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Abstract

This paper presents an approach to modeling progressive event-history data when the overall
objective is prediction based on time-dependent covariates. This approach does not model the
hazard function directly. Instead, it models the process of the state indicators of the event history
so that the time-dependent covariates can be incorporated and predictors of the future events
easily formulated. Our model can be applied to a range of real-world problems in medical and
agricultural science.

1 Introduction

This paper presents a new theory for event history processes that involve a sequence of irreversible,
progressive events and associated external time-dependent covariates, i.e. covariates not influenced
by the occurrence of the events of central interest (Kalbfleisch and Prentice 2002). These covariates
are known up to times on a discrete scale, say daily scale, for example. Such events signal changing
conditions, which may point to the need for strategic actions that reduce risk associated with those
processes, for example cancer progression or survival of wine-grape perennial crops. By modeling
how such event sequences change in relation to time-dependent covariates, useful information may
be provided to those involved in assessing best therapeutic intervention responses, or environmental
impacts.

General event-history data have been well studied. As examples: Weiss and Zelen (1965) and
Lagakos et al. (1978) considered semi-Markov models; Hougaard (2000) described a broad range of
Markov models; Cook and Lawless (2007) presented two broad approaches for recurrent event data:
modeling the counts of events in a time interval and modeling the gap time between two events; Aalen
et al. (2008) described approaches based on counting processes. Many of these approaches can be

∗Department of Statistics, the University of British Columbia, 333-6356 Agricultural Road, Vancouver, BC, V6T 1Z2
†Environmental Health, Agriculture and Agri-Food Canada, 5403 - 1st Avenue S., P.O. Box 3000, Lethbridge, Alberta,

Canada

1



used to analyze progressive events data. However, when a time-dependent covariate is present, the
problem becomes thorny, especially if the main objective of the analysis is prediction.

When a single event is under consideration and a time-dependent covariate is present, the usual
practice is to apply the Cox model (Cox, 1972) or a parametric proportional hazards model (Collett,
2003). The advantage of the Cox model is that if the hazard function is only related to the covariate
evaluated at the current time, then we can plug that covariate value into an expression for a partial
likelihood function, regardless of the values of the covariate at other time points. However, this causes
a loss of efficiency, since the information contained in the covariate between the gap times of events
are not used. Cox (1972) argued that the loss of efficiency is not much unless either:(1) the model
parameter is far from zero; (2) censoring is strongly dependent on covariates; or (3) there are strong
time trends in the covariates. While the first two issues may not concern us, the third is crucial for
phenological data since the associated climate variables usually have strong seasonality (and will
exhibit as a dominant local trend between event-times within a season). On the other hand, the Cox
model is not suitable for prediction, since it does not extrapolate beyond the last observation. A
parametric proportional hazards model might be a good choice for prediction. But it requires explicit
distributional assumptions for the time-to-event, which may be mis-specified. Also, if the hazard
ratio is related to the covariate evaluated at several time points at and prior to the current time, the
likelihood function may involve a complicated integration.

When multiple events are of interest, to deal with time-dependent covariates, the usual approach
is to apply a Cox model for each event where time-dependent covariates are present (e.g. Hougaard,
1999), or use a parametric model to model the hazard rate and to incorporate the covariates just as in
the parametric proportional hazards model (e.g. Cook and Lawless, 2007). These approaches induce
similar problems to those in the single event case.

In this paper, we introduce an approach based on modeling the process of event state indicator.
In this approach, all the available information contained in time-dependent covariates can be easily
incorporated in the likelihood function, and the construction of a predictor is straightforward. Also,
this approach does not impose strong distributional assumption on times to events.

The paper is organized as follows. Section 2 presents a model for a single event. There our basic
assumptions are introduced and estimation and prediction procedures for the model are described.
Also, the estimation for the case of non-informative right censored response is considered. Section 3
presents a model for sequential events, which is an extension of our model for single event but with
a few additional assumptions. In section 4, we test our model for single event by applying it to the
blooming event of pear trees. There a cross validation procedure is used to evaluate our prediction
of future events. The uncertainty associated with the prediction is also assessed. The final section
summarizes our methods, and gives pointers to possible future work.
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2 Model for a single event

This section concerns the case of a single phenological outcome called an “event”, for example
“death”. The data consist of the times to the occurrence of that outcome for N experimental sub-
jects, i = 1, · · · , N .

2.1 Basic setup

In the sequel, upper case letters denote random variables and lower case ones, their realized values.
We adopt the following assumption in this section:

Assumptions 1. Only one event can occur for each individual, and once it has occurred, it remains in
the “occurred” state thereafter.

