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Abstract

This paper presents an approach to phenology, one based on the use of a method
developed by the authors for event history data. Of specific interest is the prediction
of the so-called “bloom–date” of fruit trees in the agriculture industry and it is this
application which we consider, although the method is much more broadly applicable.
Our approach provides sensible estimate for a parameter that interests phenologists –
Tbase, the thresholding parameter in the definition of the growing degree days (GDD).
Our analysis supports scientists’ empirical finding: the timing of a phenological event
of a prenniel crop is related the cumulative sum of GDDs. Our prediction of future
bloom–dates are quite accurate, but the predictive uncertainty is high, possibly due to
our crude climate model for predicting future temperature, the time-dependent covariate
in our regression model for phenological events. We found that if we can manage to get
accurate prediction of future temperature, our prediction of bloom–date is more accurate
and the predictive uncertainty is much lower.

1 Introduction

Phenology, in agricultural science, is the study of periodic plant developmental stages and their
responses to climate (especially to seasonal and interannual variations in climate) and other
physical variables (e.g. photoperiod). For example, an apple tree, in each of its development
cycles, may go through developmental events from bud-bursting, blooming to fruiting. It
is well known in the agricultural science community that climate variables, especially daily
average temperature, and possibly photoperiod are major factors that influence the timings
of phenological events. But one question remains: how to model their relationship so as to
predict the timings of future phenological events?
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Many empirical biological models have been built for representing the relationship between
phenological events and climate variables (see Chuine, 2000, for a comprehensive review).
These models are deterministic and the values of parameters in the models are either deter-
mined experimentally or obtained as point estimates given by least squares to yield best fits to
observed data. The uncertainties associated with these parameter estimates and predictions
are often not assessed.

Statistical models have also been applied to phenology. Ordinary least square (OLS) linear
regression is widely used to study the linear association between timings of phenological events
and climate variables. Survival data analysis techniques, such as the Cox model, have also been
applied (e.g. Gienapp et al., 2005). However statistical issues arising in phenological data
analysis are quite complicated. Firstly, the phenological events are irreversible progressive
events – a tree cannot bloom without having gone through bud-bursting and leafing, and
once it blooms, it cannot repeat the earlier stages in the same development cycle. Secondly,
the climate variables are external time-dependent covariates (i.e. covariates not influenced by
the occurrence of the events of central interest, Kalbfleisch and Prentice, 2002). When time-
dependent covariates are present, OLS linear regression is not suitable for prediction since
the covariates values at future event times are unknown. The Cox model is also not suitable
for prediction because it does not extrapolate beyond the last observation. Furthermore, the
Cox model may be subject to substantial loss of efficiency due to the strong trends in climate
covariates.

This paper presents an approach to prediction of the bloom–dates of perennial crops
based on time-dependent climate covariates using a regression model developed by authors
for progressive event history data (Cai et al., 2010). This approach can incorporate all time-
dependent covariate information, so there is no loss of efficiency. Also, prediction is easily
formulated in this framework. Finally this approach can be applied in other areas of applica-
tion, for example in medical research, to the analysis of survival data with progressive health
outcomes.

The report is organized as follows. In Section 2 we describe the data used in our application
along with its objectives. Then in Section 3 we describe the approach used in our analysis.
That analysis is presented in Section 4. Finally conclusions are given in Section 5.

2 Data and objectives

The data represents the bloom–dates of six high-value perennial agricultural crops (apricot,
cherry, peach, prune, pear, and apple) in Summerland, British Columbia, Canada, recorded
during the years between 1937 and 1964 inclusive. Each year, the blooming event occurs at
most once for each crop. The bloom date is then recorded as the number of days from the
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first day of a year to a “representative” bloom–date of all the trees in the area in that year.
Daily maximum and minimum temperatures in the same area in the corresponding years are
also recorded.

Phenological studies (e.g. Murray et al., 1989) suggest that the occurrence of a phenolog-
ical event may be mainly influenced by the accumulation of the so-called growing degree days
(GDD),

GDD (t) =

{
Tmin(t)+Tmax(t)

2 − Tbase if Tmin(t)+Tmax(t)
2 > Tbase

0 otherwise
, for t > t0 , (1)

where the time t is recorded in days, t0 is a well-defined temporal origin, and Tmin (t) (re-
spectively Tmax (t)) is the daily minimum (respectively maximum) temperature, The constant
Tbase is a unknown constant threshold temperature. The time origin t0 is usually chosen as
the start–date of a development stage (Chuine, 2000). Here, for blooming, we choose t0 as
January 1st. Although this choice may have an impact on the analysis we do not believe it to
be significant. For as can be seen from (1), the actual start–date is controlled by Tbase. If we
choose some date earlier than that start–date, the daily average temperatures, Tmin(t)+Tmax(t)

2 ,
in those earlier days will be smaller than Tbase, and the corresponding GDDs will be 0. There-
fore, that choice will not impact the results of the analysis. For the bloom–date, the choice of
January 1st may be far earlier than the start–date of the blooming stage, and so its impact
on results should be negligible.

The results of this paper aim to answer the following questions: (1) In what form of
aggregation does the GDD most influence the date of the blooming event. More specifically,
is it the cumulative sum of the GDD, a weighted cumulative sum, or something else? (2)
What is the value of Tbase? (3) Most importantly, how should the future bloom–date be best
predicted the and how should the uncertainty associated with the prediction be best assessed?
From a statistical scientist’s perspective, the first question is a model selection problem, the
second, an estimation problem, and the last, a prediction problem.

