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Abstract

This report studies the relationship between the strength proper-
ties of lumber and their covariate visual grading characteristics. In our
mechanical wood strength tests, each piece fails under a continuously
increasing load. This topic is central to the analysis of the reliability
of lumber products in that it underlies the calculation of structural
design values

The approaches described in the report, are adaptations of joint
and conditional survival distributions based on both a parametric
method (the Weibull distribution) and a nonparametric approach
(Kaplan-Meier method). However, each piece of lumber can only be
tested to destruction with one method, which makes modeling these
joint strengths distributions challenging. In the past, this kind of
problem has been solved by subjectively matching pieces of lumber,
but the quality of this approach is then an issue.

The development of the theory in the report is based on wood
strength data collected in the FPInnovations (FPI) laboratory. The
objective of the analysis is to build a predictive model that relates
the strength properties to the recorded characteristics (i.e. a survival
model in reliability). The paper concludes that type of wood defect
(knot), a lumber grade status (off-grade: Yes/No) and a lumber’s
module of elasticity (moe) have statistically significant effects on wood
strength. It finds that that the Weibull AFT model provides a much

∗The work reported in this manuscript was partially supported by FPInnovations and
grants from the Natural Sciences and Engineering Research Council of Canada .
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better fit than the Cox PH model in our data set with a satisfying
predictive accuracy and leads to the development of a Bayesian version
of the AFT.

1 Introduction

This paper proposes an adaption of time–to–event theory as applied for ex-
ample in survival analysis, for modeling the load–to–failure in reliability anal-
ysis. It leads to a new theory for potential application in characterizing the
strength of manufactured dimension lumber. In particular it may be applied
should a need arise to change the grading rules.

Grading rules are based of observable features of a piece of lumber of
specified length and volume from a prescribed group of species Only those
features deemed to be predictors of the strength (say Y) of that piece of
lumber would be relevant for this article and these we include in a vector X.
An example of something that would be represented in X is the presence or
absence of “shake” i.e. a separation along a grain of a piece of lumber and
its length if present. Graders use these features (both those in X as well as
those not) to classify lumber into subpopulations called grades. Under the
grading rules each grade is uniquely associated with a particular range of
the observable features and so in particular a subset of the range space of
X say G. For a given grade, the length of a shake if present would have to
lie in a specified range (a,b) for example. Thus the distribution of Ys would
implicitly be determined by the limitations that the grading rules impose on
X and the stochastic relationship between Y and X, in other words through

P (Y > y|X ∈ G) =

∫
{x∈G}

P (Y > y|X = x)dFG(x) (1)

with FG(x) = F (x)/P (X ∈ G).
Structural engineering design values are based on random in–grade test

samples and the resulting Y–data they yield. In other words they are based
on an empirical estimate of the so–called conditional survival function P (Y >
y|X ∈ G). These values say ξGα are chosen so that with very high conditional
probability say 0.95, they are exceeded by randomly selected pieces in that
grade after allowing for such things as sampling and estimation error.

The genesis of this report is the recognition that the representativeness of
the original in–grade sample could conceivably decline over time. Equation 1
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points to the two technical reasons why that change could occur. First FG say
it could become more skewed in the direction of regions in the range of X for
which the associated Y values were lower. The second is a change would be
in the stochastic relationship between Y and X that makes Y stochastically
lower than it was. In other words, the survival probability P (Y > y|X = x)
might decline for in-grade x’s for values of y in a region of importance in
setting the design values

Substantive reasons for change can be broadly divided into two classes.
The first are changes in the resource from which lumber is manufactured.
For example one longterm monitoring program was initiated due to an in-
creasing reliance on plantation lumber. Another possible cause of change in
the resource is the changing climate. Quoting [7]

“Gradual increases in temperature, changes in rainfall patterns,
or modification in solar radiation will likely impact growth, regen-
eration and natural rates of mortality, while more abrupt changes
in climate may lead to extensive fires, killing frosts, droughts, and
outbreaks of insects and diseases [5].”

These authors conclude based on their analysis that 13 out of 15 native trees
species have become more favorable to potential migration. Catastrophic
changes like those described above from such things as fires could lead to
the harvesting of more dead wood and hence a change in FG(x) in Equation
1. More specifically, the shake lengths for in–grade lumber might tend to be
closer to b, the upper end of the allowable range (a,b). Things like migration
suggested above could change the mix of species in the grade group in a way
that increases the supply from species with stochastically lower Y–values for
a given x. In other words, P (Y > y|X = x) might change.

The second broad category of substantive reasons for change are those
that point to possible changes the in–grade population even if the resource
does not change. For example, the in–grade lumber population might change
due to selection biases arising from changing market conditions that could
pull lumber out of that population for special purpose applications.

The changes described above could lead to the need to either adjust the
design values or to change the grading rules in order to maintain the reliability
of the lumber. The second option would seem more appealing from a practical
point of view in many cases, since publishing new design values would create
a serious discontinuity in a traditional and well understood system if these
were decreased in size. Both possibilities point to the potential need to
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reestimating their stochastic representatives in Equation 1 as part of a long
term monitoring program.

This paper presents approaches for dealing with the second of the two
technical reflections of change described above, namely reestimating P (Y >
y|X = x) on the basis of test data from a sample of in–grade lumber. The
approaches taken in this paper are based on our adaptations of time– to–event
theory for characterizing that conditional probability. The first is approach
is based on the proportional hazards (PH) model which assumes that

P (Y > y|X = x)
.
= S(y|x)

= [S(t)]exp(βx
′)

= exp {−eβx′
∫ ∞
y

h(u)du}.

Here S(y)
.
= P (Y > y) denotes the baseline survival function while h(u)

denotes the baseline hazard function defined by

h(u)du = P (u < Y < u+ du|Y > u)

= −d logS(u)

du
du

so that

S(u) = exp {−
∫ ∞
y

h(u)du}.

It follows that the harzard function corresponding to S(y|x) is given by

h(u)eβx
′
.