We assume a discrete time scale with a well-defined origin t0, that we take to be t0 = 0 without
loss of generality. For individual i, let Ti denote the random time to occurrence of the event. At each
time point t = 0, 1, · · · , classify the state of the event for each individual as “occurred” or “not
occurred”. At time t, let Yi, t denote this state, being 1 or 0 according as the event has “occurred” or
not. Then, time to event Ti and state indicator Yi, t have the following relationship:

Yi, 0 = 0, Yi, 1 = 0, · · · , Yi, (Ti−1) = 0, Yi, Ti = 1, Yi, (Ti+1) = 1, · · · , (1)

where Yi, t is 1 for all t ≥ Ti by Assumptions 1.
Associated with each individual is a time-dependent covariate vector, which is observed on the

same discrete time scale. Denote its value at time t (t = · · · , −1, 0, 1, · · · ) by Xi, t. Note that a
fixed covariate is a special time-dependent one and so is subsumed by our theory. For individual i, we
further denote the covariate process evaluated at all time points, i.e. {· · · Xi,−1 = xi,−1, Xi, 0 =

xi, 0, Xi, 1 = xi, 1, · · · }, as Xi, t′∈Z. Similarly, we write Yi, 0:t as the set of state indicators Yi, t

evaluated from time origin 0 to time point t (t = 0, 1, · · · ), i.e. {Yi, 0 = yi, 0, · · · , Yi, t = yi, t}.

2.2 Probability model

The conditional probability distribution of Yi, 0:t given Xi, t′∈Z is

pr
(
Yi, 0:t

∣∣Xi, t′∈Z
)
= pr

(
Yi, 0 = yi, 0

∣∣Xi, t′∈Z
) t∏

s=1

pr
(
Yi, s = yi, s

∣∣Yi, 0:(s−1), Xi, t′∈Z
)
, (2)

where pr (·) is the probability set function. This expression can be simplified using the following
result:
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Proposition 1. For each individual i and single event in Assumption 1, conditional on Xi, t′∈Z, the
stochastic process {Yi, t : t = 0, 1, · · · } is a first order Markov chain, i.e.

pr
(
Yi, t = yi, t

∣∣Yi, 0:(t−1), Xi, t′∈Z
)
= pr

(
Yi, t = yi, t

∣∣Yi, (t−1) = yi, (t−1), Xi, t′∈Z
)
, (3)

for all t = 1, 2, · · · and yi, t ∈ {0, 1}.

Proof. In the proof everything will be conditional on Xi, t′∈Z and is omitted for simplicity. Since for
each individual i and all t = 0, 1, · · · , Yi, t is a binary random variable, it suffices to separately
consider only two cases, Yi, (t−1) = 0 and Yi, (t−1) = 1. Firstly, Yi, (t−1) = 0 implies that Yi, 0 =

0, · · · , and Yi, (t−2) = 0, making {Yi, 0 = 0, · · · , Yi, (t−2) = 0, Yi, (t−1) = 0} the only possible
probability event for Yi, 0:(t−1) and thus equivalent to {Yi, (t−1) = 0}.

Secondly, for the type of single event under consideration, if for some t′ > 0, Yi, (t′−1) = 1, then
Yi, (t−1) = 1 for all t ≥ t′. Thus, when Yi, (t−1) = 1 (t > 0), we have

pr
(
Yi, t = yi, t

∣∣Yi, 0:(t−1)

)
= pr

(
Yi, t = yi, t

∣∣Yi, 0:(t−2), Yi, (t−1) = 1
)
= 1, (4)

which completes the proof.•
Equation (2) then simplifies to

pr
(
Yi, 0:t

∣∣Xi, t′∈Z
)
= pr

(
Yi, 0 = yi, 0

∣∣Xi, t′∈Z
) t∏

s=1

pr
(
Yi, s = yi, s

∣∣Yi, (s−1) = yi, (s−1), Xi, t′∈Z
)
.

(5)
For individual i,the previous equation and (1) imply that the conditional probability that the event
occurs at time ti, given all the covariate values Xi, t′∈Z is

pr
(
Ti = ti

∣∣Xi, t′∈Z
)
= pr

(
Yi, 0 = 0, Yi, 1 = 0, · · · , Yi, (ti−1) = 0, Yi, ti = 1

∣∣Xi, t′∈Z
)

= pr
(
Yi, 0 = 0

∣∣Xi, t′∈Z
)
·
[
ti−1∏

s=1

pr
(
Yi, s = 0

∣∣Yi, (s−1) = 0, Xi, t′∈Z
)
]
·

pr
(
Yi, ti = 1

∣∣Yi, (ti−1) = 0, Xi, t′∈Z
)
. (6)

Now we are ready to build a regression model based on this probability model.

2.3 Regression model

Assume that the occurrences of the events of different individuals are independent realizations from
the same population. We require additional assumptions about the relationship of the occurrence of
the event and covariate to limit the total number of parameters. In Equation (6), the probability of
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an event occurring at time ti is conditioned on covariate values evaluated at all discrete time points
· · · , −1, 0, 1, · · · . In real applications, the occurrence of an event usually only depends on the
covariate values at and prior to the occurrence time. Furthermore, in some situations, we may assume
that at a time point t ≥ 0, the state of the event mainly depends on the covariate values at the current
and several previous times, or some weighted average of them. In practice, we want to make some
reasonable assumptions so that the total number of covariates (and consequently the total number of
parameters in the regression model) is limited, and the number of covariates does not change over
time.

For the purpose of illustration, simply assume that for individual i at time point t, the state indica-
tor Yi, t is only related to the covariate values evaluated from time t−K to t, i.e.

{
Xi, (t−K), · · · , Xi, t

}
,

where K is constant. Now, for individual i at time t, no matter if Xi, t is a vector or not, the total
number of covariate values that are related to Yi, t is finite and fixed, and we will put them together
as a vector denoted by Xi, t. Then in Equation (6), term Xi, t′∈Z on the right hand side (RHS) can be
replaced by Xi, t.