3 Methodology

This paper uses a regression method for a single phenological event developed by authors
(Cai et al., 2010). This method is based on a model that uses the observed (discrete) process
that represents the state indicator of a phenological event. The blooming event is a single
progressive event, i.e. in the development cycle of a plant, once it blooms, the plant stays in the
“occurred” state and cannot return to the “not–occurred” state. At each time t, we denote the
state of the event by an indicator Yt, being 0 or 1 according as the event has “occurred” or not.
It can be shown that for such an event, the process of the state indicator Yt is a Markov chain.
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Let Xt be an associated time-dependent covariate vector, and Pt ≡ P (Yt = 1|Yt = 0, Xt),
where P (·) is a probability set function. Then at each time point t, we can consider a model
for the binary event Yt:

g (Pt) = f (Xt; β) , (2)

where g : (0, 1) → (−∞, ∞) is a monotonic link function, and f : (−∞, ∞) → (−∞, ∞) is
a function of Xt with parameter vector β, which encodes the relationship between Pt and Xt.
Here we take g to be the logit funcion and restrict f to be a linear function of β. One then
can derive the probability that a plant blooms at any time point t after the time origin t0. If
there are N independent observations, the likelihood function of the data then can be easily
written down accordingly. Up to this point, the parameter vector β can be estimated by the
maximum likelihood (ML) method.

After the model parameters have been estimated, the fitted model can be used to predict
future bloom–dates. For a new year, in which the bloom–date is unknown, take the time origin
t0 as January 1st and suppose the current time is tc ≥ t0, up to which the blooming event has
not occurred. Denote the unknown bloom–date of this new year as T ∗, with corresponding
state indicator Y ∗

t at time t ≥ t0. Now, since the bloom date of a plant usually is related to
the associated climate covariates up to the bloom–date itself, we need to predict the future
values of the climate variables first. For this purpose we fit a ARIMA time series model.
Then at any time t ≥ t0, we denote the covariate vector associated with Y ∗

t by X ∗
t . Because

we have observed the value of X ∗
t up to the current time tc, we may decompose X ∗

t into
two parts: one part X ∗

t, obs consists of covariates evaluated from time 0 to time tc, which we
have observed exactly, and the other part X ∗

t, pred consists of predicted covariates values from
tc + 1 to t, whose predictive distributions are given by the ARIMA model. Treating the
maximum likelihood estimate (MLE) of the parameter vector β̂ as if it were the true value
of the parameter vector, we can obtain a “plug-in” formula for the predictive probability that
the blooming event occurs at time tc +K, for any K > 0:

Pβ̂

(
T ∗ = tc +K

∣∣X ∗
tc+K, obs

)

=

ˆ

Pβ̂

(
T ∗ = tc +K

∣∣X ∗
tc+K, obs, X ∗

tc+K, pred

)
dP

(
X ∗
tc+K, pred

)

=

ˆ

g−1
(
f
(
X ∗
tc+K ; β̂

))K−1∏

s=1

(
1− g−1

(
f
(
X ∗
tc+s; β̂

)))
dP

(
X ∗
tc+K, pred

)
. (3)

Generate a sample of large size L (e.g. thousands or more) from the predictive distribution
of X ∗

tc+K, pred, and denote the sample points as X ∗
tc+K, pred (l) (l = 1, · · · , L). The above
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predictive probability then can be approximated by Monte Carlo (MC) integration,

Pβ̂

(
T ∗ = tc +K|X ∗

tc+K, obs

)
≈ 1

L

L∑

l=1

Pβ̂

(
T ∗ = tc +K

∣∣X ∗
tc+K, obs, X ∗

tc+K, pred (l)
)
. (4)

Note that in this “plug-in” approach, the uncertainties associated with the unknown param-
eters are not taken into account. However one may use a re-sampling method such as the
bootstrap to assess their effect.

Cai et al. (2010) also provides a regression model for multiple phenological events, which
will not be needed here.

4 Analysis

In this section, we apply the method described above to the bloom–dates of the six different
crops separately, and present the results of the analysis.

4.1 Assumptions

For each crop, the bloom–date over years is a time series. However, sample auto-correlations
suggest that the auto-correlations of the bloom–dates over years are negligible for all six crops.
We therefore assume that for each crop, the bloom–dates of different years are independent
realizations from the same population.

4.2 The relationship between bloom–dates and GDD

As mentioned above, scientists believe that the bloom–dates are related to the accumulation
of GDD. In particular, empirical results suggest that it is the AGDD, the cumulative sum of
GDD starting from the time origin t0, that most influences the timing of the blooming event
(e.g. Chuine 2000, Murray et al. 1989):

AGDD (t) =
t∑

k=t0

GDD (k) , (5)

where t0 is time origin and t ≥ t0 is recorded in days, the same time scale as that of the GDD.
Here we seek by statistical means, the form of GDD aggregation that best models our

data. For example, one might conjecture that the GDD evaluated at times near the bloom–
date would predict the blooming event better than those in the past. For this model, using a
weighted sum of GDDs with weights increasing over time as a covariate may plausibly yield
a better model fit than using AGDD, an unweighted sum of GDDs over time, as a covariate.
To investigate this conjecture, we fitted the regression model described in Section 3 to the
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data with bloom–date as the response, and we consider the following alternative ways of
incorporating GDD as a covariate Xt:

Model AGDD Take f (Xt; β) in Equation (2) as a linear function of AGDD evaluated at
the current time t:

f (Xt; β) = a+ bAGDD (t) = a+ b
t∑

k=t0

GDD (k) , (6)

where Xt = AGDD and the subscript T stands for the transpose of a vector or matrix.