This expression is what gives rise to the terminology “proportional hazards”;
each coordinate of x like x1 gives rise too a multiplicative factor exp(β1x1
that increases the hazard. The great success of this method derives from
the fact that the h can be treated as a nuisance parameter and eliminated
in making inferences about β by relying on the use of the so–called partial
likelihood. Note that once S(y) and β have been estimated by Ŝ(y) and β̂
respectively, we can use

Ŝexp (β̂x′)

as a predictive survival function once x is specified.
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The second approach is based on the accelerated failure time (SFT)
model, “time” in its name reflecting its orgins when time–to–survival rather
than load–to–survival dominated research on this topic. We will for exposi-
tory simplicity continue here to refer to it as the AFT model. This model,
which has an appealingly simple interpretability, assumes that the load is
modified also in a way that is proportional to the x hazards, more precisely
Y is transformed as

Y = eβx
′
Y0

where Y0 would represent a baseline load–to–failure level.
This report compares the two approaches albeit with one important mod-

ification. Instead of x, all of whose elements cannot be recorded for practical
reasons, we are forced to use in our analysis a censored version of x as de-
scribed in Section 3. With that modification, that analysis points to a supe-
riority of the AFT approach over the PH approach. That leads in Section 7
to what we consider to be an enhanced Bayesian version of the AFT, namely
a Bayesian version of AFT. However our conclusions are very tentative given
the small sizes of the only samples we had to work with.

Still a third approach, which is not an adaption of survival analysis meth-
ods is given in a companion paper [20], is based on a purpose built hierarchical
Bayes framework. A comparison of these two approaches will be undertaken
in future work with larger samples.

For completeness, this report begins with a summary in Section 2 of the
background theory needed for the work to follow. Section 3 described the
data that were collected through destructive testing in the FPInnovations
laboratory and used to help in the development of our theory. Section 4
looks at what might be learned from the data about load–to–failure models.
Modeling proceeds from there in Sections 6 and refsect:nonparametricsurv
with parametric and semiparametric approaches. The Bayesian version of
AFT appears in Section 7. Our summary and conclusions appear in Section
8. The report wraps up with technical details presented in its appendices.

2 Background theory

Survival analysis [16] is a collection of statistical techniques used to describe
and quantify time–to–event data. The methodological developments with
the most profound impact are the Kaplan-Meier method for estimating the
survival function, the log-rank test[16] for comparing the equality of two or
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more survival distributions, and the Cox proportional hazards (PH) model
[16] for examining the covariate effects on the hazard function. The acceler-
ated failure time (AFT) model [16] was also proposed but less widely used. In
this report, we present the basic concepts, parametric methods (univariate
and bivariate Weibull distribution), nonparametric methods (the Kaplan-
Meier method and the log-rank test), a semi-parametric model (the Cox PH
model), a parametric model (the AFT model) and a Bayesian AFT model
(in Section 7) for analyzing survival data .

2.1 Weibull distribution

Results of mechanical tests on lumber, wood composites, and wood structures
are often summarized by a distribution function fit to data. The Weibull
distribution (named after Waloddi Weibull, a Swedish physicist who used it in
1939 to describe the breaking strength of material) is playing an increasingly
important role in this type of research and has become a part of several
American Society of Testing and Materials standards. One of the parameters
- the shape parameter - allows it to resemble a variety of other distributions,
such as the normal, lognormal, and exponential distributions. That flexibility
also allows it to model experimental results, making it a powerful tool in
lumber properties research.

The three-parameter Weibull distribution [11] is commonly used to char-
acterize lumber strength. The density function of the Weibull is

f(x;κ, λ, θ) =
κ

λ
(
x− θ
λ

)κ−1 exp[−(
x− θ
λ

)κ], (2)

where x ≥ θ, κ > 0 is the shape, λ > 0 is the scale, and θ is the location.
The distribution function of the Weibull is given by

F (x;κ, λ, θ) = 1− exp[−(
x− θ
λ

)κ]. (3)

Methods are needed to fit the distribution to a data set and provide
statistically sound estimates of the parameters of the distribution. However
the effect that different ways of estimating a parameter has on estimating
lower tail percentiles has not been widely researched.
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2.2 The Kaplan-Meier estimator

The Kaplan-Meier (K–M) [16] estimator, estimates the survivor function
S = Pr(Y > y). To describe it we let y(i) denote the ith distinct ordered
observation and let it be the right endpoint of the interval Ii, i = 1, 2, ..., n.
Next let ni denote the number of unbroken pieces for loads below level y(i),
while di denotes the number broken at level y(i). Then the K–M estimator
of the survivor function is defined by

Ŝ(y) =
k∏
i=1

(
ni − di
ni

),

where y(k) ≤ y < y(k+1).
Compared with a parametric methods, probability statements obtained

from most nonparametric methods of inference are exact regardless of the
shape of the population distribution from which the random sample was
drawn. However these method has several shortcomings such as low power
and a lack of available software. Fortunately, the R function survfit can
calculate the K–M survival estimators.

2.3 The Cox proportional hazards (PH) approach

Let Y represent the load–to–survival and the survival function be S(y) =
Pr(Y > y). The latter may be represented by means of its hazard function,
which represents the instantaneous risk of breaking at load–level y, condi-
tional on survival to that time

h(y) = lim
4y→0

Pr[(y ≤ Y < y + ∆y)|Y ≥ y]

∆y
.

Models for survival data commonly rely on the hazard function or the
log hazard instead of the survivor function itself. Survival analysis typically
examines the relationship between the conditional survival distribution and
covariates on which it is conditioned. Most commonly, this examination
begins with a linear–like model for the log hazard function or equivalently,
a multiplicative model for the hazard. For example, a parametric model for
the log hazard function of the exponential distribution may be written as

log hi(y) = α + β1xi1 + β2xi2 + ...+ βkxik,

7



or equivalently,

hi(y) = exp(α + β1xi1 + β2xi2 + ...+ βkxik),

where the x’s are the covariates. The constant α in this model for the ex-
ponential represents a constant log-baseline hazard, since log hi(y) = α (or
hi(y) = eα) when all of the x’s are zero. More generally, the baseline hazard
function α(y) = log h0(y) is unspecified, so the Cox PH model is

log hi(y) = α(y) + β1xi1 + β2xi2 + ...+ βkxik,

or equivalently,

hi(y) = h0(y) exp(β1xi1 + β2xi2 + ...+ βkxik).

This model is semi-parametric because while the baseline hazard can take any
form, the covariates enter the model linearly. Consider now, two observations
i and j that differ in their x-values, with the corresponding linear predictors

θi = β1xi1 + β2xi2 + ...+ βkxik

and
θj = β1xj1 + β2xj2 + ...+ βkxjk

The hazard ratio for these two observations,

hi(y)

hj(y)
=
h0(y)eθi

h0(y)eθj
=
eθi

eθj

is thus independent of the load y. This defines the “proportional hazards
property”. The general rule is that if the hazard functions cross over load,
the PH assumption is violated.