We further assume that time origin 0 is the earliest time an event can occur, otherwise the data is
not useful for studying the probability of the occurrence of the event. Then we have

pr (Yi, 0 = yi, 0 |Xi, 0 ) = pr (Yi, 0 = yi, 0 |Yi,−1 = 0, Xi, 0 ) . (7)

By virtue of the Markov property of {Yi, t : t = 0, 1, · · · }, for modeling pr
(
Ti = ti

∣∣Xi, t′∈Z
)
, it

suffices to model pr
(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t
)

for t = 0, · · · , ti and yi, t ∈ {0, 1}. Write

pri, t ≡ pr
(
Yi, t = 1

∣∣Yi, (t−1) = 0, Xi, t
)
. (8)

Then since yi, t ∈ {0, 1}, we have

pr
(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t
)
= pryi, ti, t

(
1− pri, t

)1−yi, t . (9)

For each fixed individual i, pri, t is a function of t and Xi, t. Now, to build a regression model, we
will choose a useful explicit form for this function with unknown parameters, and carry out statistical
inference for these parameters.

If we want to restrict the functional form of pri, t to a linear function of the parameters, then for
individual i, at each time point t = 0, · · · , ti, we may consider a linear regression model for binary
events. Consider a monotonic link function g : (0, 1) → (−∞,∞) (e.g., g could be the logit or probit
function). We assume that g

(
pri, t

)
equals a linear function of the covariate vector Xi, t, i.e.

g
(
pri, t

)
= βT

t Xi, t , (10)

where βt is a parameter vector which remains the same across different individuals i, but may vary
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with time t. The superscript T stands for the transpose of a vector or a matrix.
By Equation (6) – (10), we have

pr
(
Ti = ti

∣∣Xi, t′∈Z
)
= g−1

(
βT
t Xi, ti

) ti−1∏

s=0

(
1− g−1

(
βT
t Xi, s

))
, (11)

where g−1 is the inverse function of g. To achieve computational tractability, we take βt to be a
constant vector over time, so the subscript t of βt in the above equation can be omitted. Under the
independence assumption, the likelihood function of the data is

L (β) =
N∏

i=1

[
g−1

(
βTXi, ti

) ti−1∏

s=0

(
1− g−1

(
βTXi, s

))
]
, (12)

One can now proceed with maximum likelihood (ML) or Bayesian methods to estimate parameters.

2.4 Non-informative right censoring

If the event has not occurred for an individual by the end of the study or an individual left the study be-
fore the event occurs, we get a right-censored observation. In this paper, we consider non-informative
right censoring, i.e. the time to the event is independent of the censoring mechanism. The methodol-
ogy is derived from Collett (2003).

Here, when writing the conditional probability of an event occurring at some time point given
covariate values Xi, t′∈Z, we will omit the conditioning variable. All the probability expressions in
this section are then conditioned on Xi, t′∈Z.

For each individual i = 1, · · · , N , we have an observed time ti, which is either an event-time,
or a right censoring time. We denote this observation as a random variable τi. Then the value of τi
is ti. Now, for individual i, let δi be an indicator which takes values 1 or 0, according as we observe
the event or not because it is right censored. By the non-informative censoring assumption, we can
assume that each individual i is associated with two independent random variables: event time Ti and
censoring time Ci. If the observation for individual i is censored, we have

Ci < Ti and τi = Ci, when δi = 0 , (13)

otherwise, we have
Ci > Ti and τi = Ti, when δi = 1 . (14)

Now, it is easy to see that τi = min (Ti, Ci), and

pr (τi = t, δi = 0) = pr (Ci = t, Ti > t) = pr (Ci = t) pr (Ti > t) , (15)
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where the second equality holds because of the non-informative censoring assumption. Similarly, we
have

pr (τi = t, δi = 1) = pr (Ti = t, Ci > t) = pr (Ti = t) pr (Ci > t) . (16)

The likelihood function for the observations t1, · · · , tN then is

L =
N∏

i=1

pr (τi = ti, δi)

=
N∏

i=1

(pr (Ci = ti) pr (Ti > ti))
1−δi (pr (Ti = ti) pr (Ci > ti))

δi

=

[
N∏

i=1

pr (Ci = ti)
1−δi pr (Ci > ti)

δi

][
N∏

i=1

pr (Ti = ti)
δi pr (Ti > ti)

1−δi

]
. (17)

By the non-informative censoring assumption, term
[∏N

i=1 pr (Ci = ti)
1−δi pr (Ci > ti)

δi
]

does not
involve parameters that are related to the distribution of event-time Ti. Therefore, to find the maximum
likelihood estimator (MLE) of the model parameters, it suffices to maximize the following function

L′ (β) =
N∏

i=1

pr (Ti = ti)
δi pr (Ti > ti)

1−δi , (18)

and
β̂MLE = ArgmaxL′ (β) . (19)

Term pr (Ti = ti) in Equation (18) is given by Equation (11) (note that the conditioning variable
Xi, t′∈Z has been omitted in the current expressions), while term pr (Ti > ti) can be calculated as
follows:

pr (Ti > ti) = pr (Yi, 0 = 0, Yi, 1 = 0, · · · , Yi, ti = 0) =
ti∏

s=0

(
1− g−1

(
βTXi, s

))
. (20)

Then we can re-write Equation (18) as

L′ (β) =
N∏

i=1

[
g−1

(
βTXi, ti

) ti−1∏

s=0

(
1− g−1

(
βTXi, s

))
]δi [ ti∏

s=0

(
1− g−1

(
βTXi, s

))
]1−δi

. (21)

Now, we can easily estimate β using Equation (19) if it is assumed constant over time.
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2.5 Prediction

To use the regression model to predict the time to a future event, we must know the future values of
time-dependent covariates in advance. However, generally we will not know them and hence must
predict them. We therefore assume that their predictive distribution is available in order to make
progress on this problem.

