
University of British Columbia
Department of Statistics
Technical Report #262

December 2010

“An invariant loss function for quantile
approximation, estimation and summarizing data”

by

Reza Hosseini
University of British Columbia

reza1317@gmail.com

Department of Statistics, University of British Columbia



ABSTRACT

This paper develops a loss function to assess the goodness of approximation or es-
timation of quantiles of a distribution (or data). We propose one that is invariant
under monotonic transformations and we show by examples why this property is
desirable in applications, in particular for making decisions that are invariant under
(non-linear) change of scale of data. We show that the sample version of this loss
function tends uniformly to the distributional version. This loss function can also be
used to find optimal ways to summarize data (specially massive data), find equivari-
ant ways to estimate quantiles and to define a measure of distance among random
variables. We also show the usefulness of this loss function in interpreting results for
quantiles. For example we show that even if the quantiles are not equivariant under
increasing transformations and in fact the transformed quantile can be arbitrarily
far from the quantile of the transformed random variable in terms of typical losses
(such as absolute value), the distance is zero using this loss. It is also discussed how
this loss function can be extended to multi-dimensions and statistics of data.
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mation

1 Introduction

This paper develops a “loss function” to assess the goodness of an approximation
or an estimator of quantiles of a distribution (or a data vector). Suppose a quantile
of a very large data vector, q is approximated by q̂. Several classic losses can be
considered. For example: absolute error L(q, q̂) = |q − q̂| or squared error L(q, q̂) =
(q − q̂)2 which was proposed by Gauss. Quoting from [6]: “Gauss proposed the
square of the error as a measure of loss or inaccuracy. Should someone object to
this specification as arbitrary, he writes, he is in complete agreement. He defends
his choice by an appeal to mathematical simplicity and convenience.” An obvious
problem with this loss is its lack of invariance under (possibly non-linear) re-scaling
of data. We propose a loss function that is invariant under strictly monotonic
transformations. We also show that the sample version of this loss function tends
uniformly to the distributional version. This loss function can be used also to find
optimal ways to summarize a data vector and to define a measure of distance among
random variables as discussed here.

We define the loss of estimating/approximating q by q̂ to be the probability
that the random variable falls in between the two values. A limited version of this
concept only for data vectors can be found in computer science literature, where ε-
approximations are used to approximate quantiles of large datasets (see for example
[7]). However, this concept has not been introduced as a measure of loss and the
definition is limited to data vectors rather than arbitrary distributions.

Since we use quantiles in this paper, we give a definition (slightly different
from the customary one) and a lemma that gives the elementary properties. The
traditional definition of quantiles for a random variable X with distribution function
F ,

lqX(p) = inf{x|F (x) ≥ p},
appears in classic works as [8]. We call this the “left quantile function”. In some
books (e.g. [9]) the quantile is defined as

rqX(p) = sup{x|F (x) ≤ p},

this is what we call the “right quantile function”. Also in robustness literature
people talk about the upper and lower medians which are a very specific case of
these definitions. [2] considers both definitions, explore their relation and shows
that considering both has several advantages. He also proves the following lemma
regarding the properties of the quantiles.

Lemma 1.1 (Quantile Properties Lemma) Suppose X is a random variable on the
probability space (Ω,Σ, P ) with distribution function F :
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a) F (lqF (p)) ≥ p.

b) lqF (p) ≤ rqF (p).

c) p1 < p2 ⇒ rqF (p1) ≤ lqF (p2).

d) rqF (p) = sup{x|F (x) ≤ p}.

e) P (lqF (p) < X < rqF (p)) = 0. i.e. F is flat in the interval (lqF (p), rqF (p)).

f) P (X < rqF (p)) ≤ p.

g) If lqF (p) < rqF (p) then F (lqF (p)) = p and hence P (X ≥ rqF (p)) = 1− p.

h) lqF (1) > −∞, rqF (0) < ∞ and P (rqF (0) ≤ X ≤ lqF (1)) = 1.

i) lqF (p) and rqF (p) are non-decreasing functions of p.

j) If P (X = x) > 0 then lqF (F (x)) = x.

k) x < lqF (p) ⇒ F (x) < p and x > rqF (p) ⇒ F (x) > p.

For continuous variable [2] shows:

Lemma 1.2 (Continuous distributions inverse) If F is continuous F (x) = p ⇔ x ∈
[lqX(p), rqX(p)].

Section 2 introduces the probability loss for data vectors by showing the mo-
tivation of the definition in terms of the “degree of separation” between data points
in a sorted vector. Section 3 extends the definition to distribution functions and
shows the elementary properties of this loss function under strictly increasing or
decreasing transformations. This section also contains examples to show the useful-
ness of this loss specially in taking decisions that are invariant of the scale of data.
Section 4 shows that the sample version of probability loss tends to the distribu-
tion version when the sample size goes to infinity which is an easy consequence of
Glivenko-Cantelli Theorem. Section 5 shows the desirable properties of the proba-
bility loss when the underlying distribution function is continuous. For example in
that case the probability loss satisfies the triangular inequality. Section 6 interprets
many results about the quantiles and sample quantiles using the probability loss.
For example even though the sample quantiles are not almost surely convergent to
the distribution quantiles, they converge to the distribution quantile in terms of
the probability loss. Also it is shown that even though quantiles of a distribution
are not equivariant under strictly monotonic transformations, the probability loss
of the transformed quantile and the quantile of the transformed random variable is
zero. Section 7 studies how large the probability loss between two quantiles or a
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group of consequent quantiles can become when we change the underlying distri-
bution function or data vector. This is useful when one wants to create quantile
data summaries and so on using the probability loss as shown in [2] (Chapter 8).
Section 8 introduces the “penalized” probability loss which is non-zero whenever
the two values differ. It studies its properties and shows it satisfies the triangular
inequality for appropriate penalties and also shows the choice of the penalty is not
very influential in most cases. Section 9 discusses possible extensions of probability
loss to multi-dimensions and statistics. Section 10 shows the applications of the
probability loss in handling large data sets, summarizing them and inferring about
their “exact quantiles” in the presence of missing values or contaminated data. It
also shows how the probability loss can be used to approximate quantiles of large
data sets specially when sorting the whole data set is not possible and the sorting
can be done for smaller partitions. Section 11 shows how the probability loss can
be used in estimating parameters (quantiles) of distributions in a framework similar
to Wald decision theoretic approach with the desirable property that the estimators
are equivariant under changes of scale of data (even non-linear). Finally Section 12
discusses other applications of the probability loss, for example in defining a measure
of distance among random variables.