We are not making assumptions about the form of h0(y) (the nonpara-
metric part of model)– the shape of underlying hazard. Parameter estimates
are interpreted the same way as in parametric models, except that no shape
parameter is estimated.

Even though the baseline hazard is is not specified, we can still get a
good estimate for regression coefficients β, hazard ratio, and adjusted hazard
curves. The beauty of the Cox approach is that this vagueness creates no
problems for such critical inferences.
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2.4 The accelerated failure time (AFT) approach

The accelerated failure time method is an alternative to the Cox PH method
for estimating the survival function. The former models the direct effect
of the predictor variables on the survival time instead of the hazard as in
the Cox PH model. This characteristic provides an easier interpretation
of the results since the parameters measure the effect of the corresponding
covariate on the mean survival time. As with the Cox PH method, the
AFT method is intended to provide a description of the relationship between
survival probabilities and covariates.

Given a set of covariates (X1, X2, ..., Xp), the AFT method uses the model
S(y) = S0(

y
η(x)

), where S0(y) is the baseline survival function and η(x) =

exp(α1x1 + α2x2 + ... + αpxp), is an ‘acceleration factor’, that is, a ratio of
survival times corresponding to any fixed value of S(y).

Based on the relationship between the survival function and hazard func-
tion, the hazard function for an specimenwith covariates X1, X2, ..., Xp is
given by:

h(y) =
1

η(x)
h0(

y

η(x)
).

The corresponding log-linear form of the AFT model with respect to
load–to–failure Y is given by:

log Yi = µ+ α1X1i + α2X2i + ...+ αpXpi + σεi, (4)

where µ is the intercept, σ is the scale parameter and εi is a random variable
assumed with a specified distribution. For each distribution of εi, there is
a corresponding distribution for Y , so the approach provides a good deal of
modeling flexibility.

3 The data

Our data come from testing experiments conducted by our research group,
notably Samuel Wong, at a FPI/Forintek laboratory located in Vancouver,
British Columbia, with assistance from the Lab’s technical support staff.
These experiments have yielded the two samples of lumber, each of size 98,
used in the research described in this report. The first sample consists of
bending strength or rupture (MOR) test data and the second, ultimate tensile
strength or tension (MOT) data. In these two tests, as loads (bending or
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tension stress) are increased, each piece remains intact (“survives”) until it
reaches its critical load at which point it fails. The values of MOR and MOT
are computed from the recorded failure loads (unit: psi 103) at the point
where the stress is applied (usually at a random location near the center in
the case of MOR and at the ends of the piece in the case of MOT). The break
occurs at a random location along the board. Figures 1 and 2 show pieces
of lumber in the bending and tension test devices.

Figure 1: The bending test. Notice that the piece of lumber is held firmly in
place by the vertical suspenders at its ends. A load is applied in the center
simultaneously at two sites by vertical arms that are hydraulically lifted by
the platform to which they are attached. The whole process is automated
and the load–to–failure recorded by the electronic equipment on the right.

Stiffness or elasticity (MOE psi 106) is also measured in a non-destructive
way as each of the above two tests are carried out. As each piece of lumber
can only be broken once, we only have MOE and MOR in the bending data,
while in the tension data we only have MOE and MOT. Interest lies in the
relationships amongst MOR, MOT and MOE.

Before the tests are carried out, the specimens are conditioned to achieve
a specified moisture content and subsequently they are examined by a pro-
fessional grader who records the observable features referred to in Section 1.
In particular the characteristic deemed most likely to cause the specimen to
fail during the test, referred to as its maximum strength reducing character-
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istic (MSRC), is recorded in a coded form. Examples of such characteristics
are ‘knot’, “grain”, “shake” and “split”. The MSRC is the feature that the
Grader expects to be the cause of failure. In contrast, the failure code (FC) is
the characteristic the Grader visually judges to have caused the piece to fail
after testing. These two features can be identical. Although the specimen
may present numerous other features, for practical reasons only these two are
recorded along with the one that determines the grade of the specimen. The
latter may not be a strength reducing feature. For example “wane”, which
are remnants of bark left on the corners of the specimen, may lower the com-
mercial value of the piece without affecting its engineering characteristics.

We see an aspect of reliability analysis in this context that would usu-
ally not be seen in survival analysis, namely censorship of the covariates
rather than the response. At the same time, the censoring mechanism, al-
though somewhat subjective, is clearly related to the response. In contrast,
in medical applications of survival analysis for example, the inclusion of all
covariates would normally be required, even though some might be missing
due to chance. Moreover, covariate would often be missing, but not always,
at random for reasons not related to the response of interest.

Figure 2: The tension test. Here the piece of lumber is gripped at at its ends.
A load is applied laterally at those end points by by the hydraulically con-
trolled suspenders The whole process is automated and the load–to–failure
recorded by the electronic equipment on the left.
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Ten different causes of failure are found in our data, notably “knot combi-
nation”, “grain”, “shake” and “split”, while around 80% of defects in MSRC
and FC are due to ‘knot’ (including both a single knot and a combination
of knots). The coding system of measurements[1, 2, 4] (e.g. MSRC) is quite
elaborate as can be seen in Table 1.
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Table 1: Description of failures for dimension lumber.

Code Cause of Failure Code Cause of Failure
10 knot combination (pith present) nn % of cross-section displaced by knot (total)
20 knot combination (no pith) nn % of cross-section displaced by knot (total)
23 knot cluster (pith present) nn % of cross-section displaced
24 slope of grain (wide face) nn actual slope
25 grain deviation nn % of cross-section where deflection is greater than 1:4
26 cross grain (narrow face) nn actual slope
27 shake and checks 01 not through and less than 2’ long

02 not through and more than 2’ long
03 through and less than 2’ long
04 through and more than 2’ long
05 shake breaks less than 2/3 the edge
06 shake breaks more than 2/3 the edge

28 split nn average length of both sides
35 bark pocket
45 machine damage 01 saw cut through edge

02 all other saw cuts
03 mechanical damage at edge
04 all other mechanical damage
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For the single knot coding system, knots are allowed to be coded nu-
merically with respect to size, orientation and location in the member of
cross-section. All possible knot configurations have been incorporated into
10 ”knot classes”. For knot classes 1 through 9, the first digit designates
the knot location on either the tension (0) or the compression (1) edge in
bending tests. The second digit identifies the knot class (1-9). The next 4
to 8 digits are used for the required knot measurements. When the first two
digits are 10, it indicates a knot class 10 and up to three sub-knots (starting
from the largest) that can be individually coded with a 10 followed by the
10-digit knot code.