With that understanding and time origin 0, suppose the current time is tc ≥ 0. For a new indi-
vidual, one whose data were not used for parameter estimation and whose event-time is unknown,
suppose the event has not occurred up to tc. This subsection presents a predictor for the event-time of
this individual, denoted by T ∗, with corresponding state indicator Y ∗

t at time t ≥ 0.
To construct that predictor, we denote the covariate vector for this individual evaluated at time t

as X∗
t . Similarly we write the “new individual version” of Xi, t as X ∗

t . Since we know the covariate
values up to time tc, X ∗

t may be decomposed into two vectors: one vector X ∗
t, obs consists of covariates

values evaluated from time 0 to time tc, which we observed exactly, and the other, X ∗
t, pred, consists of

predicted covariates values from tc+1 to t, whose predictive distributions are given by another model.
Furthermore, denote the estimated parameter vector as β̂, and the covariates and state indicator used
to estimate β̂ as Xtrain and Y train respectively.

If we knew the true value of β, Equation (11) would imply the predictive distribution of bloom
time T ∗. In other words the probability of the event occurring at time tc + K for any K ≥ 1 given
X ∗
t,obs, the observed covariate values for the new individual, would be

prβ
(
T ∗ = tc +K

∣∣X ∗
tc+K, obs

)

=

∫
prβ

(
T ∗ = tc +K

∣∣X ∗
tc+K, obs, X ∗

tc+K, pred

)
dpr

(
X ∗
tc+K, pred

)

=

∫
g−1

(
βTX ∗

tc+K

)K−1∏

s=1

(
1− g−1

(
βTX ∗

tc+s

))
dpr

(
X ∗
tc+K, pred

)
. (22)

We attach a subscript β on that probability function to emphasize we are using the true parameter
values. The problem is that we do not know the true β. So we replace β by β̂ in Equation (22) to
estimate the predictive distribution of the event-time T ∗ as:

prβ̂
(
T ∗ = tc +K

∣∣X ∗
tc+K, obs

)

=

∫
g−1

(
β̂TX ∗

tc+K

)K−1∏

s=1

(
1− g−1

(
β̂TX ∗

tc+s

))
dpr

(
X ∗
tc+K, pred

)
. (23)

If the predictive distribution of X ∗
tc+K, pred is given by another model, the integral in this equation

may be calculated by the Monte Carlo (MC) algorithm. Generate a sample of large size L from the
distribution of X ∗

tc+K, pred, and denote the sample points as X ∗
tc+K, pred (l) (l = 1, · · · , L). Then we
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may approximate the predictive probabilities by

prβ̂
(
T ∗ = tc +K|X ∗

t,obs

)
≈ 1

L

L∑

l=1

prβ̂
(
T ∗ = tc +K

∣∣X ∗
tc+K, obs, X ∗

tc+K, pred (l)
)
. (24)

This “plug-in” approach for predictive distribution is generally criticized as failing to take into
account the uncertainty of the unknown parameter. But, if one takes the Bayesian approach, the
uncertainty of the unknown parameter is incorporated in a natural way. Suppose in an estimation
procedure, one takes the Bayesian approach and gets pr

(
β|Xtrain, Y train

)
, the posterior distribution

of β. Then the predictive distribution of T ∗ is:

pr
(
T ∗ = tc +K

∣∣X ∗
tc+K,obs, X

train, Y train
)

=

∫ ∫
pr
(
T ∗ = tc +K

∣∣X ∗
tc+K,obs, X ∗

tc+K,pred, β, X
train, Y train

)

dpr
(
β|Xtrain, Y train

)
dpr

(
X ∗
tc+K,pred

)
. (25)

One may expect that the Bayesian approach will in general be superior to the “plug-in” approach in
terms of prediction. However, Smith (1998) showed that for many models, when assessed from the
point of view of mean squared error of predictive probabilities, the “plug-in” approach is better than
the Bayesian approach in the extreme tail of the distribution. It is not directly clear if this argument
fits our model, but the point here is that we think both approaches make sense.

3 Model for multiple events

3.1 Basic setup

Suppose there are N individuals, and S ≥ 1 different events may occur to each individual. We make
the following assumption:

Assumptions 2. For each individual, the S events have the following properties:

1. They occur in a fixed time order;

2. For an event to occur, all the events prior to it must have occurred.

3. For a fixed individual, no two different events occur at the same time point.

By these assumptions, we can label each event by the time order in which it occurs, using the
symbol s = 1, , · · · , S. When we talk about the occurrence of the sth event, all the previous events
from the 1st to the (s− 1)st must have occurred.

