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Abstract

The potential effects of air pollution are a major concern both in terms
of the environment and in relation to human health. In order to support
environmental policy there is a need for accurate measurements of the con-
centrations of pollutants. Here we examine long term changes in concen-
trations of black smoke using data from an extended period (1966-1996)
from a long established network in the UK. Over this period, the number
of sites reduced dramatically and there is the possibility of selection bias
if the monitoring sites are kept in polluted areas. Bayesian models were
used to model concentrations over time and space and to assess explore the
evidence of preferential sampling. In cases such as this, with large spatial
datasets, inference using MCMC can be a challenge due to computational
issues and here we perform ‘approximate’ Bayesian inference using Inte-
grated Nested Laplace Approximations. For the spatial components of the
models we employ methods that represent a Gaussian field with Matern
covariance function as a Gaussian Markov Random Field through use of
the Stochastic Partial Differential Equations. The results presented here
give support to the hypothesis of preferential sampling which has largely
been ignored in environmental risk analysis.

Keywords: preferential sampling; spatial-temporal modelling; INLA, air pol-
lution.

1 Introduction

Air pollution has been a concern for many centuries: during the middle ages,
monarchs in several countries tried to reduce air pollution by banning practices
such as burning coal, and travellers in the seventeenth centuries commented on
the poor air quality in many cities. Following the industrial revolution, prob-
lems associated with air pollution worsened in many areas of Europe. During
the first half of the twentieth century major pollution episodes occurred in Lon-
don, notably in 1952 an episode of fog, in which levels of black smoke exceeded
4,500 µgm−3, was associated with 4000 excess deaths (Ministry of Health, 1954).
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Other early episodes, which were caused by a combination of industrial pollu-
tion sources and adverse weather conditions, and resulted in large numbers of
deaths among the surrounding populations include those in the Meuse valley
(Firket, 1936) and the US (Ciocco and Thompson, 1961)).

Attempts to measure levels of air pollution in a regular and systematic way
largely arose as a result of these episodes. Early air pollution control legisla-
tions were focused on setting restrictions on the use of smoke-producing fuels
and smoke-producing equipment (Garner and Crow, 1969; Stern et al., 1973) and
in 1961 the worlds first co-ordinated national air pollution monitoring network
was established in the UK, the ‘National Survey’ which was used to monitor
black smoke and sulphur dioxide at around 1000 sites (Clifton, 1964).

Since then all European countries have begun to establish monitoring net-
works, some of them run at the national level, others by local authorities or
municipalities. Because of the different ways in which these have developed,
and the different purposes for which they have been established, many of the
networks vary in terms of which pollutants they measure, how they measure
them, where monitoring sites are located, and how results are reported. In
addition, over time many of the networks have changed; some growing, others
shrinking, as attention has shifted to new pollutants and geographical areas.
During much of the twentieth century, for example, the main concern was soot
(or black smoke) and sulphur dioxide from industry and domestic fires. Most
networks thus focused on measuring these pollutants, especially in industrial
areas where concentrations were likely to be high. More recently, attention has
moved to potential hazards associated with fine particulates and reactive gases
such as nitrogen dioxide, volatile organic compounds and ozone, so monitoring
networks for these have expanded.

Black smoke (BS) is one of a number of measures of fine particulate matter,
other examples including the coefficient of haze (CoH), total suspended partic-
ulates (TSP), as well as direct measurements of PM10, and PM2.5. Attempts
have been made to standardise the measures of pollution by converting the mea-
surements into ‘equivalent’ amounts of PM10, for example PM10 ≈ 0.55 TSP,
PM10 ≈ CoH/0.55, PM10 ≈ BS and PM10 ≈ PM2.5/0.6 (Dockery and Pope
(1994)). BS is measured using the light reflectance of particles collected in fil-
ters to assess the blackness of the collected material. The method was originally
developed to measure smoke from coal combustion.