As an example, in Table 2, for the 1st piece of lumber, a knot class 1 is
considered to be MSRC. For the 2nd piece, a knot class 8 and a knot class 4
are considered to be MSRC 1 and MSRC 2. For the 3rd piece, a knot class
10 is considered to be the MSRC and up to three sub-knots (starting from
the largest) are individually recorded as MSRC 1, MSRC 2 and MSRC 3.
Here, the MSRC 1 is regarded as the severest one.

Table 2: An example of coded single knot for three pieces of lumber.

Lumber MSRC1 MSRC2 MSRC3
1 0107001300
2 1810151104 1413002200
3 100810062710 100314152705 101314092920

In addition to the defects in MSRC and FC coded in the Excel c© data
spreadsheet, we also have the corresponding location of MSRC coded. Loca-
tion is a four-digit code describing the location of the defect or failure within
the piece. The first digit indicates whether the defect or failure is located
on the tension edge (0), compression edge (1), or both edges (2). The next
three digits give the average location of the defect or failure along the length
of the piece. As an example, look at Table 3.

The random number location (RNL) is the number of inches from the
centre of the test span to the worst MSRC (e.g. MSRC 1) - a random integer
from 0 to 36. For most of our tests, the MSRC must be randomly located in
the test span, and the test span is always less than the length of the lumber.

In summary, we have two samples, one for each of MOR and MOT, each
being of size 98. For each specimen in these two samples, we have the feature
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Table 3: An example of coded location of MSRC for four pieces of lumber.

Lumber MSRC1 MSRC2 MSRC3 Loc1 Loc2 Loc3
1 0808131202 0025
2 1810151104 1413002200 1057 0058
3 101909142903 101315092722 100309122713 1042 1042 0042
4 2407 2705 2050 0052

measurements shown in Table 4.

Table 4: Description of measured features in the two samples on which model
development in this report are based.

Variables Descriptions
MOR/ MOT Module of bending or tension ( Load to break )
MOE Module of elasticity
MSRC MSRC( 1-3 measures with 2 to 12 digits)
MLoc locations of 3 MSRC ( 1-3 measures with 4 digits)
FC Failure characteristic (1-3 measures with 2 to 12 digits)
Floc locations of 3 FC ( 1-3 measures with 4 digits )
RNL Random number location ( 2 digits from 0 to 36)
Off-grade Indicator of off-grade piece (1= yes, 0= no)
Species 1 = Spruce, 2 = Pine, 3 = Fir
Moisture Degree of moisture

Table 5 presents a section of the layout of dataset for the bending and
tension tests.
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Table 5: This table shows a transcription of an illustrative section of the dataset including the preliminary
assessments of visual features made by a professional Grader.

] MSRC1 MSRC2 MSRC3 MLoc1 MLoc2 MLoc3 speci mois offg moe mor
1 0108131202 0025 2 14.8 0 1.65 6.04
2 1810151104 1413002200 1057 0058 2 13.7 0 1.44 6.59
3 101909142903 101315092722 100309122713 1042 1042 0042 2 15.5 0 1.43 7.46
4 2407 2705 2050 0052 2 14.4 0 1.58 8.95
5 101320172602 100904093015 1043 1028 2 13.6 0 1.36 3.09
6 1014 2111 2 15.7 0 1.46 8.74
7 101912103404 1068 2 15.4 0 1.83 9.94
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
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The small size of the dataset led the authors to convert MSRC into mean-
ingful covariates using only MSRC1 in as much as it represented the severest
defect. Also, the first two digits of data strings in MSRC1 capture most of
information of defect categories. Based on the “Forintek Knot and Failure
Code” descriptions, it is reasonable to classify MSRC1 into 2 variables - knot
and size of knot (ksize).

To specify the categorical variable–‘knot’, we take the first two digits
of the MSRC1 data string as they capture most of relevant information on
defects:

1. If the first two digits belong to (0, 9]
⋃

[11, 20), knot = 1(a single knot);

2. If the first two digits are equal to 10
⋃

20
⋃

23, knot = 2(a knot com-
bination);

3. Otherwise, knot = 0(defects other than knot).

Quantifying the numerical variable – “ksize” was done in accordance with
the following rules:

1. The value of ksize for a single knot, class 20 or class 23 knot combination
is given by the 3rd and 4th digits of MSRC1 data string.

2. The value of ksize for a class 10 knot combination is mainly given by
the 5th and 6th digits, or 3rd and 4th digits in a few cases.

3. The value of ksize for other defects is 0.

Therefore, for bending data, we have the variables defined as in Table 6,
and the layout of bending data with transformed covariates is in Table 7.

4 Exploratory data analysis

Exploratory data analysis (EDA) is preliminary detective work done to see
problems and patterns in the data that informs subsequent model develop-
ment.
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Table 6: Variables definition for the transformed bending data.

Variables Descriptions
knot 1=a single knot, 2=a knot combination, 0=other
ksize the size of knot or 0 for non-knot defects
rnl random number for location of MSRC
Off-grade Indicator of off-grade piece (1= yes, 0= no)
loc location of defect
face edge of defect:0=tension, 1=compression, 2=both
Species 1 = Spruce, 2 = Pine, 3 = Fir
Moisture Degree of moisture
moe module of elasticity
mor module of rupture

4.1 Graphical visualizations of strength properties

Histograms. For bending and tension tests, we first explore the shape
of distributions of the strength properties data: MOR, MOT and MOE in
both tests. Based on their histograms and density curves in Figure 3, we
see that all of the distributions are asymmetrical and in fact right-skewed,
which is very typical for survival data. Moreover, the two density curves of
MOE from the two tests seem to be identical, and the side-by-side boxplots
of MOE in these two tests are almost overlapped. This suggests no significant
difference between the two MOE’s in the two tests.

Strength and covariate relationships. We next explore the rela-
tionships between the strength data and all other variables. With bending
test data, we classify these variables into continuous and categorical. Then,
we use scatterplots and side-by-side boxplots to visualize the relationships
between MOR and these two types of variables respectively.

Figure 4 displays MOR against continuous variables. The non-parametric
curve using lowess shows the pattern of association between the MOR and
other variables in pairs. We see that there is a positive association between
MOR and MOE, but no specific patterns for MOR and other variables.