Model ExpSmooth Take f (Xt; β) as a linear function of a weighted sum of GDD from the
time origin t0 to the current time t:

f (Xt; β) = a+ b
t−t0∑

k=0

(1− γ)k GDD (t− k) , (7)

where Xt =
∑t−t0

k=0 (1− γ)k GDD (t− k), β = (a, b, γ, Tbase)
T , and 0 ≤ γ ≤ 1. We call

this model “ExpSmooth” because the weighted average term is similar to the exponential
smoothing used in time series (Chatfield, 2004).

Model GDD Take f (Xt; β) as a linear function of GDD evaluated at the current time t:

f (Xt; β) = a+ bGDD (t) , (8)

where Xt = GDD (t) and β = (a, b, Tbase)
T .

Model 5Days Take f (Xt; β) as a linear function of the GDD evaluated at the 5 most recent
days:

f (Xt; β) = a+
5∑

k=1

bkGDD (t− k + 1) , (9)

where Xt =
(
GDD (t) , GDD (t− 1) , GDD (t− 2) , GDD (t− 3) , GDD (t− 4)

)T and
β = (a, b1, b2, b3, b4, b5, Tbase)

T

Note that in each of the above models, Tbase is a parameter included in the expression of
GDD.

Model AGDD incorporates the empirical results referred to above, and it serves as a basis
of comparison. Model GDD is used to assess whether the probability of blooming is influenced
mainly by the GDD evaluated at the current time. Model 5Days tests the theory that the
GDD evaluated at each of many time points prior to the current time might be important
predictors, each having a different effect on Pt. In the latter model, we give each GDD
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evaluated at several days prior to and at the current day a different regression coefficient.
However we consider only GDD evaluated at the five most recent days, because given 28 years
of bloom–dates, we won’t be able to get good estimates of model parameters, if the number
of parameters is too large.

We found the most promising model to be Model ExpSmooth. This model, f (Xt; β)

is a linear function of the weighted sum of GDD evaluated from the time origin t0 to the
current time t. For a fixed γ (0 ≤ γ ≤ 1), (1− γ)k, the weight on the GDD at lag k, the
number of days prior to the current date, decays as k increases. This reflects the idea that
the GDD evaluated at recent time points contribute more to the probability of occurrence of
the blooming event at the current time than do the GDD evaluated at time points long before
the current time t.

In Model ExpSmooth, the value of γ controls the speed of with which the weight decays.
Figure 1 shows how the weight decays when the lag increases for different values of γ. When
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Figure 1: The actual weights in the weighted sum in Model ExpSmooth for different γ pa-
rameter values. The weight decays when the lag (number of days prior to the current date)
increases. A larger γ corresponds to a faster speed of decaying.

γ becomes larger, the weight decays faster. In the extreme case of γ = 1, the weighted sum
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is just GDD evaluated at the current time and so Model ExpSmooth becomes Model GDD.
If γ becomes smaller, the weight decays slower. In the extreme case of γ = 0, i.e. no decay,
Model ExpSmooth becomes Model AGDD. In other words, Model GDD and AGDD are only
special cases of Model ExpSmooth. The value of γ, however, is not known in advance. Thus,
we treat it as a model parameter, and estimate it using the maximum likelihood estimator
(MLE).

Table 1: BICs of the fitted models

AGDD ExpSmooth GDD 5Days
Apricot 148.70 147.53 249.65 239.01
Cherry 163.69 157.41 255.72 243.73
Peach 146.68 146.49 255.06 255.25
Prune 142.79 141.91 224.14 232.26
Pear 132.57 133.14 231.19 224.63
Apple 126.31 128.79 265.11 254.44

For every crop, we fit all the above models to the data, and compare the Bayesian in-
formation criterion (BIC) for each with the results in Table 1. Clearly, for all crops Model
AGDD and ExpSmooth are essentially equivalent and both are much better than the other two
models. The estimated smoothing parameter, γ̂, in Model ExpSmooth for different crops are
shown in Table 2. All γ̂’s are very small, which suggests that the weights in the fitted Model

Table 2: Estimated smoothing parameter γ of Model ExpSmooth for different crops

Apricot Cherry Peach Prune Pear Apple
0.014 0.020 0.0083 0.016 0.023 0.0036

ExpSmooth’s decay very slow, and therefore that the fitted Model ExpSmooth resembles the
fitted Model AGDD for our data. This statistical result supports scientists’ experimental
result: the accumulation of GDD is roughly in the form of a sum with equal weights, in other
words the AGDD.

Although the quality of the models, ExpSmooth and Model AGDD, seem roughly equiv-
alent, we study only Model AGDD for the following reasons: (1) it has been the traditional
choice; (2) it is more parsimonious, having one less parameter, making it preferable for the
small samples we need to deal with.

4.3 Estimating model parameters

The estimates of parameters in Model AGDD in the above discussion were obtained by maxi-
mum likelihood (ML) and these are shown in Table 3. Are these estimated parameters close to
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Table 3: Estimated parameters of Model AGDD

Model â b̂ T̂base

Apricot -13.49 0.061 2.65
Cherry -11.72 0.043 3.35
Peach -19.67 0.043 0.38
Prune -18.23 0.057 2.80
Pear -22.27 0.07 2.97
Apple -26.77 0.07 2.82

the true values of the parameters? Wald (1949) gave famous sufficient conditions that would
ensure that at least as the sample size approaches infinity, the ML estimates converge to their
true counterparts, a property called consistency. These conditions in turn lead to others that
ensure not only consistency but as well, other desirable properties, namely an approximately
normal distribution and asymptotic efficiency. However, one of those conditions requires that
the likelihood function be a continuous function of parameters while the definition of the
GDD (1) ensures that the likelihood function for Model AGDD is not a continuous function
of Tbase. Thus we cannot apply Wald’s theory and we use a different approach to assess
estimator quality, namely simulation.