Each of these measures of particulate matter have been associated with ad-
verse health outcomes, for example PM10 (Samet et al., 2000), PM2.5 (Goldberg
et al., 2001), TSP (Lee et al., 2000), black smoke (Verhoeff et al., 1996), and
CoH Gwynn et al. (2000). BS continues to be used in epidemiological studies,
for example, Elliott et al. (2007); Hansell et al. (2011), and in several recent
European studies, BS was found to be at least as predictive of negative health
outcomes as PM10 or PM2.5 (Hoek et al., 2000; Samoli et al., 2001). These
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findings indicate that black smoke, which is closely-related in the modern urban
setting with diesel engine exhaust, could serve as a useful marker in epidemiolog-
ical studies, perhaps even retrospective analyses using the historic data available
in many European urban areas (WHO, 2003).

Black smoke has been measured in the UK since the early 1960s as part of
the UK Smoke and Sulphur Dioxide network and it’s predecessor the National
Survey. The monitoring network, which measures both SO2 and black smoke,
was established in the early 1960s, and by 1971 included over 1200 sites. As
levels of black smoke and SO2 pollution have declined, the network has been
progressively rationalised and reduced and by 1996 comprised approximately
220 sites.

Originally, the National Survey was designed on the basis of the classifica-
tion of towns into categories according to factors that were thought to affect
air pollution with the aim to use these ‘representative towns’ to assess the con-
centrations of BS and SO2 throughout the country. Towns were categorised
according to (i) domestic and (ii) industrial coal consumption per unit area and
(iii) natural ventilation (the tendency for pollution to be trapped due to local
topography) with each of these factors being graded as high, moderate and low.
Clifton (1964). Within the resulting categories, locations were selected stratified
by geographical region and population size. In addition to choosing a location
that was deemed to be representative of the pollution experienced by a commu-
nity, local authorities were also requested to locate a second monitoring site as
far as possible from sources of pollution to give information about background
levels over the country.

In later years, the network has been used to monitor compliance with the
relevant EC Directives on sulphur dioxide and suspended particulate matter.
The original Directive, 80/779/EEC1, was introduced in 1980 and has been up-
dated in Daughter Directives for SO2 and suspended particulate matter. The
standards for monitoring of black smoke remained in force until 2005 but more
recent standards for suspended particulate relate to PM10 and not black smoke.
Daily average black smoke has been shown to be a reasonable predictor of PM10.
In general, PM10 concentrations are usually higher than black smoke except dur-
ing high episodes, and hence, if smoke exceeds the PM10 limit, it is likely that
PM10 has also done so (Muir and Laxen, 1995).

Over time, many sites have been moved or replaced in order to reflect chang-
ing patterns and levels of pollution, and to reduce redundancy in the network.
Therefore there is the possibility of selection bias if the monitoring sites are
kept in polluted areas. This may occur for example, if the locations of sites
remaining in the network were chosen to assess whether guidelines and policies
are being adhered to. This will lead to preferential sampling which occurs when
the process that determines the locations of the monitoring sites and the pro-
cess being modelled (concentrations) are in some ways dependent Diggle et al.
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(2010). In the context of air pollution and health in epidemiological analyses,
Guttorp and Sampson (2010) state that air pollution monitoring sites may be
intentionally located for a number of reasons, including to measure: (i) back-
ground levels outside of urban areas; (ii) levels in residential areas; and (iii)
levels near pollutant sources. Standard geostatistical methods which assume
sampling is non-preferential are often employed despite the presence of a pref-
erential sampling scheme. Ignoring preferential sampling may lead to incorrect
inferences and biased estimates of pollution concentrations.

In this paper we aim to examine patterns in both the concentrations of
BS over an extended period (1966-1996) and to investigate the possible effects
of the reduction in size of the network on estimates of levels of air pollution
and the evidence for preferential sampling. The remainder of this paper is as
follows, Section 2 gives details of black smoke concentrations measured in the
UK. Section 3 provides details of the proposed statistical model and details the
methods for inference and Section 4 presents the results of applying the models.
Finally, Section 5 contains a discussion and details of potential future research.