Figure 5 shows the side-by-side boxplots of MOR against the categorical
variables – ‘knot’, ‘offg’ ,“species” and “face”. It shows that a piece of lumber
with a “single knot” as MSRC1, “off-grade”, “pine” species, or the defect is
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Figure 3: Distributions of the strength properties data.
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Table 7: Transformed bending data.

Specimen knot ksize rnl offg loc face species moisture moe mor
1 1 12 7 0 44 0 2 14.8 1.65 6.0424
3 0 0 22 1 22 2 2 13.7 1.44 6.5902
5 1 101 9 0 29 1 2 15.5 1.43 7.4588
9 1 9 5 0 13 0 2 14.4 1.58 8.9549
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

on the tension edge will produce a relatively lower MOR.
The tension test data display the same patterns as the bending test data

in terms of associations between the strength property MOT and other vari-
ables. From the plots above, we can see that distributions of strength prop-
erties are very typical for survival data. Thus, to model their distributions,
we may consider both a parametric approach (e.g. Weibull distribution) and
a non-parametric method (e.g. Kaplan-Meier estimator).

4.2 Univariate approaches to modeling the distribu-
tions

In reliability analysis for lumber, much interest lies in the relationships be-
tween the MOR, MOT and MOE. Moreover in lumber strength testing, in-
terest focuses specifically on the pieces with the lowest strengths, for example
the subpopulation with strengths below the 5th percentile, say ζ0.05. We will
use both parametric and nonparametric approaches to estimate ζ0.05 for each
type of strength as well as their ratio. Using the population 5th percentiles
for MOR and MOT as an example, the ratio is ρ = ζR0.05/ζ

T
0.05. The latter is

of particular interest because its estimate can be used to estimate by mul-
tiplication, the 5th bending percentile from an estimate of that for tension,
error bands included as we will see below.

Univariate Weibull distribution. Assuming Weibull population dis-
tributions and independent samples, the three parameters in (1.1) can be
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Figure 4: MOR against continuous variables, with a lowess smooth curve.
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Figure 5: MOR against categorical variables.
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estimated using maximum likelihood obtained through numerical optimiza-
tion. Let (κi, λi, θi), i = 1, 2, be the true parameters for two independent

3-parameter Weibull distribution populations, and (κ̂i, λ̂i, θ̂i), i = 1, 2, be
the corresponding maximum likelihood estimates from two samples, where
κi > 0 is the shape, λi > 0 is the scale, and θi is the location.

Table 8 displays the maximum likelihood estimates (MLEs) of parameters
in the three parametric Weibull distribution for the MOR data. .

Table 8: MLEs of univariate Weibull parameters for the bending (MOR)
data.

Quantity Value Standard Error

λ̂1 (psi× 103 ) 4.726 0.590
κ̂1 3.325 0.511

θ̂1 (psi× 103 ) 2.460 0.537

Similarly, Table 9 displays the maximum likelihood estimates (MLEs) of
parameters in the three parametric Weibull distribution for the MOT data.

Table 9: MLEs of univariate Weibull parameters for the tension (MOT) data.

Quantity Value Standard Error

λ̂2 (psi× 103 ) 3.610 0.362
κ̂2 2.556 0.335

θ̂2 (psi× 103 ) 0.901 0.297

Since the distribution function of the Weibull, given by (1.1), is

F (x;κ, λ, θ) = P (X ≤ x) = 1− exp[−(
x− θ
λ

)κ],

the population 5th percentile ζ0.05 is given by solving

0.05 = 1− exp[−(
ζ0.05 − θ

λ
)κ].

to get
ζ0.05 = λ[− ln(0.95)]

1
κ + θ.
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Thus the estimated ratio is given by

ρ =
ζR0.05
ζT0.05

=
λ1[− ln(0.95)]

1
κ1 + θ1

λ2[− ln(0.95)]
1
κ2 + θ2

.

The invariance property of MLEs implies that the corresponding MLEs of

ζ̂R0.05, ζ̂
T
0.05 and ρ̂ can be calculated by substituting (κ̂i, λ̂i, θ̂i)i=1,2 in Table 10.

Table 10: MLEs of ζ̂R0.05, ζ̂
T
0.05 and ρ̂.

Quantity Value Standard Error 95% Confidence Interval

ζ̂R0.05 4.394(psi× 103) 0.180(psi× 103) ( 4.041 , 4.747 ) (psi× 103)

ζ̂T0.05 2.030(psi× 103) 0.137(psi× 103) ( 1.761 , 2.299 ) (psi× 103)
ρ̂ 2.164 0.171 ( 1.829 , 2.499 )

Univariate Kaplan–Meier estimators. To explore the distribution of
MOR, MOE and MOT, we can also use the non-parametric Kaplan-Meier
estimators of their survival functions S(y) = Pr(Y > y). Using the R func-
tion survfit, we plot the Kaplan-Meier curves of MOR (left) and MOE (right)
with 95% error bands in Figure 6.

As well as the KM estimators of Pr(MOR > mor) in Table 11, where
ni denotes the number below mori while di denotes the number that are
recorded as failing at load level mori. Similarly, the KM curves for MOT
(left) and MOE (right) with 95% error bands in the tension test are shown
in Figure 7. as well as the KM estimators of Pr(MOT > mot) in Table 12,
where ni denotes the number at risk below moti while di denotes the number
recorded as failing right at moti.

Estimators of the population 5th percentile implied by KM ap-
proach. The KM method easily generates estimates of the population’s 5th

percentile (ζ̂R0.05, ζ̂
T
0.05 and ζ̂E0.05) using a standard method [16]. Table 13 and

14 show the KM estimators of percentiles for bending and tension, respec-
tively. They show the KM estimators to be pretty close to the estimators
for the Weibull distribution given in Table 10. However not surprisingly
the standard errors of the KM estimators are relatively larger than the ones
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Figure 6: Kaplan – Meier nonparametric estimates of survival curves for
MOR (left) and MOE (right) in the bending test.
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Figure 7: Kaplan–Meier curves for MOT and MOE in the tension test.
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Table 11: Kaplan–Meier estimation of survival function for MOR.

mori ni di Pr(MOR > mori) std.err lower 95% CI upper 95% CI
3.09 98 1 0.9898 0.0102 0.97010 1.0000
3.67 97 1 0.9796 0.0143 0.95199 1.0000
3.94 96 1 0.9694 0.0174 0.93587 1.0000
4.63 95 1 0.9592 0.0200 0.92080 0.9992

. . . . . . .

. . . . . . .

. . . . . . .