In the simulation study, we generate data as follows. First, we get one year of long
term averaged daily average temperature series by taking the average of the daily average
temperature from year 1916 to 2005 in the Okanagan region of British Columbia for each day
of a year. We then add a noise process to this long term averaged series. This noise process
is generated from an ARMA(3, 1) model:

Xt = 1.83Xt−1 − 0.96Xt−2 + 0.12Xt−3 + Zt − 0.96Zt−1 (10)

where the white noise Z has a normal distribution with mean 0 and variance 5.253 for any t.
This ARMA model is fitted to the same daily average temperature used for extracting long
term averaged series above. Now we get one year of simulated daily average temperature data.
We calculate the GDD of the generated temperature data with parameter Tbase = 3.5. Now
starting from day 1, we generate a random number Y1 from a Bernoulli distribution Ber (p)

with parameter p = logit−1
(
−13 + 0.04

∑1
k=1 GDDk

)
. If Y1 = 0, we generate

Y2 ∼ Ber
(
logit−1

(
− 13 + 0.04

2∑

k=1

Xk

))
. (11)

Again, as long as Y2 = 0, we will generate Y3 similarly, and so on until we get a 1 at time t.
This t is the simulated bloom–date. Using this procedure, we generate one year of GDDs and

9



a bloom–date for that year, as one year of data.
Now we generate 30 years of data as one sample (i.e. a sample of size 30), and we generate

1000 such samples. For each sample i (i = 1, · · · , 1000), we apply Model AGDD, and calculate
the MLEs of the model parameters: âi, b̂i, and T̂basei. For each parameter, say a, we calculate
the estimated mean of the MLE,

¯̂a =
1

1000

1000∑

i=1

âi , (12)

the estimated variance of the MLE,

1

1000− 1

1000∑

i=1

(
âi − ¯̂a

)2
, (13)

and the standard error of the mean of the MLE,
√

1
1000−1

∑1000
i=1

(
âi − ¯̂a

)2

1000
, (14)

which characterize how well the estimated mean approximate the true mean of the MLE.
We repeat the above procedure for sample sizes S of 80, 150 and 400. If the MLEs were

consistent, we would be able to see as the sample size becomes larger, that for each parameter
the estimated mean comes closer to the true value of the parameter, while the estimated
variance becomes smaller. Table 4 shows that when the sample size increases, the estimated
means of the MLEs of a and b become closer to the true parameters values a = −13 and
b = 0.04. When the sample size reaches 400, the estimated means are basically the true
values. For parameter Tbase, the estimated means using different sample sizes are all fairly
close to the true value of Tbase = 3.5. Standard errors of the means (Table 5) show that
these estimated means are reliable. On the other hand, when the sample size increases, the
estimated variances (Table 6) of all parameters become smaller. These facts suggest that in
Model AGDD, the MLEs of all parameters might be consistent.

Table 4: Estimated means of the MLEs. When the sample sizes increases, the estimated
means become closer to the true parameter values of a = −13, b = 0.04 and Tbase = 3.5

S = 30 S = 80 S = 150 S = 400
â -13.82 -13.23 -13.20 -13.07
b̂ 0.043 0.041 0.041 0.040

T̂base (◦C) 3.50 3.50 3.48 3.51
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Table 5: Standard errors of the means the MLEs. Small standard errors imply that the
estimated means of MLEs are reliable.

S = 30 S = 80 S = 150 S = 400
â 0.066 0.035 0.026 0.015
b̂ 0.0002 0.0001 0.0001 0.0001

T̂base (◦C) 0.027 0.015 0.010 0.0065

Table 6: Estimated variances of the MLEs. When the sample size increases, the estimated
variances become smaller.

S = 30 S = 80 S = 150 S = 400
â 4.31 1.20 0.66 0.22
b̂ 0.0001 0.0000 0.0000 0.0000

T̂base (◦C) 0.70 0.21 0.11 0.04

4.4 Assessing the uncertainty of the MLEs

As noted above, we cannot use standard asymptotic results (e.g. in Cox and Hinkley, 1979)
to find large sample approximations to the standard errors of parameter estimators, forcing
us to use an alternative approach. The one we choose, the bootstrap (Efron and Tibshirani,
1994) if valid would allow us to not only estimate the standard error of the MLEs but as well
to find quantile based confidence intervals for the model parameters. However we know of
know general theory that would imply that validity in this particular application, leading us
to again resort to simulation to explore this issue.

Using the simulated data seen in section 4.3, for each different sample size S, we estimate
the true variances of the MLEs by the sample variances of the MLEs obtained using the 1000
samples. The standard deviation of the MLEs is then estimated by the square root of these
sample variances. The results are shown in the “Sim.” fields in Table 7. We can then see how
the bootstrap estimates the standard deviations of the MLEs compare with the corresponding
estimates obtained from the simulated data.

To get these results, we randomly chose for each different sample size, one sample from the
1000 simulated samples and then 1000 bootstrap samples from this one sample of response and
predictor pairs. For each such bootstrap sample, we calculated the MLEs of the parameters.
For each parameter, we then took the square root of the sample variance of the MLEs obtained
from the 1000 bootstrap samples, as the bootstrap estimate of the standard error of the MLE
for that parameter. The results are shown in the “Boot.” fields in Table 7. We can see that
for each parameter, when the sample size becomes large, the bootstrap estimates and the
estimates obtained using the simulated data both become small. The bootstrap estimates are
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always larger than the estimates obtained from the simulated data, but when the sample size
gets large, the difference between them becomes small. In fact, for a sample size of 400, the
two estimates are fairly close. This may suggest the bootstrap estimates do converge to the
true standard deviations of the MLEs, although the rate of convergence seems low.