2 Data

The data on annual concentrations of BS were obtained from the UK National
Air Quality Information Archive. This is a routinely maintained data set pre-
pared by the National Environmental Technology Centre (NETCEN) on behalf
of the UK Department of the Environment, Food and Rural Affairs (DEFRA),
which collates information from all the national air quality monitoring net-
works. Sites are classified into one of eighteen types in terms of their local
environment. Air pollution statistics for each site are reported in pollution
years (April-March) and include mean concentration, standard deviation and
number of valid reporting days. Site locations (at a 10 metre resolution) and
annual average concentrations of BS (µgm3) for monitoring sites operating be-
tween April 1966 and March 1996 from the Great Britain Air Quality Archive
(www.airquality.co.uk). The minimum data capture requirement used is 75%
(as stated in the EC Directive), equivalent to 273 days a year, and only sites
reaching this requirement are considered in the analyses presented here. The
locations of the sites can be seen in Figure 1. Concentrations of black smoke
were typically highest in areas where the use of coal for domestic heating was
relatively widespread, such as parts of Yorkshire and Northern Ireland, and also
at some sites in large cities. The locations of the monitoring sites were also
classified as either urban or rural based on CORINE land cover data using dis-
criminate analysis as detailed in Beelen et al. (2009).

In total there were 1466 sites operational within the period 1966 to 1996 of
which 35 consistent sites were operating throughout the entire period. Figure
2 shows a schematic of when sites were operational within the study period. It
clearly shows the reduction in the size of the network from the original set of sites
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in 1966 and the introduction of a smaller number of sites over time. Also evident
is the marked reduction of the network in 1981 when there was a dramatic
reduction of almost 50% as the network was reorganized owing to falling urban
concentrations and to comply with EC directive 80/779/EEC (Colls, 2002).
Figure 3 shows the mean concentrations over all sites by year for the set of
consistent sites and non-consistent sites, i.e. those that weren’t operational
throughout the entire period. There is a marked decline in the level of BS over
the this period, with a significant difference between the levels recorded in the
two groups.
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Figure 1: Locations of black smoke monitoring sites together with annual mean
of daily concentrations at those sites for the times they were operational within
the study period, 1966-1996
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Figure 2: Schematic showing the years for which black smoke monitoring sites
were operational (blue lines) and those when they were not (yellow) in the UK
Smoke and Sulphur Dioxide network, 1966-1996.
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Figure 3: Annual means of black smoke concentrations by year. Dots denote the
yearly mean value with associated 95% confidence intervals denoted by lines.
Values are given for consistent (red) and non-consistent (green) sites from year
1966 to 1996.
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3 Statistical Modelling

Let Zit be the concentration of black smoke measured at location, i, at time,
t. Ott (1990) has suggested that a log transformation is appropriate for mod-
elling pollution concentrations, because in addition to the desirable properties
of right-skew and non-negativity, there is justification in terms of the physical
explanation of atmospheric chemistry. In general, as transcendental functions,
neither of the functions exp (x) nor log (x) can be applied when x is a mea-
surement, meaning in particular, that neither x nor the two functions can be
meaningfully have units of measurement. In short x must be a number. To
quote Monk and Munro (2010):

“We cannot take the logarithm of anything except a number. There-
fore, a logarithm term will never have units because it is merely a
dimensionless number.”

To nondimensionalize our measurements, we divide them by 78 (units), roughly
the level of black smoke concentrations in 1961. The unitless ratio, now repre-
sents the number of baseline units of decline in that particulate concentration
since that time. For example 1/2 would represent a 50% decline.

Here then Yit = log(Zit/78) with,

Yit = (β0 + β0i) + (βx + βxi)Xit + (βx2 + βx2i)X
2
it + βcCi + βuUi + εit (1)

where i = 1, · · · , N denotes the site and t = 1, · · · , T the year. The model
includes both linear and quadratic effects, βx and βx2 of time reflecting the
shapes of decline in the decline in levels of BS observed in the data. Site specific
random effects, βxi and βx2i and β0i, are assigned to the slopes of the linear,
quadratic and intercept components respectively. These are contained to sum
to zero, around fixed effects, β0, βx and β2x respectively. Whether a site is
consistent or not is represented by the indicator Ci and whether the location is
classified as urban or rural by the indicator Ui. The effects of being a consistent
site and being located in a rural area are represented by βc and βu respectively.
The εit is a random error term, which is assumed to be Normally distributed,
εit ∼ N(0, σ2

ε ).