2 Probability loss for data vectors

Our purpose is to find good approximations to the median and other quantiles. We
need a method to asses such approximations. We contend that such a method should
not depend on the scale of the data. In other words it should be invariant under
monotonic transformations. We define a function δ that measures a natural “degree
of separation” between data points of a data vector x. For the sake of illustration,
consider the example sort(x) = (1, 2, 3, 3, 4, 4, 4, 5, 6, 6, 7). Now suppose, we want to
define the degree of separation of 3,4 and 7 in this example. Since 4 comes right after
3, we consider their degree of separation to be zero. There are 3 elements between
4 and 7 so it is appealing to measure their degree of separation as 3 but since the
degree of separation should be relative, we also divide by n = 11, the length of the
vector, and get: δ(4, 7) = 3/11. We can generalize this idea to get a definition for
all pairs in R. With the same example, suppose we want to compute the degree of
separation between 2.5 and 4.5 that are not members of the data vector. Then since
there are 5 elements of the data vector between these two values, we define their
degree of separation as 5/11. More formally, we give the following definition.

Definition 2.1 Suppose x = (x1, · · · , xn), a data vector and z < z′ let ∆x(z, z′) =
{i|z < xi < z′, i = 1, · · · , n}. Then we define

δx(z, z
′) =

|∆x(z, z′)|
n

,
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and δx(z, z) = 0, where |∆x(z, z′)| is the cardinality of ∆x(z, z′). We call δx the
“degree of separation” (DOS) or the “probability loss” associated with x.

We then have the following lemma about the properties of δ.

Lemma 2.1 The degree of separation δx has the following properties:

a) δx ≥ 0.

b) y < y′ < y′′ ⇒ δx(y, y′′) ≥ δx(y, y′).

c) δφ(x)(φ(z),φ(z′)) = δx(z, z′) if φ is a strictly monotonic transformation.

d) y = sort(x) and yi < yj ⇒ δx(yi, yj) ≤ (j − i− 1)/n.

Proof Both a) and b) are straightforward. To show (c), suppose z < z′ and φ is
strictly decreasing. (The strictly increasing case is similar.) Then φ(z′) < φ(z) and
hence

∆φ(x)(φ(z),φ(z
′)) = {i|φ(z′) < φ(xi) < φ(z)} = {i|z < xi < z′} = ∆x(z, z

′).

Finally d) is true because |∆x(yi, yj)| = |{l|yi < xl < yj, l = 1, · · · , n}| ≤ j − i− 1.

Remark. The definition and results above can be applied to random vectors S =
(X1, · · · , Xn) as well. In that δS(z, z′) is random. To develop our theory, we need
to study the asymptotic behavior of these statistics. We do so in later sections.

3 Probability loss for distributions

We define a degree of separation for distributions which corresponds to the notion
of probability defined for data vectors to measure separation between data points.

Definition 3.1 Suppose X has a distribution function F . Let

δF (z
′, z) = δF (z, z

′) = lim
u→z−

F (u)− F (z′) = P (z′ < X < z), z > z′,

and δF (z, z) = 0, z ∈ R. We also denote this by δX whenever a random variable
X with distribution F is specified. We call δX the “degree of separation” or the
“probability loss” associated with X.

The following lemma is a straightforward consequence of the definition.

Lemma 3.1 Suppose x = (x1, · · · , xn) is a data vector with the empirical distribu-
tion Fn. Then

δFn(z, z
′) = δx(z, z

′), z, z′ ∈ R.
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This lemma implies that to prove a result about the degree of separation of data
vectors, it suffices to show the result for the degree of separation of random variables.

Theorem 3.1 Let X, Y be random variables and FX , FY , their corresponding dis-
tribution functions.
a) Assume Y = φ(X), for a strictly increasing or decreasing function φ : R → R.
Then δFX (z, z

′) = δFY (φ(z),φ(z
′)), z < z′ ∈ R.

b) δFX (z, z
′) ≤ δFX (z, z

′′), z ≤ z′ ≤ z′′.
c) δFX (z1, z3) ≤ δFX (z1, z2) + δFX (z2, z3) + P (X = z2).
d) Suppose, p ∈ [0, 1]. Then δFX (lqFX (p), rqFX (p)) = 0.
e) Suppose, p1 < p2 ∈ [0, 1]. Then δFX (lqFX (p1), rqFX (p2)) ≤ p2 − p1.

Remark. We may restate Part (c), for data vectors: Suppose x has length n and
z2 is of multiplicity m, (which can be zero). Then the inequality in (c) is equivalent
to δx(z1, z3) ≤ δx(z1, z2) + δx(z2, z3) +m/n.

Proof
a) Note that for a strictly increasing function φ, we have

P (z < X < z′) = P (φ(z) < φ(X) < φ(z′)).

Now suppose φ is strictly decreasing. Then z < z′ ⇒ φ(z′) < φ(z). Let Y = φ(X).
Then

δX(z, z
′) = P (z < X < z′) = P (φ(z′) < φ(X) < φ(z)) = δY (φ(z),φ(z

′)).

b) This is trivial.
c) Consider the case z1 < z2 < z3. (The other cases are easier to show.) Then

δFX (z1, z3) = P (z1 < X < z3) = P (z1 < X < z2) + P (X = z2) + P (z2 < X < z3)

= δFX (z1, z2) + δFX (z2, z3) + P (X = z2).

d) This result is a straightforward consequence of Lemma 1.1 b) and c).
e) This result follows from

δFX (lq(p1), rq(p2)) = P (lq(p1) < X < rq(p2))

= P (X < rq(p2))− P (X ≤ lq(p1)) ≤ p2 − p1.