Now, for an individual i, there are S+1 states: no events have occurred, the first event has occurred
but the second hasn’t and so on to the last event has occurred, i.e. all S events have occurred. We will
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denote these states by 0, 1, · · · , S, respectively. For the ith individual, we will denote the random
variable for the time to the sth event as Ti, s, and denote its value as ti, s, s = 1, · · · , S. We also
create a state indicator Yi, t with Yi, t = l ∈ {0, 1, · · · , S} indicating that the individual i is in
the lth state. For the ith individual, starting from the time origin 0, we consider discrete time points
0, 1, · · · , ti, 1, · · · , ti, 2, · · · , ti, S . The time origin 0 satisfies 0 ≤ ti, 1. The value of Yi, t can only be l
or l+1 when Yi, t−1 = l ∈ {0, 1, · · · , S−1}. Also, Yi, t = S for all t ≥ ti, S . Then, the event-times
{Ti, s} and state indicators {Yi, t} have the following relationship:

Yi, 0 = 0, · · · , Yi, ti, 1 = 1, Yi,( ti, 1+1) = 1, · · · , Yi, (ti, S−1) = S − 1,

Yi, ti, S = S, Yi, (ti, S+1) = S, · · · (26)

Furthermore, assume that at each discrete time point, we observe a covariate vector Xi, t.
With the above notation, we will continue to let Yi, 0:t denote {Yi, 0 = yi, 0, · · · , Yi, t = yi, t},

and Xi, t′∈Z denote {· · · Xi,−1 = xi,−1, Xi, 0 = xi, 0, Xi, 1 = xi, 1, · · · }, as we did above for a
single event.

3.2 Probability model

For multiple progressive events that satisfy Assumptions 2 and each individual i, the conditional prob-
ability of Yi, 0:t given Xi, t′∈Z still satisfies Equation (2). However, the stochastic process {Yi, t : t = 0, 1, · · · }
is no longer necessarily a first-order Markov chain. Instead, the following result holds with l =

1, · · · , S − 1:

pr
(
Yi, t = yi, t

∣∣Yi, 0:(t−1), Xi, t′∈Z
)

=






pr
(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t′∈Z
)
, if 0 ≤ t ≤ ti, 1

pr
(
Yi, t = yi, t

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
)
, if ti, l < t ≤ ti, (l+1)

1, if ti, S < t .

(27)
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This result and Equation (2) implies that for each individual i,

pr
(
Ti, 1 = ti, 1, Ti, 2 = ti, 2, · · · , Ti, S = ti, S

∣∣Xi, t′∈Z
)

=



pr
(
Yi, ti, 1 = 1

∣∣∣Yi, (ti, 1−1) = 0, Xi, t′∈Z
) ti, 1−1∏

t=0

pr
(
Yi, t = 0

∣∣Yi, (t−1) = 0, Xi, t′∈Z
)


 ·

{
S−1∏

l=1

[
pr
(
Yi, ti, (l+1)

= l + 1
∣∣∣Yi, (ti, (l+1)−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z

)
·

ti, (l+1)−1∏

t=ti, l+1

pr
(
Yi, t = l

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
) ]

}
. (28)

With l = 0, 1, · · · , S − 1 we write

pri, t (l) ≡
{

pr
(
Yi, t = 1

∣∣Yi, (t−1) = 0, Xi, t′∈Z
)
, if l = 0

pr
(
Yi, t = l + 1

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
)
, if l > 0.

(29)
Since conditional on Yi, (t−1) = l, Yi, t can only take values l or l+1, once we get a model for pri, t (l)
for l = 0, · · · , S − 1, we can model every term in Equation (28).

Compared with the expression of pr
(
Ti = ti

∣∣Xi, t′∈Z
)

for a single event (Equation (6)), Equa-
tion (28) is much more complicated. In the single event case, the Markov property implies that,
to model pr

(
Ti = ti

∣∣Xi, t′∈Z
)

for each individual i, it suffices to model the conditional probabil-
ity pr

(
Yi, t = yi, t

∣∣Yi, (t−1) = 0, Xi, t
)
, which is a function of only t and Xi, t. However, now we

need to model pri, t (l) for l = 0, · · · , S − 1, which is a function of not only t and Xi, t′∈Z, but
also of ti, 1, · · · , ti, l, and event state l. To simplify this probability model, We need to make
extra assumptions on the dependences among different events. A simple way is to assume that
{Yi, t : t = 0, 1, · · · } is a Markov chain, and then we can proceed just like the case of single event.
However, this assumption may be too restrictive in many cases. Below, we will provide an alternative
approach based on other assumptions.

3.3 Regression model

Assume as above that Yi, t only depends on covariate values evaluated at a finite number of time
points, Xi, t. All the Xi, t′∈Z terms in Equation (29) and on the RHS of Equation (28) can then be
replaced by Xi, t. Also, we write {Yi, 0 = yi, 0, · · · , Yi, t = yi, t}, t = 0, 1, · · · , as Yi, 0:t.