In addition, we consider interactions between the slope terms (linear and
quadratic) and the consistent site indicator, which allows for both a shift in
overall levels between the two groups (consistent and non-consistent) and dif-
ferent rates of decline over time.

In the simplest case, the random effects terms can be assumed to be inde-
pendent, i.e. βs ∼ MVN(0, σsI), however there is likely to be residual spatial
auto-correlation in the data after allowing for the effects of time and so this
is relaxed to the assumption that they are multivariate normally distributed,

9



βs ∼ MVN(0, σsΣ), with the structure of the covariance reflecting any spatial
auto-correlation.

3.0.1 Spatial Process

If there is spatial correlation between sites (after allowing for the effect of time)
then Σ will be determined by the form of the relationship between correlation
and distance. We assume that the spatial effects represent a stationary spatial
process, meaning that the correlation between the sites is dependent only on
the distance between sites and not their actual location. A common class of
models used to model such relationships is the Matern Class, where the spatial
covariance between two points (u, v) function takes the form

r(u,v) =
σ2

2ν−1Γ(ν)
(κ|| v− u||)νKν(κ||v− u ||). (2)

where Kν is a modified Bessel function of the second kind, σ2 is the overall
variance and (ν, κ) are parameters that control the smoothness and strength
of the distance–correlation relationship respectively. The limiting case of the
Matern class of models, when ν → ∞, is the Gaussian model and the com-
monly used exponential model is a special case with ν = 1/2. In addition to
acknowledging spatial correlation in the intercept and slope terms of model (1),
the spatial component of the models allow the prediction of measurements at
locations for times where there is no monitoring site.

3.1 Inference

A number of studies have incorporated spatial modelling of air pollution within
a Bayesian framework, for example (Shaddick and Wakefield, 2002; Sahu et al.,
2006; Molitor et al., 2007; Lee and Shaddick, 2010). Commonly, inference has
been performed using Markov Chain Monte Carlo (MCMC) often using soft-
ware packages such as WinBUGS (Lunn et al., 2000). The main constraint of
this approach, particularly when using large spatial datasets, is its demanding
computational requirements. This can be both because of the requirement to
manipulate large matrices within each simulation of the MCMC and also in
convergence of parameters in complex models (Finley et al., 2007).

An alternative approach is that of marginalisation (Finley et al. (2007),
Banerjee et al. (2008)) in which the spatial effects are marginalised out which
reduces the parameter space and thus lessens the computational burden. This
means however, that estimates of the spatial effects, which are required for pre-
diction, are not available as they cannot be sampled. In the Gaussian case they
can be reconstructed in a posterior predictive fashion (Banerjee et al., 2008).

Here we use recently developed techniques which perform approximate Bayesian
inference based on integrated nested Laplace approximations (INLA) and thus
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do not require full MCMC sampling to be performed (Rue et al., 2009). INLA
has been developed as a computationally attractive, practical alternative to the
MCMC. The increasing size and complexity of experiments and the databases
they generate together has outpaced the speed of readily available computa-
tional hardware. This has forced the development of of practical alternatives
to MCMC algorithms, which although approximations to their MCMC coun-
terparts are better than no solution at all.

The dataset considered here contains a large number of missing values as
can be seen in Figure 2 although we consider the entire set of potentially 31
measurements over time (years) for all 1466 monitoring sites under consider-
ation. Due to both the size of the spatial component of the model and the
number of missing values, for which predictions will be required, it is compu-
tationally impractical to run this model using WinBUGS or bespoke MCMC
in any straightforward fashion. However, it is easily possible to fit models to
datasets of this size using INLA. Until recently, in terms of spatial models,
such methods were generally used for areal level, rather than point level spatial
data as considered here, but here we use a recent update which representing
a Gaussian field (GF) with Matern covariance function as a Gaussian Markov
Random Field (GMRF) through use of the Stochastic Partial Differential Equa-
tions (SPDE) (Lindgren et al., 2011). We now present a brief review of the
INLA method and the extension which allows spatial modelling of point level
spatial data.