Table 7: Comparison of bootstrap estimates of the standard deviations of the MLEs and
the estimated standard deviations using simulated data. “Boot.” stands for the bootstrap
estimates; “Sim.” stands for the estimates obtained using simulated data. As the sample size
increases, the estimated standard deviations calculated using the two different approaches
become smaller and also closer.

S = 30 S = 80 S = 150 S = 400
Boot. Sim. Boot. Sim. Boot. Sim. Boot. Sim.

â 2.23 2.08 1.55 1.10 0.71 0.81 0.54 0.46
b̂ 0.0102 0.0076 0.0050 0.0041 0.0034 0.0031 0.0017 0.0018
T̂base(◦C) 1.36 0.84 0.49 0.46 0.27 0.33 0.25 0.21

We also need to obtain 95% confidence intervals for the model parameters. Using the
MLEs obtained from the simulated data, we can get quantile-based confidence intervals for
the model parameters. We also can calculate quantile-based bootstrap confidence intervals
using MLEs obtained from the bootstrap samples of one simulated sample. The results are
shown in Table 8. We see that for each parameter, the lengths of confidence intervals obtained
by the two approaches are roughly the same, and as sample size gets larger, they both become
smaller. However, the confidence intervals obtained using the two different approaches do
not always agree – the bootstrap intervals seem to always have a bias. Fortunately, when
the sample size is large, the difference between the two kinds of intervals is pretty small
– it is alway smaller than 1/20 of the length of the confidence interval obtained from the
simulated data when sample size is 400. We tried a bias corrected version of quantile based
bootstrap confidence interval (“BC” method in Efron and Tibshirani 1986), but the results
are even slightly worse than this raw version. Overall, although a small bias may exist, use
the quantile-based bootstrap confidence interval seems reasonable in our application.

Table 9 shows the observed range (minimum value to maximum value) of the bootstrap
MLEs. We see that for each parameter and all the four choices of the sample sizes S, this
range covers and is much larger than the 95% confidence interval obtained using the simulated
data. Without knowing the actual coverage probability, this range cannot be directly used
as a confidence interval. However, the usefulness of it is that if this range does not contain a
value, say θ0, then we get stronger evidence of saying that the parameter value is not θ0 than
the possibly biased 95% bootstrap confidence interval not containing θ0.

The bootstrap estimates of quantile-based 95% confidence intervals of the MLEs of Model
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Table 8: Comparison of quantile-based 95% confidence intervals based on bootstrap and
simulated data. “Boot.” stands for the bootstrap estimates; “Sim.” stands for the estimates
obtained using the simulated data. As the sample size increases, the confidence intervals
calculated using the two different approaches both become smaller, but they do not always
agree very well.

S = 30 S = 80 S = 150 S = 400
a (Boot.) (-17.44, -10.25) (-17.94, -12.54) (-13.96, -11.47) (-14.31, -12.51)
a (Sim.) (-17.60, -10.48) (-15.16, -11.38) (-14.63, -11.75) (-13.82, -12.20)
b (Boot.) (0.034, 0.066) (0.036, 0.054) (0.038, 0.050) (0.036, 0.042)
b (Sim.) (0.033, 0.061) (0.035, 0.050) (0.036, 0.047) (0.038, 0.044)
Tbase(◦C) (Boot.) (2.45, 5.43) (2.02, 3.79) (3.64, 4.60) (2.82, 3.58)
Tbase(◦C) (Sim.) (2.14, 5.13) (2.72, 4.39) (2.95, 4.12) (3.16, 3.90)

Table 9: Observed ranges of the bootstrap MLEs. These ranges always contain the quantile-
based 95% confidence intervals based on the simulated data.

S = 30 S = 80 S = 150 S = 400
â (-36.65, -6.43) (-21.67, -8.55) (-15.50, -8.98) (-15.17, -7.68)
b̂ (0.0055, 0.1527) (0.0290, 0.0652) (0.0324, 0.0575) (0.0342, 0.0453)
T̂base(◦C) (-19.00, 11.44) (0.90, 6.71) (3.11, 6.52) (2.51, 7.09)

AGDD for all crops are shown in Table 10. Given the data, we are interested in knowing
whether the regression coefficients a and b are significantly different from 0. Since none of
the 95% bootstrap confidence intervals of a and b contains 0, we have a strong evidence that
neither a and b are 0 for all crops. The observed ranges of the bootstrap MLEs (Table 11)
also support this conclusion – they do not cover 0.

Table 10: Quantile-based 95% bootstrap confidence intervals for the model parameters

a b Tbase

Apricot (-22.43, -12.07) (0.051, 0.096) (0.95, 4.00)
Cherry (-21.18, -10.72) (0.030, 0.095) (1.01, 5.15)
Peach (-31.69, -16.37) (0.030, 0.065) (-2.51, 1.53)
Prune (-31.04, -14.39) (0.046, 0.093) (0.18, 4.70)
Pear (-37.95, -16.62) (0.055, 0.122) (1.93, 3.81)
Apple (-39.54, -14.66) (0.060, 0.111) (1.84, 6.95)
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Table 11: Observed ranges of the bootstrap MLEs

â b̂
Apricot (-31.46, -9.49) (0.029, 0.142)
Cherry (-36.13, -7.56) (0.015, 0.150)
Peach (-40.64, -6.86) (0.0090, 0.0871)
Prune (-40.48, -7.48) (0.018, 0.178)
Pear (-62.80, -6.85) (0.023, 0.170)
Apple (-50.27, -8.90) (0.034, 0.169)