In the Equation (29) for pri, t (l), Ti, 1, · · · , Ti, l, l = 1, · · · , S − 1 and covariate vector Xi, t

are all conditioning variables. Let us treat ti, 1, · · · , ti, l as time-dependent covariates, and assume
an explicit form (with unknown parameters) for pri, t (l) as a function of ti, 1, · · · , ti, l and Xi, t.

For example, let g : (0, 1) → (−∞,∞) be a monotonic link function, and assume g
(
pri, t (l)

)
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is a linear function or a polynomial of ti, 1, · · · , ti, l and Xi, t. For different l = 0, · · · , S − 1,
the numbers of conditioning event-times in the expression of pri, t (l) are different. We use a trick to
make the number of covariates constant over time so that our mathematical expressions can be simply
formulated. For each individual i, we define the following time dependent covariates:

T ′
i, l (t) =

{
0, if t < ti, l

ti, l, if t ≥ ti, l
, for l = 1, · · · , S − 1 . (30)

Now for every l = 0, · · · , S − 1, pri, t (l) is a function of T ′
i, 1, · · · , T ′

i, (S−1), Xi, t, l and t. If we
assume g

(
pri, t (l)

)
is a linear function of T ′

i, 1, · · · , T ′
i, (S−1) and Xi, t, we can define a covariate

vector
Zi, t ≡

(
X T
i, t, T

′
i, 1 (t) , · · · , T ′

i, S−1 (t)
)T

. (31)

Similarly, if we assume g
(
pri, t (l)

)
to be a polynomial function of them, we can define Zi, t as a

vector which consists of the terms of the polynomial. Under both assumptions, we can write

g
(
pri, t (l)

)
= βT

t, lZi, t, for l = 0, · · · , S − 1 , (32)

where βt, l is a parameter vector that varies with time t and event state l but remains the same across
different individuals. In many situations, we may reasonably assume βt, l is constant over time. Then
it is a function of only l, and we will write it as βl.

Now, if all N individuals are independent, and for each individual, we observe all the S events
(i.e. no censoring), then the likelihood function is

L (βl) =
N∏

i=1

pr
(
Ti, 1 = ti, 1, Ti, 2 = ti, 2, · · · , Ti, S = ti, S

∣∣Xi, t′∈Z
)

=
N∏

i=1

{
g−1

(
βT
0 Zi, t

) ti, 1−1∏

t=0

(
1− g−1

(
βT
0 Zi, t

))
·

S−1∏

l=1

[
g−1

(
βT
l Zi, t

) ti, (l+1)−1∏

t=ti, l+1

(
1− g−1

(
βT
l Zi, t

)) ]
}

(33)

In the above model, we are making an explicit assumption on the conditional distribution of Yi,t

given all the previous events times. By successive conditioning, we actually are implicitly making an
assumption about the joint distribution of all the S event-times Ti, 1, · · · , Ti, S (see Equation (28)).
Sometimes, this assumption may be not easy to verify. On the other hand, even if βl is constant over
l, there are S − 1 more covariates than the single event case. When S is large compared to N , the
estimates of parameters will have large standard errors.
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3.4 Estimation and prediction

We consider the model defined by Equation (30) – (32). When there is no censoring, the likelihood
function is given by Equation (33). We now turn to the case where the responses are non-informatively
right censored. First, we may assume Ti, 0 = 0. Note that we have assumed Ti, l )= Ti, l′ for l )= l′ and
l, l′ = 1, 2, · · · , S in Section 3.1. However, it is possible that Ti, 0 = 0 = Ti, 1. For each individual
i, we observe several times, the last one being the event-time for the last event or censored time, and
the previous times as the event-times prior to the last observation. If the last observed time is the time
to the last event, there is no censoring; otherwise the observation is right censored.

Denote the last observed time by the random variable τi and its value by ti, where the censoring
time is generated by a random variable Ci. Suppose for each individual i, prior to the last observed
time ti, we observe Ki ∈ {0, 1, . . . , S} events. Without censoring Ki = S − 1, τi = ti = Ti, S

and Ci > Ti, S ; otherwise, τi = ti = Ci and ti,Ki ≤ Ci < Ti,Ki+1. Just as before, we define a
censoring indicator δi, which takes values 0 or 1 according as the last observation is censored or not.
Then we can easily show that, under the non-informative right censoring assumption, the MLE equals
the parameter value that maximizes the following function,

L′ (βl) =
N∏

i=1

{
pr
(
Ti, 1 = ti, 1, · · · , Ti,Ki = ti,Ki , Ti,Ki+1 = ti

∣∣Xi, t′∈Z
)δi ·

pr
(
Ti, 1 = ti, 1, · · · , Ti,Ki = ti,Ki , Ti,Ki+1 > ti

∣∣Xi, t′∈Z
)1−δi

}
. (34)

The first factor on the RHS of the above equation is 1 when δi = 0, and when δi = 1, it is given by
Equation (28). When δi = 1, the second factor is 1 and when δi = 0, it is

pr
(
Ti, 1 = ti, 1, · · · , Ti,Ki = ti,Ki , Ti,Ki+1 > ti

∣∣Xi, t′∈Z
)

=
Ki−1∏

l=0

[
pr
(
Yi, ti, (l+1)

= l + 1
∣∣∣Yi, (ti, (l+1)−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z

)
·

ti, (l+1)−1∏

t=ti, l+1

pr
(
Yi, t = l

∣∣Yi, (t−1) = l, Ti, 1 = ti, 1, · · · , Ti, l = ti, l, Xi, t′∈Z
) ]

·

ti∏

t=ti,Ki
+1

pr
(
Yi, t = Ki

∣∣Yi, (t−1) = Ki, Ti, 1 = ti, 1, · · · , Ti, l = ti,Ki , Xi, t′∈Z
)
·

pr
(
Yi, 0 = 0

∣∣Xi, t′∈Z
)
. (35)

Once model parameters are estimated, the prediction procedure is not very different from the case
of a single event. We only note here that it will be computationally challenging to predict all the
future events for a new individual at the same time. Instead, we focus on the time for the next event
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conditioned on known previous event-times.