Development of INLA began with GMRF models. Central to that develop-
ment is a Laplace approximation (Rue et al., 2009; Shrödle and Held, 2011) to
the posterior distribution of a hyper–parameter vector θ given the measurement
vector y, π̃(θ|y). The measurements constitute the observations of a response
vector, which depends stochastically on a latent random field x that is in-
dexed by spatial locations or areas, i. This random vector will include all the
Gaussian components of the model including the model parameters that have
a Gaussian prior distribution. Moreover, its joint distribution including that of
the model parameters in x, is that of a GMRF. The parameter vector θ would
then include the hyperparameters for those parameters, including for example,
the prior variances which index the covariance matrices.

Often inference will be also be required about xi conditional on the data
through the predictive distribution

π(θ|y) =
∫
π(xi|θ,y)π(θ|y)dθ.

The Laplace approximation is given by

π̃(θ|y) =
π(x, θ,y)
π̃G((x, θ|y)

∣∣∣∣
x=x∗(θ)
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where π̃G is a Gaussian approximation at the mode x∗(θ) of the conditional dis-
tribution of x given θ. Note that in the spatio–temporal context, θ may contain
parameters that are indexed by i while y includes the responses over time as
well as over space.

Shrödle and Held (2011) address the problem of mapping disease over a rel-
atively small number of geographical areas and illustrates the use of INLA in
a spatio–temporal context. In this example, the responses are counts over time
that depend stochastically on a latent GMRF, which is determined for any one
area by a linear model whose parameters and residual terms have conditional
distributions specified in terms of its surrounding areas.

However, in the case presented in this paper involves a Gaussian field and
responses measured with error over time at a large number of point–referenced
locations. The field itself has no natural Markov random field structure, al-
though conditional on certain hyperparameters, the field and model parameters
may realistically be supposed to have a joint Gaussian distribution. Thus INLA
as originally developed does not apply directly as it does in Shrödle and Held
(2011).

Instead we use the SPDE approach described presented by Lindgren et al.
(2011), which starts with a GF over a continuous domain of arbitrary dimension
and induces from it and its joint distribution, a GMRF to which INLA does ap-
ply. The method involves a number of key elements. First is its restriction to
the class of GFs, which are thus characterized by their second order properties.
Next it requires that field have a Matern covariance structure. Basic theory
then implies that such a field must then be the solution of an SPDE. Then
it approximates that solution using a finite element method, whose elements
are triangles over the field’s domain. The induced Gaussian random weights at-
tached to its vertices now determine the joint distribution of the induced GMRF
representation of the original GF. Finally the precision matrix for that GMRF
is approximated by a sparse precision matrix Q to achieve computational sim-
plicity, one that represents the covariance Σ of the GF well, i.e with Q−1 close
to Σ. The result is a GF model for the process but a GMRF for doing the com-
putations that would be hard to do with the GF itself. The resulting algorithm
is represented in R-INLA (www.r-inla.org), an extensive R library of programs
which accesses the core INLA computational engine. This implementation of
the methodology allows problems of enormous size to be tackled, well beyond
what can be tackled with MCMC as demonstrated in this paper.

To give further details of the SPDE – GRMF approximation of INLA, we
follow Lindgren et al. (2011). INLA assumes the GF {x(u); u ∈ Rd} has Matern
spatial covariance field as given by (2) which must then be the solution of the
SPDE:

(κ2 −∆)α/2x(u) =W(u), u ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (3)
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where (κ2 − ∆)α/2 is a pseudo – differential operator, ∆ is the Laplacian, W
is spatial white noise with unit variance. To complete the specification, assume
the process’s marginal variance is given by

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν
.

Representing the process in this way is key to the developments that follow. For
it provides the bridge over which we can cross from the GF to the GMRF via
an approximate solution to the SPDE.