4.5 Prediction

To use Model AGDD to predict the future bloom–dates of a crop, we need to first predict the
future daily average temperature (Tmin (t) + Tmax (t)) /2. Here, we use the ARIMA model
(10) to generate future temperatures. The parameters in the ARMIA model are estimated
by fitting the model to the seasonality-removed daily average temperature series from year
1916 to 2005 in the Okanagan region of British Columbia. The order of this ARIMA model
is selected by comparing the BICs of fitted ARIMA(p, d, q) models with different orders: p

and q range from 0 to 6, and d ranges from 0 to 4.
To see how well the daily average temperatures generated from the fitted ARIMA model

approximate the truth, we use diagnostic plots. Figure 2 shows the plots of the sample auto-
correlation function (ACF) and the partial ACF (Chatfield, 2004) of the seasonality-removed
series and simulated seasonality-removed series. These two series have similar correlation
structures. However, the ACF and partial ACF do not uniquely determine a time series. The
time series plots of the two series are shown in Figure 3. We see that, the magnitudes of
variations in the seasonality-removed series are not symmetric about 0. At some time points,
the seasonality-removed series have exceptionally low values, which we do not observe in the
simulated seasonality-removed series. The cause of this difference might be that we didn’t
account for the periodic signals other than seasonal variation in the ARMIA model, or may
be that the noise in the seasonality-removed series are not inherently normal, issues to be
addressed in future work.

We now consider the prediction of bloom–dates. At the end of the current year, we generate
1000 series of the daily average temperatures of the whole next year using the fitted ARIMA
model. For each crop, we then use (4) to obtain the probability of blooming on each successive
day of the next year. This way we get a discrete predictive distribution for bloom–date of the
new year.

Now suppose that we are at the end of the first day of the new year with its observed
average daily temperature. We apply the fitted ARIMA model again to generate 1000 series
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Figure 2: The sample ACF and PACF plots of the observed seasonality-removed daily average
temperature series and simulated seasonality-removed daily average temperature series. The
simulated seasonality-removed series have similar sample ACF and PACF as the observed
seasonality-removed series.

of temperatures starting from the second day of the new year to the end of the year. We can
then get another predictive distribution for the bloom–date of the new year. We repeat this
procedure on each successive day, until the true bloom–date, at which time prediction ceases.
If the true bloom–date of the new year were day 120 for example, we would get 120 successive
predictive distributions. What we expect to see are increasingly more accurate predictions
as the days progress toward the bloom–date and more and more information about the daily
averages temperatures come to hand for that season. Growing confidence in that prediction
would provide an increasingly strong basis for management decisions.

To see if our expectaions are realized, we perform a leave-one-out prediction procedure –
at every step, for each crop, leave out one year of data for prediction assessment and use the
remaining years for training the model. Let’s consider apple as an example. For each left-out
year, we follow the above prediction scenario. We thus get 28 years (1937–1964) of assessments,
with a total of 3643 predictive distributions. For each of these predictive distributions, we
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Figure 3: Time series plots of the observed seasonality-removed daily average temperature
series and simulated seasonality-removed daily average temperature series. The magnitudes
of variations in the observed seasonality-removed series do not match those in the simulated
seasonality-removed series very well.

calculate the mean, median and mode as possible candidates for point predictions of the new
bloom–date. Also, we calculate a quantile based 95% prediction interval (PI) for the new
bloom–date. With all the 3643 predictive distributions, we can then estimate the root mean
square error (RMSE) and the mean abosolute errors (MAE) of the point predictions, and the
coverage probability and the average length of the 95% PI. The results are shown in Table
12.

We also provide in Table 13 the observed range of the bloom dates (the difference time
between the maximal and minimal observed bloom dates) of each crop as a measure of natural
variation of the bloom–dates for each crop. The mean, median and mode as point predictions
perform roughly the same in terms RMSE and MAE. The RMSEs for all crops fall between
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Table 12: Cross validation results: The RMSEs and MAEs for point predictions using mode,
median and mean are shown in column 2–7. The estimated coverages and average lengths of
the 95% PIs are shown in the last two column respectively. The units for RMSE, MAE and
average length of the 95% PI are day. The estimated coverage probabilities of these 95% PIs
are generally too high.

Mode Median Mean 95% PI
Crop RMSE MAE RMSE MAE RMSE MAE Coverage Ave. Len.
Apricot 6.74 5.12 6.58 5.06 6.62 5.14 0.99 33.24
Cherry 6.76 4.97 6.59 4.88 6.59 4.92 0.99 34.29
Peach 5.43 4.09 5.33 4.04 5.34 4.05 0.99 28.41
Prune 5.82 4.31 5.45 4.11 5.46 4.16 0.99 30.55
Pear 5.60 4.19 5.65 4.36 5.69 4.40 0.99 29.99
Apple 5.39 4.07 5.44 4.19 5.45 4.23 0.99 28.86

Table 13: Maximum, minimum and range of the observed bloom–dates for each crop in 1937–
1964 in the Okanagan region

Apricot Cherry Peach Prune Pear Apple
Maximum (day) 126 136 135 138 139 146
Minimum (day) 94 102 105 111 110 115
Range (day) 32 34 30 27 29 31

5.3 and 6.8 days, and the MAEs fall between 4.0 to 5.2 days. Considering the observed
ranges of the bloom–dates, which vary from 27 to 34, our point predictions provide more
useful information about the future bloom–dates. The estimated coverage probabilities of
95% PIs are too high for all crops, relative to the expected 95%. For each crop, the average
length of the 95% PI is roughly the same as the observed range of the bloom–dates, in accord
with the high estimated coverage probability. These imply that our 95% PIs incorporate too
much uncertainty, possibly because that in the ARIMA model, we have included too much
variability caused by periodic signals other than seasonal variation as the variability of the
random noise.