The last inequality being a result of Lemma 1.1 a) and d).

Remark: (e),(b) immediately imply

δFX (lqFX (p1), lqFX (p2)) ≤ p2 − p1,
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and
δFX (rqFX (p1), lqFX (p2)) ≤ p2 − p1.

Remark. We call Part c) of the above theorem the pseudo-triangle inequality.
Here we give two examples about using the probability loss function and its

interpretation.

Example 1:
We showed above that the triangle property does not hold for the probability

loss function and that might lead to the criticism that this definition is not intuitively
appealing. By an example, we now show why it makes sense that the triangle
property should not hold for such a situation. Suppose a few mathematicians are
standing in a line

Euclid, Khawarzmi, Khayyam, Gauss, Von Neumann.

If we were to ask Khwarzmi about his distance from Euclid, he would answer: “0,
since I am right beside him.” If we ask Khwarazmi again about his distance to
Khayyam, he will say that “my distance is 0 since I am right beside him.” However
if we were to ask Euclid about his distance to Khayyam he would answer: “One
unit (person) since Khwarzmi is in the middle.” We observe that this distance does
not satisfy the triangle property as well. In this example the people sitting in the
middle are the relevant factors. If we deal with a vector of sorted observations, then
observations in the middle are the relevant factors.

The following example shows the importance of invariance of loss (used to
take a decision) under monotonic transformations.
Example 2:

A student is told that he will receive a scholarship if he ranks first in an
exam in his class in either of the subjects mathematics and physics. The teacher
of the courses differ and take a practice exam in each subject. They return the
students back their marks out of 100. They also publish the lists of all the marks
after removing the names, to give the students a feeling of how they did in the class.
Table 1 shows the marks in mathematics and physics.
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Mathematics Physics Physics before re-scaling

80 90 81.0
65 89 79.2
63 86 74.0
61 85 72.2
54 83 68.9
54 82 67.2
53 79 62.4
50 79 62.4
49 76 57.8
48 75 56.2
47 72 51.8
47 72 51.8
46 69 47.6
44 68 46.2
30 55 30.2

Table 1: A class marks in mathematics and physics. The third column are the raw
physics marks before the physics teacher scaled them.

Sarina got 63 in math and 75 in physics. He decided to focus on just one
subject that gives him a better chance in order to win the scholarship. He compared
his mark in math with the best student in math: 63 against 80. So he needed

|best mark− Sarina’s mark| = 80− 63 = 17

more marks to be as good as the best student. Then he compared his physics mark
to the best student in physics. He found he needs 90-75=15 marks to be as good
as him. So he thought it’s better to focus on physics. But then he realized that
different teachers use different exam and scoring methods. He had heard that the
physics teacher scales the marks upward by the formula

new mark =
√
100× old mark.

So the student calculated the untransformed values and put the result in the third
column. Now he noticed that his new mark is 56.2 while the best mark is 91. The
difference this time is 24.8 which is a larger difference than before. According to
his “decision-making tool”, the absolute difference, he should focus on math since
the absolute difference for math was only 17. But what if the mathematics teacher
had used another transformation to re-scale the marks without him knowing it?
This made him see a disadvantage to using the absolute value difference. Instead he
realized, he can use the number of the students between himself and the best student
as a measure of the difficulty of getting the best mark. He noticed his decision in
this case will be independent of how the teachers re-scaled the marks. In the math
case there is only one and for physics there are 8 students between him and the best
student. Hence he decided that he should focus on math.
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This example shows in order to avoid contrary decisions when the scale
changes, we need invariance of the loss under such transformations.

This example was under the assumption that other students do not change
their study habits or do not have access to the marks. If the other students had
access to their marks or were ready to change their study focus, we need to take into
account other possible actions of the other students and the problem will become
game-theoretical in nature, a very interesting problem on its own right. The solution
for that problem we conjecture to be the same.

4 Limit theory for probability loss function

Suppose a random variable X with a distribution function F is given and S =
(X1, · · · , Xn) as an i.i.d sample from X and let Fn be the empirical distribution of
the sample. We defined a distribution loss associated with F, δF a deterministic
function and the loss associated to the sample δFn , a random variable. The following
theorem shows the sample loss tends to the distribution loss almost surely.

Theorem 4.1 Suppose X1, X2, · · · , is a sequence of i.i.d random variables with
distribution function F . Then as n → ∞,

δFn(z, z
′) → δF (z, z

′), a.s.,

uniformly in z, z′ ∈ R. In other words

sup
z>z′∈R

|δFn(z, z
′)− δF (z, z

′)| → 0, a.s..

Proof If z = z′, the result is trivial. Suppose z > z′. We need to show that

lim
u→z−

Fn(u)− Fn(z
′) →

a.s.
lim
u→z−

F (u)− F (z′), (1)

as n → ∞, uniformly in z > z′ ∈ R. Suppose ε > 0 is given. By Glivenko-Cantelli
Theorem there exist N ∈ N such that for every n > N :

|Fn(u)− F (u)| < ε

2
, a.s., ∀u ∈ R.

Now for n > N ,

|( lim
u→z−

Fn(u)− Fn(z
′))− ( lim

u→z−
F (u)− F (z′))| ≤

| lim
u→z−

(Fn(u)− F (u))|+ |Fn(z
′)− F (z′)| = lim

u→z−
|Fn(u)− F (u)|+ |Fn(z

′)− F (z′)|.

But since |Fn(u)−F (u)| < ε
2 , limu→z− |Fn(u)−F (u)| ≤ ε

2 . Also |Fn(z′)−F (z′)| < ε
2 .

Hence
|( lim
u→z−

Fn(u)− Fn(z
′))− ( lim

u→z−
F (u)− F (z′))| < ε.
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5 Probability loss for continuous distributions

This section studies the probability loss when the distribution function is continuous.
The results are given in the following lemmas, which show some of its desirable
properties in the continuous case.