An infinite dimensional solution x of the SPDE over its domain {D} is char-
acterized by the requirement that for all members of an appropriate class of test
functions {φ} ∫

φj(u)(κ2 −∆)α/2x(u)du =
∫
φj(u)W(u)du. (4)

However in practice, only approximate solutions are available. In R - INLA,
the R implementation of INLA, that approximate solution is obtained by the
conventional finite element approach, which uses a Delauney triangulation (DT)
over {D}. Initially DT’s triangles are formed with vertices at the points of the
sparse network where observations are available. Additional triangles are judi-
ciously added until {D} is covered and an irregular array of locations (vertices)
is obtained.

Considering the example of the black smoke network, Figure 4 shows the
mesh that was constructed using DT for the locations of the BS monitors. In
this case, there are 3799 edges and the mesh was constructed using triangles
that have minimum angles of 26 and a maximum edge length of 100km. There
are 1466 monitoring locations being considered over the period of study and
these are highlighted in red. This lattice underlies the GRMF at the other end
of the SPDE bridge. It simultaneously gives a finite element representation of
the solution of (3):

x(u ) =
∑
k=1

ψk(u)wk. (5)

Here n is the number of vertices in DT, the {wk} are Gaussian weights while
ψk(u) is piecewise linear in each triangle, 1 at vertex k but 0 at all other vertices.
It remains to link the ψk(u) to the class of test functions and in that way obtain
an approximate solution to the SPDE.

To use this in practice, R-INLA takes this approximation one step further
by requiring just n test functions to get a finite dimensional approximation
to the SPDE. Lindgren et al. (2011) provides the details, but for example,
φk = (κ2−∆)α/2ψk is used when α = 1. Then substituting these test functions
into (4) along with the approximation (5), gives a set of n equations which may
be solved. These equations characterize the elements of that approximation,
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including a sparse precision matrix for the GMRF distributed over the vertices
of the irregular lattice and given by the random Gaussian weights {wk} located
there. This is all performed within R – INLA once the initial distributions of
the GF have been specified. As in Shrödle and Held (2011), we can then handle
spatio–temporal problems, but now based on point–referenced measurements of
the field.
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Figure 4: Triangulation for the UK. The mesh comprises of 3799 edges and was
constructed using triangles that have minimum angles of 26 and a maximum
edge length of 100km. The 1466 monitoring locations being considered over the
period of study are highlighted in red.
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4 Results

A series of models based on that shown in (1) were fit to the data on black smoke
concentrations over the period of study (1966-1996). The models differed both
in the covariates that were used and in whether spatial random effects were used
for the slope parameters (all models presented and discussed here had spatial
random effects for the intercept terms). Covariates were used to model the de-
creasing pattern over time (represented by year and year2 terms), the effect of a
monitoring site being located within an urban or rural area (ur) and whether a
site was consistently operational throughout the period of study (cons). Inter-
actions between time and period of operation were also considered (denote by
int( cons, year, year2)). Model choice was informed by the deviance information
criteria (DIC) (Spiegelhalter et al., 2002) which can be computed using INLA,
for details see Rue et al. (2009). The model with the lowest DIC provides the
best trade-off between fit and model complexity.

Spatial random effects
Covariates Intercept Intercept and slope
year 5825.2 2875.7
year+year2 5161.1 1900.8
year+year2+ ur 5161.1 1823.2
year+year2+ ur + cons 5160.8 1823.8
year+year2+ ur +int(cons, year, year2) 5103.1 1786.6

Table 1: Deviance information criteria for a series of models incorporating dif-
ferent sets of covariates. Covariates are linear and quadratic effects of time
(year, year2), whether the location of the monitoring site was urban or rural
(ur) and whether a site was consistently operational throughout the period of
study (cons), see text for details. Interaction between operational status and
time are denoted by int(cons, year, year2). Left hand column gives results for
models with spatial random effects for the slopes and fixed slope, right hand
gives results for models with spatial random effects for both slope and intercept
terms.