We therefore reduce the variance of the white noise in the ARIMA model to half the
estimated value, while keeping all the other estimated parameter unchanged. We use this new
ARIMA model to generate daily average temperatures, and perform the above cross validation
procedure again. The results (Table 14) show that while the accuracy of the point predictions
is roughly the same as before, the estimated coverage probabilities and average lengths of
the 95% PIs are reduced to reasonable values. This result does not confirm that the high
estimated coverage probabilities are actually caused by the high uncertainty in the predicted
daily average temperatures, but it at least adds weight to this explanation.
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Table 14: Cross validation results when using variance reduced simulated daily average tem-
peratures: The RMSEs and MAEs for point predictions using mode, median and mean are
shown in column 2–7. The estimated coverages and average lengths of the 95% PIs are shown
in the last two column respectively. The units for RMSE, MAE and average length of the
95% PI are day. The estimated coverage probabilities of these 95% PIs are reasonable.

Mode Median Mean 95% PI
Crop RMSE MAE RMSE MAE RMSE MAE Coverage Ave. Len.
Apricot 6.91 5.20 6.78 5.12 6.72 5.08 0.94 24.87
Cherry 6.62 5.06 6.64 5.05 6.58 4.99 0.93 26.46
Peach 5.56 4.03 5.51 3.95 5.49 3.98 0.95 21.17
Prune 5.48 4.16 5.46 4.04 5.46 4.07 0.98 22.38
Pear 5.98 4.46 5.79 4.33 5.75 4.31 0.94 21.45
Apple 5.76 4.36 5.53 4.17 5.48 4.15 0.95 20.36

The above results for predictions derive from two models: Model AGDD for blooming
event and the ARIMA model for daily average temperature. To check the performance of
Model AGDD solely, we assume all the future daily average temperatures are known, and
then perform the above leave-one-out procedure again. The results are reported in Table
15. Note that, in this case, since the uncertainty of the future daily average temperatures is
totally eliminated, we can only get one predictive distribution for each test year. Therefore
we cannot give a sensible estimate for the coverage probability of the 95% PIs. But we do
see that the accuracies of these point predictions are much higher than those of our previous
predictions, and the average lengths of the 95% PIs are much smaller. Although these are
no longer real predictions, the results tend to validate our Model AGDD for blooming event.
Also, this finding shows the importance of accurately modeling the covariate series and points
to the need to improve the temperature forecasting models.

4.6 More about predictive uncertainties

As noted above, we expected our point prediction to become more accurate and predictive
uncertainty to become smaller as time approaches the true bloom date. To check this, for each
crop, we calculate the MAE with median as point prediction and the average lengths of 95%
PIs each day over the years of interest, starting from 90 days prior to the bloom–date (call it
"lag -90") to 1 day prior to the bloom–date ("lag -1"). The results are shown in Figure 4 and
5 respectively. It is clear that for all crops, the MAE does become smaller and the average
lenghth of 95% PIs becomes shorter as time approaches the true bloom–date. In fact, by the
time we reach one month prior the bloom–date, the point prediction is quite accurate (the
MAE is 3.5–5 days).

We now compare our predictor with two naive predictors: the first one being the 95%

18



Table 15: Cross validation results if future daily average temperatures were known: The
RMSEs and MAEs for point predictions using mode, median and mean are shown in column
2–7. The average lengths of the 95% PI are shown in the last column. The units for RMSE,
MAE and average length of the 95% PI are day. The point predictions are very accurate, and
the average lengths of the 95% PIs are short.

Mode Median Mean 95% PI
Crop RMSE MAE RMSE MAE RMSE MAE Average Length
Apricot 4.18 3.30 3.65 2.93 3.62 2.90 13.48
Cherry 3.74 2.93 3.39 2.43 3.46 2.42 18.43
Peach 3.43 2.85 3.35 2.78 3.27 2.76 12.67
Prune 3.06 2.54 2.98 2.50 2.93 2.36 11.46
Pear 2.93 2.11 2.64 1.89 2.67 2.00 9.21
Apple 2.12 1.86 2.04 1.71 1.97 1.61 8.29
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Figure 4: Change of the MAE of median with the change of lag. The point prediction becomes
more accurate when time approaches the bloom date.

confidence interval (CI) of a normal fit to the observed data, i.e. ±1.96 standard deviation
around the sample mean; the second one being an empirical quantile-based 95% CI of the
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Figure 5: Change of the average length of 95% PIs with the change of lag. The predictive
uncertainty decreases when time approaches the bloom date.

observed data, i.e. 2.5%–97.5% sample quantiles. The length and percentage of the coverage
of the normal fits are shown in Table 16. Although the length of the normal CIs are a few
days shorter than our overall 95% PIs reported in Table 12, the coverages of the normal CIs
are too low, especially for peach, prune and pear. Figure 6 shows that the histograms of the
bloom dates of the crops are obviously skewed, which implies that the normal fit may not
be a good choice. The length and coverage of the empirical quantile-based CIs are shown in
Table 17. These CIs beat the Normal CIs in both length and coverage for most of the crops.
However, the coverages of them are still lower than 95% except for Pear. The results reported
in Table 12 for our predictor are calculated from the first day of a year to the actual bloom
date, which have incorporated too much uncertainty. If we look at the predictions starting
from one month prior to the bloom date to the actual bloom date, the results (Table 18) are
much improved – the average lengths of the 95% PIs are much shorter and the estimated
coverage probabilities now range from 95% to 98%. These results apparently are much better
than those from both naive predictors.