Lemma 5.1 (Probability loss for continuous distributions) Suppose X is a random
variable with distribution function FX . Then δX(lqX(p1), rqX(p2)) = p2 − p1, p2 >
p1, ∀p1, p2 ∈ [0, 1] if and only if FX is continuous.

Proof If FX is continuous then for p1 < p2 and by Lemma 1.2,

δ(lqX(p1), rqX(p2)) = P (lqX(p1) < X < rqX(p2)) =

P (X < rqX(p2))− P (X ≤ lqX(p)) = F (rqX(p2))− F (lqX(p2)) = p2 − p1.

If F is not continuous then there exists an x0 such that a = PX(X = x0) > 0. Let
p1 = P (X < x0) + a/3 and p2 = P (X < x0) + a/2. Clearly lqX(p1) = x0 and
rqX(p2) = x0. Hence

δ(lqX(p1), rqX(p2)) = 0 ,= p2 − p1.

Lemma 5.2 Suppose δ(lqX(p1), rqX(p2)) = δ(rqX(p1), lqX(p2)) = a, p1 < p2.
Then also

a = δ(lqX(p1), lqX(p2))

= δ(rqX(p1), lqX(p2))

= δ(rqX(p1), rqX(p2)).

Moreover, if X is continuous, all the above are equal to p2 − p1.

Proof The result follows immediately from the fact that all the three quantities
are greater than or equal to δ(rqX(p1), lqX(p2)) = a and smaller than or equal
to δ(lqX(p1), rqX(p2)) = a. The second part is straightforward using the previous
lemma.

6 Interpreting results about quantiles using prob-
ability loss

This section shows the usefulness of probability loss for interpreting results about
quantiles that do not appear intuitive under typical losses such as absolute or square
error.
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Closeness of left and right quantiles

By definition left and right quantiles. The left and right quantile at a point p can
disagree. In fact their absolute difference can become arbitrarily large. For example
for k > 0 define P (X = 0) = P (X = k) = 1/2. Then lqX(1/2) = 0, rqX(1/2) =
k and hence |lqX(1/2) − rqX(1/2)| = k, where k can be taken arbitrarily large.
However, it is easy to see P (lqX(p) < X < rqX(p)) = 0 (Lemma 1.1, Part (e)) and
we conclude

δX(lqX(p), rqX(p)) = 0.

Convergence of sample quantiles

We can consider the left and right quantiles of the empirical distribution function Fn

of a sample X1, · · · , Xn of independent random variables identically distributed with
distribution function F . Then one would hope that lqFn → lqF (p) and rqFn(p) →
rqF (p). This is actually true if lqF (p) = rqF (p). In fact one can show by an example
that this is not true if lqF (p) = rqF (p). Moreover [3] showed if lqF (p) ,= rqF (p) then
the sample quantiles diverge almost surely. More precisely he showed

Theorem 6.1 (Quantile Convergence/Divergence Theorem)

a) Suppose rqF (p) = lqF (p) then

rqFn(p) → rqF (p), a.s.,

and
lqFn(p) → lqF (p), a.s..

b) When lqF (p) < rqF (p) then both rqFn(p), lqFn(p) diverge almost surely.

Proof See [3].

Unfortunately based on the above theorem the sample quantiles do not con-
verge in general to the distribution version. In fact [3] shows that when lqF (p) <
rqF (p) the liminf of the sample quantile is lqF (p) and the limsup is rqF (p). More-
over, [2] shows in the following theorem the nice property that in general the sample
quantiles converge to distribution quantiles in the probability loss sense uniformly.
In the following proof for a random variable X we define F c

X(x) = P (X ≤ x) and
F o
X(x) = P (X < x).

Theorem 6.2 Let X1, X2, · · · be an i.i.d. random sample drawn from an arbitrary
distribution function F . Then

(a) sup
p∈(0,1)

δF (lqFn(p), lqF (p)) → 0., a.s.,
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and

(b)

∫

p∈(0,1)
δF (lqFn(p), lqF (p)) → 0., a.s..

Proof We only need to prove (a) since (b) is a straightforward consequence of (a).
Clearly lqFn(p) = Xi:n for p ∈ ((i − 1)/n, i/n], i = 1, 2, · · · , n. Also F c

n(Xi:n) ≥ i/n
and F o

n(Xi:n) ≤ (i−1)/n. Pick an N large enough in the Glivenko-Cantelli Theorem
such that

n > N ⇒ |Fn(x)− F (x)| < ε, and |F o
n(x)− F o(x)| < ε,

uniformly in x. Consider two cases:
Case I: Xi:n < lqF (p). Then

δF (lqFn(p), lqF (p)) = δF (Xi:n, lqF (p)) =

F o(lqF (p))− F c(Xi:n) ≤ F o(lqF (p))− F c
n(Xi:n) + ε

≤ p− i/n+ ε ≤ ε.

Case II: Xi:n > lqF (p). Then

δF (lqFn(p), lqF (p)) = δF (Xi:n, lqF (p)) =

F o(Xi:n)− F c(lqF (p)) ≤ F o
n(Xi:n) + ε − p

≤ (i− 1)/n+ ε − p ≤ ε.

Since this holds for i = 1, 2, · · · , n and (0, 1) = ∪i=1,2,··· ,n(
i−1
n , i

n ], the supremum is
also less than ε.

Equivariance of quantiles

It is claimed that the classic quantile function, i.e. the left quantile function, is
equivariant under strictly increasing transformations ([5] and [1]). However, [4]
showed that continuity is a necessary (and sufficient) condition for this to hold. A
counterexample for the claim is given below.
Counterexample: Suppose X is distributed uniformly on [0,1]. Then lqX(1/2) =
1/2. Now consider the following strictly increasing transformation

φ(x) =

{
x −∞ < x < 1/2

x+ 5 x ≥ 1/2
.

Let T = φ(X) then the distribution of T is given by



– 12 –

P (T ≤ t) =






0 t ≤ 0

t 0 < t ≤ 1/2

1/2 1/2 < t ≤ 5 + 1/2

t− 5 5 + 1/2 < t ≤ 5 + 1

1 t > 5 + 1

.