Table 12: Kaplan–Meier estimates of survival function for MOT.

moti ni di Pr(MOT > moti) std.err lower 95% CI upper 95% CI
1.21 98 1 0.9898 0.0102 0.97010 1.0000
1.80 97 1 0.9796 0.0143 0.95199 1.0000
1.82 96 1 0.9694 0.0174 0.93587 1.0000
1.83 95 1 0.9592 0.0200 0.92080 0.9992

. . . . . . .

. . . . . . .

. . . . . . .

Table 13: Kaplan–Meier estimators of percentiles in bending test.

Quantity Value Standard Error 95% Confidence Interval

ζ̂R0.05 4.70(psi× 103) 0.503(psi× 103) ( 3.714 , 5.686 ) (psi× 103)

ζ̂E0.05 1.30(psi× 106) 0.0.0395(psi× 106) ( 1.223 , 1.378 ) (psi× 106)
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Table 14: Kaplan–Meier estimators of percentiles in tension test.

Quantity Value Standard Error 95% Confidence Interval

ζ̂T0.05 2.03(psi× 103) 0.285(psi× 103) ( 1.471 , 2.589 ) (psi× 103)

ζ̂E0.05 1.30(psi× 106) 0.0.028(psi× 106) ( 1.245 , 1.355 ) (psi× 106)

produced by the Weibull approach. This is because in adopting the KM
approach we have not expressed the same high level of certainty about the
shape of the survivor function as when we asserted our belief that it had a
Weibull shape with just three unknown parameters. Also, the two estimated
values of ζE0.05 for bending and tension are almost the same, which suggests
the lumber in the two samples are homogeneous in terms of elasticity.

4.3 Bivariate Approaches to Modeling the Distribu-
tions of (R,E) and (T,E)

A Bivariate Weibull distribution. The density function of a bivariate
Weibull is given by

f(x, y;κ1, λ1, θ1, κ2, λ2, θ2, δ) =
κ1
λ1

(
x− θ1
λ1

)
κ1
δ
−1κ2
λ2

(
y − θ2
λ2

)
κ2
δ
−1

×{(x− θ1
λ1

)
κ1
δ + (

y − θ2
λ2

)
κ2
δ }δ−2{[(x− θ1

λ1
)
κ1
δ + (

y − θ2
λ2

)
κ2
δ ]δ +

1

δ
− 1}

× exp{−[(
x− θ1
λ1

)
κ1
δ + (

y − θ2
λ2

)
κ2
δ ]δ}. (5)

A feasible method for fitting that distribution has already been developed
[12]. We first estimate the shape (κ), scale (λ) and location (θ) parame-
ters from the two marginal distributions as above. Given these estimates
(κ1, λ1, θ1, κ2, λ2, θ2), we can find the dependence parameter estimate δ using
maximum likelihood by numerical optimization. We get the log–likelihood
logL for a random and uncensored sample, and the MLEs of parameters can
be obtained by minimizing −2 logL.
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A three-parameter Weibull distribution has the survival function,

F (x, y) = P [X > x, Y > y]

= exp{−[(
x− θ1
λ1

)
κ1
δ + (

y − θ2
λ2

)
κ2
δ ]δ}, 0 < δ ≤ 1 (6)

Therefore, once the parameters κ1, λ1, θ1, κ2, λ2, θ2 and δ are estimated, we
can easily estimate the survival probability for the bivariate data (x, y).

A bivariate KM estimator. A bivariate version of the KM estimator
does exist. To describe it we let (Xi, Yi), i = 1, ..., n be n independent
and identically distributed pairs of loads to failure with survival function
F (x, y) = Pr(X ≥ x, Y ≥ y). Since the {Xi} and {Yi} are the observed
loads, it is natural to estimate Pr(X ≥ x, Y ≥ y) by the empirical survival
function:

Ŝ(x, y) = n−1
n∑
i=1

I(Xi ≥ x, Yi ≥ y) (7)

The asymptotic variance of this estimator is given by:

V̂ ar(Ŝ(x, y)) = Ŝ(x, y)− [Ŝ(x, y)]2.

Evidence in favor of this estimator has been published [15]. Note that since
our data are uncensored, the problem we face is more easily solved than if
they were censored.

Then as an example, for the MOR data, we can compare the estimates of
the survival function S(e, r) computed with (3.2) and by (3.3) in the following
Table 15: These results suggest the two approaches yield estimates that are
pretty close to one another. In other words both the parametric and more
unrestricted nonparametric survival analysis methods seem to work well. The
3-dimensional scatterplot for each method shown in Figure makes it apparent
that the two estimators are nearly identical.

4.4 Testing for differences between the estimated dis-
tributions

A graphical approach using the KM estimator and log-rank test. A
central objective of the study described in this report is the characterization
of the relationship between strength and its covariates. For a categorical
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Figure 8: A visual comparison of the bivariate Weibull and KM estimators.
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Table 15: A comparison of the estimators of the survivor function provided
by the bivariate Weibull and by bivariate Kaplan–Meier approaches.

(e, r)(psi× 106, psi× 103) Ŝ(e, r) by (4) Ŝ(e, r) by (5)
(1.65, 6.042) 0.1327 0.1330
(1.65, 6.590) 0.1122 0.1146
(1.65, 7.459) 0.1020 0.0762
(1.36, 7.867) 0.2143 0.1960
(1.36, 4.791) 0.8061 0.7952
(1.36, 5.664) 0.7041 0.6840
(1.36, 5.363) 0.7347 0.7318
(1.36, 7.318) 0.3367 0.3112
(1.17, 7.459) 0.2857 0.2982
(1.17, 8.955) 0.0612 0.0558
(1.17, 3.095) 1.0000 0.9974
(1.17, 8.740) 0.0918 0.0757
(1.17, 9.939) 0.0204 0.0100

. . .

. . .

. . .

covariate, we may graph the the KM curves for strength data for different
covariate categories, so that we can see if different categories make a difference
in the distribution of strength.

With bending data, Figure 9 displays the KM curves of ‘mor’ against
4 categorical covariates – ‘knot’, ‘offg’, ‘species’ and ‘face’, respectively. It
seems that the KM curves are parallel for ‘offg’ and ‘knot’ (overall - there are
slight cross-overs when MOR is either small or large). But they are decidedly
nonparallel for “species” and ‘face’. That is, the differences between KM
curves for ‘knot’ and ‘offg’ are relatively larger than the other two covariates.