4 Example

Here, we briefly show an application of our model to a single phenological event – blooming of pear
trees.

4.1 Data and objectives

Representative bloom dates of pear trees in Summerland of British Columbia, Canada, between 1937
and 1964 were recorded. In each year, a pear tree blooms at most once, and the bloom date is counted
as the number of days from the first day of a year to a representative bloom date of all the pear trees
in the area under consideration in that year. Note that the time origin (t0) here is set to January 1st of
each year. Daily maximum and minimum temperatures in the same area in the corresponding years
are also collected. It is well known in the agricultural science community that the timing of a bloom
event is closely related to a quantity “AGDD” – the accumulation (cumulative sum) of the so-called
growing degree days (GDD) defined by

AGDD (t) =
t∑

k=t0

GDD (k) , (36)

where t0 is the time origin, t is the current time (discrete; on daily scale), and GDD is defined as

GDD (k) =

{
Tmin(k)+Tmax(k)

2 − Tbase if Tmin(k)+Tmax(k)
2 > Tbase

0 otherwise
, (37)

where k is discrete time with the unit of day, Tmin (k) and Tmax (k) are daily minimum and maximum
temperatures, and Tbase is a thresholding constant temperature which is unknown. Note that (1)
AGDD is a function of time; (2) Tbase is an unknown parameter; (3) AGDD is not a continuous
function of Tbase. The objective of this data analysis is to predict timings of future blooming events
and to estimate Tbase.

4.2 Estimation

Exploratory analysis suggests that the auto-correlation of the bloom dates over years are negligible.
We may therefore assume that these bloom dates on different years are independent realizations from
the same population. We apply the regression model for single progressive event described in section
2.3 to the dataset, using the logit function as link function. Note that years now play the role of
“individuals”. We assume in any given year, that on any day, the probability of blooming is only
related to AGDD evaluated at the current time, i.e. that the vector Xi, t contains an intercept and
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the AGDD value on the current day. This model then contains three unknown parameters: the
intercept, the coefficient for AGDD evaluated on the current day, and Tbase. The MLEs of them
are: β̂intercept = −22.27, β̂AGDD = 0.07 and β̂Tbase = 2.97. A question about these estimators is
whether they are consistent. Wald’s (1949) famous sufficient conditions for the consistency of MLE
requires the likelihood function to be a smooth function of the parameters. This is not satisfied in our
model because of the presence of Tbase, but we were not able to address this issue through theoretical
analysis.

Instead we explored the issue of consistency through a simulation study. More precisely, we
generated 1000 data pairs of bloom dates and daily average temperatures of size 30 years, 80 years,
150 years, and 400 years respectively. We then applied our model to these datasets and calculated
the MLE of each parameter. For each sample size and parameter, we used the average of 1000 values
of the MLE to estimate the mean of the MLE, and their sample variance to estimate the variance of
the MLE. We found that estimated means of the MLEs get closer to the true parameter values as the
sample size increase from 30 to 400. Moreover, the estimated variances of the MLEs decreases as the
sample size increases. This suggests the MLEs are consistent and gave us confidence in the value of
the estimators.

On the other hand, rather than to rely on the validity of asymptotic theory to estimate the uncer-
tainties associated with the MLEs, we used bootstrap confidence intervals. However, the complexity
of our model makes it unclear whether the bootstrap estimates of the quantiles of the MLEs con-
verge to the true quantiles. We again performed a simulation study to assess that convergence, the
details being similar to those above and hence omitted for brevity. The results show that the lengths
of quantile-based 95% bootstrap intervals of the MLEs get very close to those of the estimated 95%
intervals of the MLEs obtained using the simulated data when the sample size increases. The boot-
strap intervals are slightly biased though (the ends of the bootstrap interval are always slightly smaller
or bigger than the estimated interval using the simulated data). Overall the results backup use of the
bootstrap intervals to reflect uncertainties in the MLEs. The quantile based 95% bootstrap confidence
intervals are, for the intercept, (-37.95, -16.62), for the coefficient for AGDD (t), (0.055, 0.122), and
for Tbase, (1.93, 3.81). We see that the both the intercept and the coefficient for AGDD (t) differ
significantly from 0 at the 5% level.

4.3 Prediction

To use (23) or (24) to predict the representative bloom date of the pear trees of the next year in
Summerland, we need to predict the daily average temperature ((Tmin (t) + Tmax (t)) /2) of that year
first. After removing seasonality in daily historical temperature data, We fit an ARIMA model to the
residual historical temperature. Note the deseasonalized historical temperature series contain weak
periodic signals with longer periods, and therefore is not strictly stationary. Nevertheless, ARIMA

may still be used as a a reasonable approximation. By comparing Bayesian information criterion
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(BIC) for ARIMA models of different orders, we settled on ARIMA (3, 0, 1) as our final model
for generating future temperatures in any given growing season.