Another thing that interests us is the shape of the predictive distributions. To see this,
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Table 16: The length and the coverage of 95% CI of a normal fit to the observed bloom–dates
for each crop in 1937–1964 in the Okanagan region

Apricot Cherry Peach Prune Pear Apple
Length 30.65 29.23 27.20 25.62 26.76 25.57
coverage 0.93 0.93 0.89 0.89 0.93 0.93
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Figure 6: Histograms of the bloom dates of the corps. Most of the histograms are obviously
skewed.

we plot the predictive distribution of a “randomly” picked crop and test year – the predictive
distribution of peach in year 1944 with daily average temperatures of the first 60 days of that
year known (Figure 7). Note that the true bloom–date of peach in that year is day 125, and
we have smoothed the discrete predictive distribution to a continuous curve. We see that
the predictive distribution (the solid curve) is nearly bell-shaped which roughly looks like a
normal distribution. Since this predictive distribution is calculated by plugging in the MLEs
as if they were the true parameters, there is an uncertainty associated with this predictive
distribution. Just as before, we use the bootstrap to assess this uncertainty – we calculate
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Table 17: The length and the coverage of the empirical quantile-based 95% CI of the observed
bloom–dates for each crop in 1937–1964 in the Okanagan region

Apricot Cherry Peach Prune Pear Apple
Length 28.10 29.28 24.15 24.97 27.65 24.25
coverage 0.93 0.93 0.93 0.93 0.96 0.93

Table 18: The average length and the estimated coverage probability of 95% PIs of our
predictions starting from one month prior to the bloom date to the actual bloom date

Apricot Cherry Peach Prune Pear Apple
Length 19.91 19.87 15.28 16.38 15.57 14.19
coverage 0.95 0.96 0.97 0.98 0.97 0.97

a quantile based 95% bootstrap confidence band (shown as the shaded area in Figure 7) for
this predictive distribution. The plot shows that this confidence band is not too wide, so we
basically can “trust” this predictive distribution.

The validity of the bootstrap procedure arises again. Do the bootstrap estimates of the
quantiles of the predictive probabilities reflect the true quantiles of the predictive probabilities?
Again, we conduct a simulation study to answer this question. Take the same settings for the
simulation as described in Section 4.3. For each sample size S, where S ∈ {30, 80, 150, 400},
we now generate one more year of data as test data. For a fixed sample size S, for each sample,
we estimate the model parameters, and we then use this set of of parameters to predict the
bloom–date of the test year by assuming the first 60 days of temperatures are known. We then
get 1000 predictive distributions for each sample size. For each future day, we take the 2.5%
and 97.5% sample quantiles of the 1000 predictive probabilities to approximate a quantile
based 95% confidence interval for the predictive probability. Now, randomly pick one sample,
and then take 1000 bootstrap samples of this sample, and estimate model parameters using
each bootstrap sample. With each set of estimated parameters obtained from the bootstrap,
we can then make a prediction on the test year. With 1000 bootstrap samples, we get 1000
predictive distributions. For each future day, as with the simulated data, we can obtain
a quantile based 95% bootstrap confidence interval for the predictive probability. We now
compare the confidence intervals obtained in these two ways. Randomly picking one future
day, the 95% confidence intervals for the predictive probability of blooming that day calculated
using the simulated data and bootstrap are shown in Table 19. We can see that both types of
confidence intervals become narrower when sample size becomes larger. For each sample size,
the bootstrap interval is close to the interval obtained using the simulated data. Moreover,
when the sample size reaches 400, the two types of intervals are basically identical. This result
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Figure 7: The predictive distribution (solid curve) of peach in year 1944 with daily average
temperatures of the first 60 days of that year known. The shaded area is a 95% confidence
band for this predictive distribution. The true bloom – date of peach in that year is day 125.

suggests that applying bootstrap might be a reasonable way to estimate the uncertainty of
the predictive probabilities.

5 Conclusions

In this paper, we presented an application of our regression model for irreversible progressive
events to a single phenological event – blooming event of six high-valued perennial crops. The
approach we introduced here can be also widely applicable to the analysis of survival data
and other similar time-to-event data.

For the blooming events of the six crops, our method provides a sensible way to estimate the
important parameter Tbase in the definition of growing degree day (GDD) and our statistical
analysis supports an earlier empirical finding – that the timing of a bloom event is related
to AGDD, a cumulative unweighted sum of GDDs. Our method also provides useful point
predictions of the future bloom–dates, as well as the assessment of the predictive uncertainties
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Table 19: Comparison of the 95% confidence intervals for predictive probabilities obtained
using bootstrap and the simulated data.

S = 30 S = 80 S = 150 S = 400
Bootstrap (0.0300, 0.0350) (0.0321, 0.0358) (0.0300, 0.0320) (0.0305, 0.0322)
Simulation (0.0288, 0.0348) (0.0298, 0.0332) (0.0302, 0.0326) (0.0307, 0.0320)

which is useful for risk analysts and policy makers. Our 95% PIs are excessively large however,
quite probably because we have used a crude ARIMA model for predicting the future daily
average temperatures. After reducing and then total eliminating the uncertainty about the
daily average temperatures, we see increased accuracy of point predictions and much shortened
95% PIs. This observation validates our regression model for phenological events.

In our analysis, we did not consider the possible auto-correlation of the bloom date. In
future, we will consider more complicated models to incorporate this. On the other hand,
to improve estimation and prediction, we may build a multivariate model to encompass all
crops as responses simultaneously. Moreover, if crops of multiple locations are involved, we
will consider a spatial-temporal modeling approach for phenological events.
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