The DICs for the series of models can be seen in Table 1 where the left hand
side shows the results for models with just the intercepts having spatial struc-
ture and the right hand side additionally allowing spatial auto-correlation in the
slope terms rather than just a fixed slope. There is a marked improvement in
the fit of models which allow spatial structure in both slopes and intercepts and
thus can allow different sites to have different relationships between concentra-
tions and time. Using the simpler model (with fixed slopes) also has another
side effect which can be seen when comparing maps of the spatial effects from
models with and without this flexibility for the slope terms. This can be seen
by comparing Figures 5 and 6 which show maps of the spatial effects from mod-
els with fixed and random slopes respectively. In the first case, there is much
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less spatial smoothing reflecting the fact that fitting a fixed slope is essentially
just subtracting a mean term (over time) with the random effects for the inter-
cepts just reflecting the concentrations at individual sites at the beginning of
the study period. In contrast, the map shown in Figure 6 shows clear smoothing
over space and indicates that it would be much more suitable for predictions at
times for which there was no recorded measurements at a particular time.

Figure 5: Map of the means of posterior predicted distributions black smoke
concentrations on the logarithmic scale from a model with spatial structure on
the intercepts and fixed slopes.
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Figure 6: Map of the means of posterior predicted distributions on the logarith-
mic scale from a model with spatial structure on the intercepts and slopes
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Estimates of the parameters for the model with the lowest DIC can be seen
in Table 2. Significant effects are seen for both the linear and quadratic effects
of year reflecting the overall shape of the declines seen over time. The differ-
ence between urban and rural locations was also significant with, as might be
expected, lower concentrations in rural areas than urban ones. The consistent
set of sites were also found to have significantly higher concentrations than the
non-consistent sites with the interaction terms indicating that the decline over
the period of study is greater for this set of sites. It should be noted that the val-
ues presented are unitless and for the log transformed, rescaled measurements.
For example the coefficient associated with the urban-rural indicator, which sig-
nifies the lower concentrations in rural as compared to urban areas, is -0.0856
on this scale. On the original scale of the concentrations the effect is therefore
exp(−0.0856)× 78 = 71.6 indicating an overall reduction of 9.5% (7.4) from the
baseline of 78 µgm−3. Similarly, the overall difference between consistent and
non-consistent sites is 13%, (95% CI 4-24%). This quantifies what was observed
in Figure 3 and provides evidence of preferential sampling.

Median 2.5% 97.5%
Intercept -0.0413 -0.1355 0.0522
ur -0.0856 -0.1102 -0.0611
year -0.1087 -0.1186 -0.0988
year2 0.0006 0.0002 0.0009
cons 0.1182 0.0425 0.1939
year:cons -0.0077 -0.0167 0.0013
year2:cons 0.0005 0.0002 0.0008
σ2
ε 0.0604 0.0592 0.0612
κ1 0.1795 0.1649 0.1912
τ1 2.5996 2.4528 2.7751
κ2 0.0869 0.0753 0.1047
τ2 79.3 68.6 88.5
κ3 0.1175 0.0938 0.1714
τ3 1647.1 1341.0 1901.78

Table 2: Estimates of the parameters for the model with linear and quadratic
terms for time, indicators for urban-rural status of the monitor locations and
whether a site has been operational throughout the study period and interaction
between time and operational status. Medians of the posterior distributions are
given together with 95% credible intervals for parameters of fixed (above the
horizontal line) and random (below the line) effects, see text for details. It should
be noted that the values presented are unitless and for the log transformed,
rescaled measurements (see text for details).

Considering the parameters of the Matern spatial terms, κk and τk, i = 1, 2, 3
correspond to the parameters for the intercept, slope of linear and quadratic ef-
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fects of time respectively. On the basis of the empirically derived definition
given in Lindgren et al. (2011) the posterior mean range at which correlation
falls to approximately 0.1, ρk, is equal to ρ =

√
8νk

κk
, where here νk = 1. For the

slope term this equates to 16km, with the results for the slope terms showing
more correlation over distance, for example correlation falls to 0.1 at 33km for
the slope of the linear term of time. Also from Lindgren et al. (2011), the spatial
variance, σsk

is given by 1
4πκ2

kτ
2
k

which allows us to compare the spatial vari-

ation with that is left unexplained (represented by the random error term σ2
ε .

Here the value of σs1 for the spatial effects assigned to the intercepts is 0.3655
indicating that the more variation is explained by the spatial term rather than
by the measurement error.

