations by generating
chains from the fitted model with covariates (1,e', COS,SIN,C0S2,SIN?2), and
once by computing the partial information matrix, Gy, using partial likelihood
theory. The results are given in Table 8. The variance-covariance matrix calculated
using partial likelihood theory is given below:
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Figure 18: Normal curved fitted to the distribution of 50 samples of the estimated
parameters.

0.0082 —0.0043 —0.0038 —0.0011 0.0050  0.0030
—0.0043 0.0094 —0.0042 —0.0013 0.0002  0.0003
—0.0038 —0.0042 0.0158  0.0038 —0.0052 —0.0037
—0.0011 -0.0013 0.0038  0.0037 —0.0011 —0.0017
0.0050  0.0002 —0.0052 —-0.0011 0.0079  0.0015
0.0030  0.0003 —0.0037 —0.0017 0.0015  0.0066

We also find the variance-covariance matrix using simulations. To do that
we generate 50 chains over time using the estimated parameters. The variance-
covariance matrix using the simulations is given by:

0.0087 —0.0035 —0.0054 —0.0012 0.0047  0.0021
—0.0035 0.0101 —0.0058 —0.0009 0.0026  0.0012
—0.0054 —0.0058 0.0194 0.0032 —0.0086 —0.0032
—0.0012 —-0.0009 0.0032  0.0035 —0.0011 -0.0018
0.0047  0.0026 —0.0086 —0.0011 0.0089  0.0016
0.0021  0.0012 —0.0032 —0.0018 0.0016  0.0059

We see that the simulated variance-covariance matrix has close values to the partial
likelihood, all entries having the same sign. We also look at the distribution of
the estimators using the 50 samples. Figure 18 shows the parameter estimates
approximately follow a normal distribution.

To estimate the desired probabilities, we generate samples (10000) from the
parameter space using the mean of the parameters and variance-covariance matrix
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from a multivariate normal. To fix ideas suppose we want to compute the proba-
bility of no frost between (and including) the 274th day and the 280th day of the
year. For every vector of parameters, we then compute the probability of observing
(0,0,0,0,0,0,0) exactly once given it was below zero on the 273th day and once it
was above zero. In other words we compute

P(e(274) =0,---,e(281) = 0/e(273) = 1),
and
P(e(274) = 0,--- ,e(281) = 0]e(273) = 0).

We also use the historical data to estimate py = P(e(273) = 1). Then the desired
probability would be

P(e(274) =0, - -, e(281)

PoP(e(274) = 0, -+, e(281) = 0[e(273)
(1 —po)P(e(274) =0,--- ,e(281) = 0/e(273)

0) =
1) +
0)

Then in order to get a 95% confidence intervals we use (¢(0.025), ¢(1—0.025)), where
q is the (left) quantile function of the vector of the probabilities.

Using the historical data, we obtain py = P(e(273) = 1) = 0.243. Then for
every parameter generated from the multivariate normal with mean and the above
variance-covariance matrix we can estimate the two probabilities m; and m. We
sample 10000 times from the multivariate normal, compute 10000 probabilities and
take the 0.025th and 0.975th (left) quantiles to get the following confidence intervals
for m and 7y respectively:

(0.28,0.40),

and
(0.74,0.85).

If we use the simulated variance-covariance matrix, we’ll get the following confidence
intervals for m and
(0.28,0.40),

and
(0.75,0.85),

which are very similar to the aforementioned intervals.

5 Possible applications of the models

To understand the potential applications of these models and results I contacted Dr.
Nathaniel Newlands from AAFC (Agriculture and Agi-food Canada). He give the
following insightful comments.
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“Forecasted (probability of precipitation) is a leading indicator used by crop
insurance companies. Probabilities of this kind (agroclimate) are typically most
useful in early growing season by farmers in deciding planting dates and deciding on
irrigation scheduling and ordering fertilizer and other kinds of inputs. Frost prob-
ability in latter growing season is critically important in deciding when to harvest
crops before they have a higher potential for weather damage. So, essentially at the
start and end of growing season, frost, precipitation (sometimes as a water stress
index) and temp extremes are all informative for farmers and other decision makers
in ag industry.

[ would generally say that a broader set of probabilities like these are of special
interest to the government side as they look for improving and/or developing new
models, web portals and other tools to aid a wide array of the decision makers in
the agricultural industry with their business decisions. Farmers (depending on what
region of Canada they are in) are used to dealing with reoccurring weather and
now climate change events, so often their viewpoint and decision needs are far more
regionally specific than government which tries to balance regional with national
needs and levels of risk to changing agroclimate.

The crop insurance industry is probably the most specific user of such infor-
mation. For example, they base their insurance quotes for the event of precipitation
on some specific times of the year.”
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