It is clear form above that lqT (1/2) = 1/2 ,= φ(lqX(1/2)) = φ(1/2) = 5 + 1/2.
In fact for any increasing but not left continuous function we can build an

example as above. Moreover the example can be built in a way that the transformed
quantile and the quantile of the transformation are arbitrarily far in terms of the
absolute difference (replace 5 by k in above example). In the following theorem [4]
showed that with continuity this problem is resolved.

Theorem 6.3 (Quantile Equivariance Theorem) Suppose φ : R → R is non-decreasing.

a) If φ is left continuous then

lqφ(X)(p) = φ(lqX(p)).

b) If φ is right continuous then

rqφ(X)(p) = φ(rqX(p)).

Proof See [4].
It is unappealing that the equivariance property does not hold for arbitrary increas-
ing transformations. However, [4] showed that using the probability loss a version
of equivariance can be shown for such functions.

Lemma 6.1 (Equivariance under non-decreasing transformations) Suppose X is a
random variable with distribution function F and φ : R → R a non-decreasing
transformation on R. Also let Y = φ(X). Then
a) φ(lqX(p)) ∈ [lqY (p), rqY (p)]
b) φ(rqX(p)) ∈ [lqY (p), rqY (p)].

Remark. We conclude
δY (φ(lqX(p)), lqY (p)) = 0,

and
δY (φ(rqX(p)), rqY (p)) = 0.
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7 The supremum of probability loss

This section investigates how large the probability loss can become under various
scenarios. The results are given in the following lemmas.

Lemma 7.1 Let F be the set of all univariate distribution functions. Then

sup
F∈F

δF (lqF (p1), lqF (p2)) = p2 − p1, p2 > p1, p1, p2 ∈ (0, 1).

Proof This follows from the fact that δF (lqF (p1), lqF (p2)) ≤ p2 − p1 in general, as
shown in Lemma 3.1 and δF (lqF (p1), lqF (p2)) = p2 − p1 for continuous variables.

The same is true for data vectors as shown in the following lemma.

Lemma 7.2 Suppose the supremum in the following is taken over all data vectors,
then

sup
x

δx(lqx(p1), lqx(p2)) = p2 − p1, p2 > p1, p1, p2 ∈ (0, 1).

Proof We know that δx(lqx(p1), lqx(p2)) ≤ p2 − p1. To show that the supremum
attains the upper bound, let xn = (1, · · · , n). Then lqxn(p1) = [np1] or [np1] + 1.
Also lqxn(p2) = [np2] or [np2] + 1. Then ∆, the number of elements of x between
lqxn(p1) and lqxn(p2) satisfies:

[np2]− [np1]− 1 ≤ ∆ ≤ [np2]− [np1] + 1 ⇒

np2 − 1− np1 − 1− 1 ≤ ∆ ≤ np2 − np1 + 1 ⇒

−3/n ≤ δxn(p1, p2)− (p2 − p1) ≤ 1/n.

This shows that δxn(p1, p2) tends to p2 − p1 uniformly for all p1 < p2 ∈ [0, 1].

Lemma 7.3 Suppose p1, p2, · · · , pm ∈ [0, 1] and m = 2k. Then

sup
x

max{δx(lqx(p1), lqx(p2)), δx(lqx(p3), lqx(p4)), · · · , δx(lqx(pm−1), lqx(pm))}

= max{|p2 − p1|, · · · , |pm − pm−1|}.
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Proof The supremum is less than or equal to the left hand side by Lemma 1.1. Let
xn = (1, 2, · · · , n). Without loss of generality suppose p1 < p2, p3 < p4, · · · , p2k−1 <
p2k. By the properties of quantiles of data vectors:
lqxn(pi) = x[npi] = [npi] or lqxn(pi) = x[npi]+1 = [npi] + 1.
Also, lqxn(pi+1) = x[npi+1] = [npi+1] or lqxn(pi+1) = x[npi+1]+1 = [npi+1] + 1.
Then, δxn(lqxn(pi), lqxn(pi+1)) ≥ 1

n([npi+1] − [npi] − 1) ≥ 1
n(npi+1 − npi − 2) =

(pi+1 − pi)− 2
n . Hence

δxn(lqxn(pi), lqxn(pi+1)) > |pi+1 − pi|−
2

n
, i = 1, · · · ,m− 1.

The inequality shows the supremum is greater than

= max{|p2 − p1|−
2

n
, · · · , |pm − pm−1|−

2

n
},

for all n ∈ N. Now let n → +∞ to get the conclusion.

Lemma 7.4 Suppose p1, p2, · · · , pm ∈ [0, 1] and a1, a1, · · · , a2m ∈ [0, 1]. Then

sup
x
[

∫ a2

a1

δx(lqx(p1), lqx(p))dp+

∫ a4

a3

δx(lqx(p2), lqx(p))dp+

· · ·+
∫ a2m

a2m−1

δx(lqx(pm), lqx(p))dp]

=

∫ a2

a1

|p− p1|dp+
∫ a4

a3

|p− p2|dp+ · · ·+
∫ a2m

a2m−1

|p− pm|dp.

Proof The proof is similar to the previous lemmas and we skip the details.

8 penalized probability loss

This section introduces a family of loss functions that are very similar to the prob-
ability loss function but might be more useful in some contexts, particularly when
the distribution function is not continuous. A defect of the probability loss function
is: it can be equal to zero even if a ,= b, a, b ∈ R. Also we noted that even though
it resembles a metric it is not one. For example the triangular inequality does not
hold. We introduce the “c-probability loss” to solve these problems.
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Definition 8.1 Suppose X is a random variable, δX its associated probability loss
function and c ≥ 0. Then let

δcX(a, b) = δX(a, b) + c(1− 1{0}(a− b)),

where 1{0} is the indicator function at zero.

Note that the c-probability loss is the sum of two losses. The first, δX(a, b), is
the probability of being between the two values (a and b), the second, c(1−1{0}(a−
b)), is the penalty for a and b not being equal. One question is what value of c
should be chosen as the “penalty” of not being equal to the true value. It turns
out that the value of c is not very important for many purposes as shown in the
following lemma.