By combining the temporal and spatial components of the model, predictions
can be made at locations where there are missing values for certain years. This
can be seen in Figure 7 in which the observed and predicted concentrations
over time are shown at a selection of sites. The top centre panel shows the
increased uncertainly associated with predictions that are made further away
from times where data is observed. In this case, the site (Caerleon 1) was not
particularly close to other sites and so there was little possibility of borrowing
information over space. The effect of predicting for a site (Newport 26) that is
in close proximity to others can be see in the bottom right panel for which there
were nearby sites (notably Newport 22) providing information for the period for
which it was not operational.
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Figure 7: Observed and predicted concentrations of black smoke over time at a
selection of sites. Blue dots are measured values with pink lines denoting the
predictions from a model with spatial structure for the intercepts and slopes.
The model includes a quadratic effect of time and an interaction with consistent
sites (see text for details). Pink dotted lines show 95% credible intervals around
the predicted values. It should be noted that the values presented are unitless
and for the log transformed, rescaled measurements (see text for details)
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5 Discussion

In this paper we have examined patterns in concentrations of BS over an ex-
tended period (1966-1996) and investigated the possible effects of the reduction
in size of the network on estimates of levels of air pollution and the evidence for
preferential sampling. The level of BS declined over the period of the study in
accordance with regulatory guidelines and since 1982 there have been no excee-
dences of the EU limit of 68 µgm−3 (European Commission, 1980).

Originally, the network was designed to produce a sample of locations that
would provide representative data for the entire country. However, over time
many sites have been moved or replaced in order to reflect changing patterns
and levels of pollution, and to reduce redundancy in the network. A particularly
dramatic change occurred in 1981 when the network was reorganised owing
to falling urban concentrations and to comply with EC directive 80/779/EEC
(Colls, 2002). The analyses presented in this paper compared the levels and
patterns over time for two groups of sites. Those retained over the whole period
(consistent sites) had distinctly higher values than those that were terminated
(the non-consistent sites). On the original scale of the data, the overall difference
between consistent and non-consistent sites was 13%, (95% CI 4-24%). This
quantifies what was observed in Figure 3 and provides evidence of preferential
sampling.

The models considered here were fit using INLA with the SPDE approach
being used to allow point referenced spatial components to be incorporated. An
alternative might have been to perform inference using MCMC but in an ini-
tial attempt it turned out to be computationally prohibitive. This is often the
case when dealing with large spatial datasets, both because of the requirement
to manipulate large matrixes within each simulation of the MCMC and with
convergence of parameters in complex models. In terms of prediction at a very
high number of locations techniques, such as INLA, which perform ‘approxi-
mate’ Bayesian inference and thus do not require full MCMC sampling provide
an extremely appealing approach. As shown in Lindgren et al. (2011), INLA can
be extended to cover other situations, including non–stationary random GFs.
However, as was pointed out in the discussion of Lindgren et al. (2011), it does
not allow for the commonly used exponential model, where ν = 1/2, or other
noninteger values of ν. However, there are details in the authors reply to the
discussion that the GMRF construction can be extended into a more general
class of continuous domain Markov models, which contains close approximators
of Matern models with fractional ν. Overall, the implantation of the INLA
and SPDE approaches in this paper demonstrate how the methods can provide
a remarkably fast computational algorithm for application over large domains
when standard computational methods might fail.

The results presented here give support to the hypothesis of preferential
sampling which has largely been ignored in environmental risk analysis. This
may have implications if information from the network is used as a basis for
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measures of concentrations for the entire country. As such, if such information
used as a basis for exposures experienced by entire populations in health stud-
ies then bias may be introduced. In addition to an assessment of the extent of
the effect of preferential sampling, there is therefore a need for research into its
potential for bias in health studies and policy guidance. Details of a number
of possible approaches to correcting such bias can be found in Zidek and Shad-
dick (2012) which also gives some suggestions for possible implementations of
the methods in practical settings. If such bias can be successfully corrected it
would mean that estimates of pollution concentrations would be better suited
for use in applications such as health studies and policy guidance.
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