We now turn to prediction. At the end of the current year, we generate 1000 series of the daily
average temperatures of the whole next year using the fitted ARIMA (3, 0, 1) model. We then
use (24) to calculate the probability of the blooming event happening on each successive day of the
following year. This way we get a (discrete) predictive distribution for the timing of that blooming
event.

So suppose that we are on the end of the first day of the new year with its observed average daily
temperature. We then apply the ARIMA model to generate 1000 temperature series starting from the
second day of the new year. As above, we can use (24) to get another predictive distribution for the
timing of the blooming event. We repeat this procedure on each successive day, until the true bloom
date, at which time prediction ceases. If the true bloom date is around day 129, we then get 129
successive predictive distributions. What we expect to see are increasingly more accurate predictions
as the days progress toward the bloom date and more and more information about the daily averages
temperatures come to hand for that season. Growing confidence in that prediction would provide an
increasingly strong basis for management decisions.

To see if our expectations are realized, we performed a leave-one-out prediction procedure – at
every step, leave out one year of data for assessment and use the remaining years for training the
model to predict the bloom date in the left-out year. For each left-out year, we follow the prediction
scenario described above. As a result we get 28 years (1937–1964) of assessments, with a total of
3523 predictive distributions, the average of the bloom dates for those years being about day 126. For
each of these predictions, we calculate the median of the predictive distribution as a point prediction
of the new bloom date. Along with that we calculate a quantile-based 95% prediction interval (PI)
for the new bloom date. With all the 3523 predictive distributions, we then can estimate the root
mean square error (RMSE) and mean absolute error (MAE) of the prediction, as well as the coverage
probability of the 95% PI. The results are as follows: the RMSE is 5.65 days; the MAE is 4.36 days;
the estimated coverage probability of the 95% PI is 99%; the average length of the PIs is 30 days.

The coverage probability of the 95% PI is too high, plausibly because in the ARIMA(3, 0, 1)

model we have incorporated in the random noise term, the variability in the temperature series caused
by deterministic periodic signals other than seasonal variation. In any case, reducing the variance of
the white noise in the ARIMA(3, 0, 1) model by half of its estimated value yields improvement and
we get: the RMSE is 5.79 days, the MAE is 4.33 days, the estimated coverage probability is about
94%, and the average length of the PIs is 21 days.

As noted above, we expected the prediction to become more accurate as time approaches the real
bloom date. To check this, we calculated the MAE and the average length of the 95% PIs each day
over the years of interest, beginning 90 days prior to the bloom date (call it “lag -90”) to 1 day prior to
the bloom date (“lag -1”). The results for the MAE and the average length of the 95% PIs are shown
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in Figure 1 and 2 respectively. We see that the MAE does become smaller and the average length of
the 95% PIs, shorter as the actual bloom date approaches in line with our expectations. In fact, by the
time we reach one month prior to the bloom date, the prediction has become quite accurate (the MAE
is about 3.5 days).
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Figure 1: Change of the MAE with the change of lag. The point prediction becomes more accurate
when time approaches the bloom date.

The above results for prediction are influenced by two models: one is our regression model for a
single progressive event, the other is a crude ARIMA model for daily average temperature. To check
the pure performance of our regression model, we performed the leave-one-out procedure again. But
this time, we assume all the future daily average temperatures are known. Note that, in this case, we
cannot give a sensible estimate for the coverage probability of the 95% PIs since for each test year, we
can only get one predictive distribution. The results are very good: the RMSE is 2.64 days, the MAE
is 1.89 days, and the average length of the 95% PIs is 9.21 days. Although this is no longer a real
prediction, these results tend to validate our regression model for the blooming event. This finding
also demonstrates the importance of modeling the covariate series accurately and points to the need
of improving the temperature forecasting models.
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Figure 2: Change of the average length of 95% PIs with the change of lag. The predictive uncertainty
decreases when time approaches the bloom date.

5 Concluding Remarks

The regression models presented in this paper aim at the prediction of the times of progressive events
when time-dependent covariates that are known up to discrete time points are present. Instead of
directly modeling the hazard function, we model the process of the binary state indicators. This way,
all the time-dependent information can be easily incorporated by considering a model for a binary
variable at each time point. When there is only a single event, the process of the state indicators is a
Markov chain. But when there are multiple events, that process does not necessarily have a Markovian
structure. In this case, some additional assumptions are needed for simplifying the probability model
and circumventing computation challenges that would otherwise arise. Application of our approach
to bloom date data has shown that the prediction using it can be quite accurate. Although originally
designed for phenological data, these models should be useful for a broad range of survival data.

A restrictive distributional assumption in our models is that the process of the state indicator needs
to be time-homogeneous. One way to relax this assumption might be to allow the model parameters
to change with time. Another restrictive assumption is that in the multiple events case, we require that
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no two events can happen at the same time point. However, in practice, this may occur, especially
when the discrete time scale is coarse. We will need some further work to remove this restriction.
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