Lemma 8.1 (Properties of the c-probability loss functions)
a) δcX(a, b) = c ⇔ a ,= b and δX(a, b) = 0.
b) δcX(a, b) = 0 or δcX(a, b) ≥ c.
c) δcX is invariant under strictly monotonic transformations.
d) Let d = sup

x0∈R
P (X = x0). Then if c ≥ d, δc satisfies the triangle inequality.

e) δcX(lqX(p), rqX(p)) ≤ c. (It is either zero or c.)
f) Suppose δcX is given for any c > 0. Then we can obtain any other δdX for d ≥ 0.

Proof a) and b) are trivial.
c) Both δX and c(1− 1{0}(a− b)) are invariant under monotonic transformations.
d) We use the pseudo-triangle inequality for the probability loss function. Take
z1, z2, z3 ∈ R. We need to show δcX(z1, z3) ≤ δcX(z1, z2) + δcX(z2, z3) . If z1 = z3, the
result is trivial. Otherwise c(1− 1{0}(z1 − z3)) = c and

δcX(z1, z3) = δX(z1, z3) + c ≤ δX(z1, z2) + δX(z2, z3) + P (X = z2) + c

≤ δX(z1, z2) + δX(z2, z3) + c(1− 1{0}(z1 − z2)) + c(1− 1{0}(z2 − z3)) =

δcX(z1, z2) + δcX(z2, z3).

e) Trivial by properties of lq, rq and δX as shown in Lemma 1.1.
f) Suppose δcX is given. If δcX(a, b) = 0 then a = b and hence δdX(a, b) = 0. If a ,= b
then δcX(a, b) = δX(a, b) + c. From this we can obtain δX(a, b) = δcX(a, b) − c and
hence δdX(a, b) = δcX(a, b)− c+ d.

δX(X1, X2) (or δcX(X1, X2)), if X1, X2
i.i.d∼ X can be considered as a measure

of disparity of the common distribution. The following lemma shows that the ex-
pectation of this quantity is constant for all continuous random variables. It is also
easy to show in the non-continuous case the expectation is smaller than the one
given below.
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Lemma 8.2 Suppose X is a continuous random variable, then

E(δX(X1, X2)) = 2/3,

where X1, X2
i.i.d∼ X. Also

E(δcX(X1, X2)) = 2/3 + c.

Proof We know that FX(X1) and FX(X2) are both uniformly distributed on (0,1)
and independent. Hence

E(δX(X1, X2)) = E(|F (X1)− F (X2)|) =∫ 1

0

∫ 1

0

|p1 − p2|dp1dp2 = 2

∫ 1

0

∫ 1

p2

(p1 − p2)dp1dp2 =

2

∫ 1

0

(1− 2p2 + p22)dp2 = 2/3.

E(δcX(X1, X2)) = 2/3+ c is obtained by noting that P (X1 = X2) = 0 for continuous
random variables.
It is interesting to note that δF (X1, X2) in this case is a special case of the coverage
probabilities discussed by [10].

9 Extensions to statistics and multi-dimensional
data

This section shows how probability loss function can be extended to more than one
dimension and also to measure the distance between statistics. However, we do not
study this case in details and the applications are left to future research.

Suppose X1, · · · , Xn is a random sample and consider two statistics

T1(X1, · · · , Xn) and T2(X1, · · · , Xn).

For example these statistics might be estimators of lqX(p) e.g. Xi:n (ith order
statistics) for some i. Then we can consider the random loss

δX(T1(X1, · · · , Xn), T2(X1, · · · , Xn)).

In order to find optimal estimators we need a deterministic measure and one can
settle for the expected probability loss (EPL)

E(δX(T1(X1, · · · , Xn), T2(X1, · · · , Xn))).

In the following definition we offer a new idea to measure this loss.
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Definition 9.1 Suppose X1, X2, · · · a random sample drawn from distribution func-
tion FX and consider another draw XF which is independent of the random sample
(can think of this as a “future value”). Then for two statistics

T1(X1, X2, · · · ), T1(X1, X2, · · · ),

define the future value probability loss function (FPL) as follows

γX(T1, T2) = P (T1 < XF < T2) + P (T2 < XF < T1).

Remark. Note that for constant numbers a, b we have γX(a, b) = δX(a, b). It can
easily be shown that if S, T are equivariant under strictly monotonic transformations
of the random sample then so is the FPL.

Lemma 9.1 Suppose X1, X2, · · · a random sample from FX and XF is another draw
independent from the random sample and consider a strictly monotonic transforma-
tion of the reals φ : R → R. If

T1(X1, X2, · · · ), T2(X1, X2, · · · ),

are two equivariant statistics under φ i.e.

φ(Tj(X1, X2, · · · )) = Tj(φ(X1),φ(X2), · · · ), j = 1, 2

then we have

γφ(X)(T1(φ(X1), · · · ), T2(φ(X2), · · · )) = γX(T1(X1, · · · ), T2(X1, · · · ))

Remark. Order statistics clearly satisfy the above property.
Remark. As a less trivial example consider a sample of size n = n1 + n2 :

X1, · · · , Xn1 , Y1, · · · , Yn2

and consider min(Xi:n1 , Yj:n2). As yet a more interesting example let

Z1 = Xi1:n1 , · · · , Zk = Xik:n1 , Zk+1 = Yj1:n2 , · · · , Zk+l = Yjl:n2

and consider Zs:(k+l). This example has important applications in dealing with
massive data sets. Suppose n1, n2 are very large and hence loading the two sample
in the same time on the computer memory is not possible, then one can 1-load
them individually, 2-save a subset of their order statistics of size k and l and 3-use
these summaries to infer about order statistics of the full sample or quantiles of the
underlying distributions. It is also interesting to find optimal ways to choose these
subsets.
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As an application, we can estimate a quantile lqX(p) using a statistics T .
Then the loss can be assessed by either EPL or FPL. In fact in Section 11, we use
these losses to find optimal estimators.