The KM curves give us an insight into the difference of survival func-
tions in two or more groups, but whether this observed difference is sta-
tistically significant requires a formal statistical test. One commonly used
non-parametric tests for comparing two or more survival distributions is the
log-rank test. The log-rank test compares the observed number of failures
with the expected number of failures for each group. The null hypothesis
asserts no difference between survival curves in two or more groups.
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Figure 9: KM curves of MOR against categorical covariates. Notice that
unlike the curves for ‘species’ and ‘face’, those for ‘offg’ and ‘knot’ are quite
parallel.
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That test yields p-values of 0.00623 (knot), 0.00215 (offg), 0.749 (species)
and 0.312 (face). Therefore, the differences we observed above of MOR sur-
vival curves made by ‘knot’ and ‘offg’are statistically significant, which indi-
cates that ‘knot’ and ‘offg’ may be the important predictors for MOR.

Test for the Difference Between Two MOE in the Two Tests
Another topic of interest is that difference between the two MOE population
distributions for bending and tension. The two KM curves are sketched in
Figure 10 and we observe that they are almost identical. Also, by the log-
rank test, their difference is not statistically significant with a very large
p-value 0.995, a finding consistent with the previous conclusion suggested
by Figure 3 – the two density curves of MOE in the two cases are almost
identical.

4.5 Exploring the association between MSRC and FC

Recall that MSRC is the grader’s assessment before testing of a piece of
lumber of the most likely cause of failure, while FC is the characteristic
visually judged by the grader to have caused the piece to fail after testing.
They would be the same if the failure occurs because of MSRC.

The two-way contingency table. If two variables are measured at
categorical levels (eg. nominal or ordinal), we assess their relationship by
cross–tabulating the data in a two-way contingency table [3]. A two-way
contingency table is a two-dimensional (rows × columns) table formed by
‘cross-classifying’ subjects or events on two categorical variables. One vari-
able’s categories define the rows while the other variable’s categories define
the columns. The intersection (crosstabulation) of each row and column
forms a cell, which displays the count (frequency) of cases classified as being
in the applicable category of both variables. Table 16 is a simple example of
a hypothetical contingency table that cross–tabulates student gender against
answer on one question of an exam; a total of 100 students are described.

So, we can set up the 2-way contingency table between MSRC and FC, as
shown in Table 17, using the first two digits in the characteristic descriptions
since they capture the most of the visual information on lumber defects. Note
the total of observations is 195 (not 196), since we have one missing datum
in the data set.

Test of independence (chi-square and related tests). For ease of
understanding, let’s take the data in Table 16 for example. If the charac-
teristics Gender and Answer were not associated (the null hypothesis of
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Figure 10: KM curves of MOE in the two cases. Notice that the curves for
two tests are almost identical.
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Table 16: Example of a hypothetical two-way contingency table. Here we see
‘gender’ being broken down by a subject’s answer to an examination question
(1= ‘Yes’; 0= ‘No’).

Answer

Gender Yes No Total
Male 38 12 50

Female 10 40 50
Total 48 52 100

Table 17: Two-way contingency table for MSRC and FC.

FC

MSRC 01-09 10-19 20-60 Total
01-09 42 14 20 76
10-19 20 41 15 76
20-60 7 11 25 43
Total 69 66 60 195

independence), we can easily calculate the expected counts in each cell, i.e.,
the number of cases we would expect based on their total distribution in the
sample. Given that the sample contains exactly 50% male and 50% female,
were there no association between Gender and Answer, we would expect
exactly half of those answering ‘Yes’ (48) to be male, i.e., 48÷ 2 = 24. The
actual formula for computing the expected count (E) in any cell of a con-
tingency table is: E = (row total× column total)÷ (grand total). Thus, for
the “Male/Yes” cell, E = (50× 48)÷ 100 = 24.

The larger the difference between the observed (O) and expected (E) cell
counts, the less likely that the null hypothesis of independence holds true, i.e.,
the stronger the evidence that the two variables are related. In our example,
the large difference between the observed (O = 38) and expected (E = 24)
cell counts for the Male/Yes cell suggests that being male is associated with
greater likelihood of answering ‘Yes’.

To determine whether or not the row and column categories for the table
as a whole are independent of each other, we compute Pearson’s chi-square
statistic (X2):

X2 =
∑

[
(O − E)2

E
] ,
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where O = observed frequency and E = expected frequency. As indicated
in the formula, one first computes the difference between the observed and
expected frequencies in a cell, squares this difference, and then divides the
squared difference by that cell’s expected frequency. These values are then
summed (the

∑
symbol) over all the cells, yielding the value of X2. In our

example, X2 = 31.41.
The value of X2 is then compared to a critical value that is based on the

number of rows and columns (df = degrees of freedom = (number of rows−
1)× (number of columns− 1)) and obtained from a chi-square distribution
table. If the value of X2 is less than this critical value, then we cannot reject
the null hypothesis and we conclude that the data do not provide evidence
of an association. If the value of X2 exceeds the critical value, then we re-
ject the null hypothesis and conclude that the variable categories are indeed
associated.

In our example, df = 1 and the chi-square critical value for a significance
level of α = 0.05 is 3.84. Since our calculated X2 is 31.41 which clearly
exceeds this critical value, we may conclude that gender is associated with
answer in the exam.

If the minimum expected count for any cell in a contingency table is
less than 5, then the chi-square approximation to the distribution of the X2

statistic may not be accurate. In this case, an alternative is Fisher’s exact
test. If one or more of the expected counts in the cells of a contingency table
are less than 5 or when the row or column totals are very uneven, Fisher’s
exact test is more desirable.

In our real 2-way contingency table,where

H0: there is no association between MSRD and FC
H1: there is association between MSRC and FC

our calculated X2 is 43.9383, and the corresponding p-value is approximately
0, which indicates that we should reject the null hypothesis and in favor of the
hypothesis that independence doesn’t hold here, there is association between
MSRD and FC. The Fisher’s exact test also produces a p-value close to 0,
which confirms the conclusion of the Chi-square test.

Describing the strength of association. If there is an association, it
may be desirable to then describe the strength of the association. We use
correlation-like measures such as the Phi coefficient and Cramer′s V to
describe the strength of relationship between nominal variables, since MSRC
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and FC are measured at nominal level. These coefficients range from 0 to 1
since you cannot have a ‘negative’ relationship between nominal variables.

The Phi coefficient (φ) is a measure of nominal association applicable
only to 2× 2 tables. It is calculated as:

φ =

√
X2

N

where X2 = the value of Pearson′s chi−square, and N = the sample size.