Extensions to multi-dimensional data is possible in several ways. We in-
troduce two ways here. In the first one, we extend the point loss definition de-
fined on pairs of points in R to multi-dimensional pairs of points in Rk. Suppose
X = (X1, · · · , Xk) a random vector in Rk and a = (a1, · · · , ak), b = (b1, · · · , bk) ∈ Rk

then we can define

δX(a, b) = P (X i ∈ (ci, di), i = 1, · · · , k),

where ci = min(ai, bi) and di = max(ai, bi). Obviously this matches with the defini-
tion previously given for k = 1. We can again show the invariance property of this
loss under componentwise strictly monotonic transformations

φ = (φ1, · · · ,φk) : Rk → Rk,

meaning each φi : R → R is strictly monotonic.
Another way to extend the definition is to consider a class “parallel” hyper

surfaces in Rk (every two hyper surface in the class are identical or disjoint) and for
two hyper surfaces S1 and S2 define the loss as the probability the random variable
falls in between the two hyper surfaces. Such a class will be transformed to another
class of parallel hyper surfaces using a componentwise strictly monotonic transfor-
mations. We leave the study of the properties of these extensions and applications
to multi-variate data to future research.

10 Applications in approximating quantiles in large
or imperfect datasets

First we prove two lemmas. These lemmas show what happens to the quantiles if
we throw away a small portion of the data vector or add some more data to it.
The first lemma is for a situation that we have thrown away or ignored a small
part of the data. The second lemma is for a situation that a small part of the data
are contaminated or includes outliers. In both cases, we show how the quantiles
computed in the “imperfect” vectors correspond to the quantiles of the original
vector. In both case x stands for the imperfect vector and w is the complete/clean
data.

Lemma 10.1 (Missing data quantile approximation lemma)
Suppose x = (x1, · · · , xn), sort(x) = (y1, · · · , yn) and y′ = lqx(p), p ∈ [0, 1]. Consider
a vector x# of length n# and let w = stack(x, x#). Then y′ = lqw(p′), where p′ ∈
[p− ε, p+ ε] and ε = n!

n+n! . In other words δw(y, y′) ≤ ε.
Similarly if y′ = rqx(p) and p ∈ [0, 1], y′ = rqw(p′), where p′ ∈ [p − ε, p + ε]

and ε = n!

n+n! . δw(y, y′) ≤ ε.
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Remark. Note that no error guarantee can be given using typical loss functions
such as absolute value.
Proof We prove the result for lqx only and a similar argument works for rqx.
Let z = sort(w) then lqz = lqw. For p = 1 the result is easy to see. Otherwise,
i
n ≤ p < i+1

n for some i = 0, · · · , n − 1. But then y′ = lqx(p) = yi. In the new
vector z since we have added n# elements y′ = zj for some j, i ≤ j < i+ n#. Hence
y′ = lqz(

j
n+n! ). From np− 1 < i ≤ np, we conclude

np− 1

n+ n#
<

i

n+ n#
≤ j

n+ n#
<

i+ n#

n+ n#
≤ np+ n#

n+ n#
.

Hence,
n#(1− p)− 1

n+ n#
<

j

n+ n#
− p <

n#(1− p)

n+ n#
⇒

| j

n+ n#
− p| < max{|n

#(1− p)− 1

n+ n#
|, |n

#(1− p)

n+ n#
|}.

But |n
!(1−p)
n+n! | ≤ n!

n+n! and |n
!(1−p)−1
n+n! | ≤ max{ n!−1

n+n! ,
1

n+n!} since p ranges in [0, 1]. We
conclude that that

| j

n+ n#
− p| < n#

n+ n#
.

Lemma 10.2 (Contaminated data quantile approximation lemma)
Suppose x = (x1, · · · , xn), sort(x) = (y1, · · · , yn) and y′ = lqx(p), p ∈ [0, 1]. Consider
the vector w = (x1, x2, · · · , xn−n!) then y′ = lqw(p′), where p′ ∈ [p − ε, p + ε] and
ε = n!

n−n! . δw(y, y′) ≤ ε.
Similarly if y′ = rqx(p) and p ∈ [0, 1], y′ = rqw(p′), where p′ ∈ [p − ε, p + ε]

and ε = n!

n−n! . δw(y, y′) ≤ ε.

Proof We only show the case for lqx and a similar argument works for rqx.
Let z = sort(w). Then lqz = lqw. If p = 1 the result is easy to see. Otherwise,
i
n ≤ p < i+1

n for some i = 0, · · · , n − 1. But then y′ = lqx(p) = yi. In the new
vector z since we have removed n# elements y′ = zj for some j, i − n# ≤ j ≤ i.
Hence y′ = lqz(

j
n−n! ). From np− 1 < i ≤ np, we conclude np− 1− n# < j ≤ np ⇒

np− n# ≤ j ≤ np. Hence

−n# + n#p

n− n#
≤ j

n− n#
− p ≤ n#p

n− n#
⇒

| j

n− n#
− p| ≤ n#

n− n#
.
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[2] introduced an algorithm to approximate quantiles of very large datasets.
The idea of the algorithm is to read partitions of a very large data vectors sequen-
tially and save a summary of the partitions and then refer about the quantiles of the
original vector using the summaries. The algorithm allows for non-equal partition
sizes. The accuracy of the approximation can be given deterministically using the
probability loss function as stated in the following theorem.

Theorem 10.1 Suppose x is of length n =
∑m

i=1 li, m ≥ 2 and li = cid. Let
C =

∑m
i=1 ci. Apply the “coarsening algorithm” ([2]) to x and find µ to approximate

rqx(p) (or lqx(p)). Then µ is a (left and right) quantile in the interval

[p− ε, p+ ε],

where ε = m+1
C−m . In other words δx(µ, rqx(p)) ≤ ε and δx(µ, lqx(p)) ≤ ε. When

li = cd, i = 1, · · · ,m, ε = m+1
m−1

1
c−1 ≤ 3

c−1 .

Remark. Note that again no error guarantee can be given using typical loss func-
tions such as absolute value.

11 Estimation

This section shows how the probability loss idea can be used to estimate parameters
of a distributions, in particular quantiles.

Here we discuss estimating a quantile of a random variable only. However,
the method can be used in estimating parameters of any family of random variables
that are specified by their quantiles at specific points. For example the normal
family, N(µ, σ2), can be specified by lq(0) = µ, lq(1) = µ + σ2 and we call such
families quantile-specified families. It can be seen that most of typical families
of distributions are characterized by their values on specific quantiles. The idea
is much the same as Wald’s decision theoretic approach ([6]) except for the loss
is defined differently using expected probability loss δ. In fact we can avoid using
expectation by using future probability loss. [2] showed that this estimation method
is equivariant under changes of scale of data (even non-linear), a property that does
not hold for typical loss functions such as the square error. Here we only focus on
estimating a specific quantile and for simplicity suppose the distribution function is
continuous and strictly increasing (Hence lq(p) = rq(p) = q(p)). However, by some
modifications the results can re-stated for the general case.

Suppose a random sample X1, · · · , Xn and class of estimators are given D to
estimate a quantile q(p). Then we propose to minimize either of the losses:

a. Expected probability loss:

argminD∈DEPL(D, q(p)) = argminD∈DE(δF (D, q(p))).
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b. Future probability loss:

argminD∈DFPL(D, q(p)) = argminD∈DγF (D, q(p)).

[2] shows such estimators are equivariant (if D is closed under strictly monotonic
transformations). It is natural to considerD to include the order statisticsX1:n, · · · , Xn:n

(from the smallest to largest) with distribution functions F1:n, · · · , Fn:n. Also define
Gi:n(y) = Fi:n(q(y)) =

∑n
j=i

(
n
j

)
yj(1− y)(n−j). Then for D = Xi:n:

a. We have

E(δF (Xi:n, q(p))) = E|F (Xi:n)− p| =
∫ ∞

−∞
|p− F (x)|dFi:n

=

∫ 1

0

|p− y|dGi:n =

∫ p

0

(p− y)dGi:n +

∫ 1

p

(y − p)dGi:n .

b. We have

γF (D, q(p)) = P (Xi:n < XF < q(p)) + P (q(p) < XF < Xi:n)

=

∫ +∞

−∞
P (x < XF < q(p))dFi:n +

∫ +∞

−∞
P (q(p) < XF < x)dFi:n

=

∫ q(p)

−∞
(p−F (x))dFi:n +

∫ +∞

q(p)

(F (x)− p)dFi:n =

∫ p

0

(p− y)dGi:n +

∫ 1

p

(y− p)dGi:n

Note that the estimator does not depend on the distribution as Gi:n is the
same for all continuous random variables and hence invariant under (possibly non-
linear) changes of scale of data. It can also be shown that in the general (possibly
non-continuous) these losses are equal to or smaller than the above. Interestingly
in this case the two methods give rise to the same answer. Note that the solution
does need to be unique. For example if p = 1/2 and n = 2 as it should be the case
both X1:2 and X2:2 are equally eligible. These equations can be solved numerically
(or by simulations) for any given n and i, however a theoretical solution is desirable
and is left for future research.

12 Other applications

We saw before that the probability loss function is invariant under re-scaling of data.
This is of great importance since the results obtained by using this loss function do
not depend on the scale of the data as they should not in most applications. We
also showed how this loss can be used to assess quantile approximations in large or
imperfect datasets. We found bounds on the error of quantile approximations in
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Figure 1: Comparing the standard normal distribution (solid) with optimal Cauchy
picked by quantile distance (dashed) and the optimal Cauchy picked by tail quantile
distance minimization (dotted).

such datasets in terms of the probability loss. It can be easily seen that no such
bound can be found using other classic measures of loss such as the absolute differ-
ence or the square of the difference (Since they are not invariant under monotonic
transformations). [2] uses this loss function in many other applications and we point
out some of them here.

• Suppose a large data vector of length n is given. We want to find m << n
elements of this vector in such a way we can optimally refer to the original
vector. [2] solved this problem using results of Section 7, by looking form (left)
quantiles of the original vector p1, · · · , pm which minimize the probability loss
when we use these quantiles to refer about the other unspecified quantiles.
The solution is

p1 =
1

2m
, p2 − p1 = 1/m, p3 − p2 = 1/m, · · · , pm−1 = 1/m, pm = 1− 1

2m
,

which is different from the naive conjecture that pi = i/(n + 1). See Chapter
8 of [2] for more details.

• Suppose a random sample X1, · · · , Xn is given with the order statistics

X1:n, · · · , Xn:n

then in order to make a quantile-quantile plot the order statistics must be
assigned to the theoretical distribution quantiles lq(p1), · · · , lq(pn). Hosseini
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used the probability loss function to find the pi ’s by minimizing the expected
probability loss

E(δF (Xi:n, lqF (pi))).

See Chapter 8 of [2] for more details.

• [2] used the probability loss function to define distance measures among dis-
tribution functions. For example one can consider the sup quantile distance
and integral quantile distance respectively

SQD(X, Y ) = sup
p∈E

[δX(lqX(p), lqY (p)) + δY (lqX(p), lqY (p))],

IQD(X, Y ) =

∫

p∈E
[δX(lqX(p), lqY (p)) + δY (lqX(p), lqY (p))]dp,

where E is a fixed measurable subset of [0, 1] for example E = [0, 1] or
E = (0, 0.025) ∪ (0.0975, 1), where the later is more appropriate for study-
ing the distance of the random variables X and Y on the tails. [2] showed the
invariance of such measures under strictly monotonic transformations. Figure
1 shows that the closest Cauchy to the standard normal on the tails differs sig-
nificantly from the closest Cauchy overall using the integral quantile distance.

[2] [Chapter 9] also used the quantile distance minimization to estimate pa-
rameters of distributions. He also compare the results to maximum likelihood
estimates.

In summary this paper shows that the probability loss is useful to find results
regarding quantiles that does not depend on the distribution function or scale of
data. We showed this loss function is quite useful when referring about large data
vectors using smaller subsets or in the presence contaminated data or when some
data are missing. It also provide a decision-theoretic framework for inference that
is invariant under changes of scale of data.
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