In our example, the Phi coefficient =
√

31.41
100

= 0.56, suggesting a moder-

ately strong association.
For contingency tables that are larger than 2 × 2, Cramer′s V [3] is the

choice of nominal association measure. The formula for Cramer′s V is given
by:

V =

√
X2

N(k − 1)

where N is the sample size and k is the lesser of the number of rows or
columns. Since in 2×2 tables k = 2, Cramer′s V equals the Phi coefficient
for 2× 2 tables.

Therefore, since our calculated X2 is 43.9383, the strength of association

between MSRC and FC is
√

43.9383
195(3−1) = 0.34, suggesting a relatively weak

association. However, making a low V level is inevitable with such a small
data set. If we also include information on MSRC2 and MSRC3 to construct
the two-way contingency table, a larger V should be produced in no doubt.

5 Semi–parametric survival models

Let’s first fit a semi-parametric survival regression model, namely the Cox PH
model [8, 9, 18]. Since in the Cox PH model, the baseline hazard function
h0(t) is nonparametric and no distributional assumption is needed for the
survival data, it is easier to start with it.

As an example, for bending data, we may fit a Cox PH model for MOR
with covariates: ‘knot’, ‘ksize’, random number location (‘rnl’), off-grade in-
dicator(‘offg’), location of defect(‘loc’), face of defect (0 means on the tension
edge, 1, on the compression edge and 2, on both edges) , ‘species’, ‘moisture’
and ‘moe’.
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5.1 AIC procedure for variable selection

Comparisons between a number of possible models, which need not necessar-
ily be nested nor have the same error distribution, can be made on the basis
of the statistic

AIC = −2× log(maximumlikelihood) + k × p,

where p is the number of parameters in each model under consideration and
k is a predetermined constant. This statistic is called Akaike’s (1974) infor-
mation criterion (AIC); the smaller the value of this statistic, the better the
model. This statistic trades off goodness of fit (measured by the maximized
log likelihood) against model complexity (measured by p). Here we shall take
k as 2.

So, we can rewrite the AIC in the context of the Cox PH model:

AIC = −2× log(maximumlikelihood) + 2× b,

where b is the number of β coefficients in each model under consideration.
The maximum likelihood is replaced by the maximum partial likelihood. The
smaller the AIC value the better the model.

5.2 Variable selection

First using R-code, we fit the initial Cox PH model for the bending data
using all possible covariates:

coxph.fit1 < −coxph(Surv(mor) ∼ factor(knot) + ksize+ rnl +
factor(offg) + loc+ factor(face) + factor(species) +moist+moe).

Table 18 presents a summary of the results as generated by the R-code,
summary(coxph.fit1). Thus, we can see the covariates ‘ knot’, ‘off-grade’
and ‘moe’ are significant at level 0.05. We next apply two alternate methods
to select the best possible model.

Method I: step () to select the best model according to AIC
statistic. Table 19 shows p-values corresponding to variables selected by
step(coxph.fit1).

From Table 20, we see that the stepwise method chooses 3 covariates:
‘knot’, ‘off-grade’ and ‘moe’.
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Table 18: Summary of the initial application of the Cox PH model to the
bending data.

coef exp(coef) se(coef) z p
factor(knot)1 1.81 6.13 0.42 4.27 0.00 ∗ ∗ ∗
factor(knot)2 0.92 2.50 0.39 2.32 0.02 ∗
ksize 0.00 0.99 0.00 -0.20 0.84
rnl 0.02 1.01 0.01 1.36 0.17
offg 1.70 5.49 0.53 3.16 0.00 ∗∗
loc 0.00 1.00 0.00 0.14 0.88
factor(face)1 -0.48 0.62 0.26 -1.81 0.07
factor(face)2 0.46 1.57 0.35 1.28 0.20
factor(species)2 0.47 1.59 0.43 1.07 0.28
factor(species)3 1.25 3.47 1.18 1.04 0.29
moist 0.22 1.24 0.13 1.56 0.12
moe -5.82 0.00 1.06 -5.46 0.00 ∗ ∗ ∗

Method II: Single term deletions. Table 21 displays the result of ap-
plying a single term deletions method using the code drop 1 (coxph.fit1, test =
“Chi”). So, we see that deletion of ‘knot’, ‘off-grade’ and ‘moe will lead to a
significant increase in AIC values, which indicates that these 3 variables are
likely to be the most important covariates.

Comparing nested models. Methods I and II have generated the
same reduced model. We now compare that model to the initial full model
by means of the likelihood ratio test (LRT). Symbolically we may describe a
model using R-code as follows:

full model : coxph.fit1 < −coxph(Surv(mor) ∼ factor(knot) + ksize +
rnl+factor(offg)+loc+factor(face)+factor(species)+moist+moe);

reduced model by method I and II : cox1 < −coxph(Surv(mor) ∼
factor(knot) + factor(offg) +moe).

We can compare these models using R by means of the command
anova(cox1, coxph.fit1), which gives the results in Table 22. We conclude
that the LRT test shows no evidence against the reduced model (p-value =
0.20), which indicates the difference between these two models is not signifi-
cant and we prefer the smaller reduced model cox1.
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Table 19: Stepwise model path for the main effects model on the bending
data.

Step Df AIC
667.16

- moist 1 667.89
- factor(face) 2 668.45
- factor(offg) 1 672.74
- factor(knot) 2 682.11

- moe 1 698.23

Table 20: p-values of covariates in the model selected by step (). The signif-
icant factors are the ones where at least one * has been affixed.

coef exp(coef) se(coef) z p
factor(knot)1 1.440 4.22207 0.363 3.97 7.3e-05 ∗ ∗ ∗
factor(knot)2 0.730 2.07554 0.367 1.99 4.7e-02 ∗
factor(offg)1 1.692 5.42779 0.528 3.20 1.4e-03 ∗∗
factor(face)1 -0.407 0.66565 0.241 -1.69 9.1e-02
factor(face)2 0.374 1.45321 0.350 1.07 2.9e-01
moist 0.214 1.23845 0.130 1.65 9.9e-02
moe -5.931 0.00266 1.069 -5.55 2.9e-08 ∗ ∗ ∗

Checking for Interaction. Here we use step(cox1,∼ .2) and the results
appear in Table 23. Adding an interaction term increases the AIC so we
conclude there is no need to add interactions. Our final model is labelled
cox1.

cox1 < −coxph(Surv(mor) ∼ factor(knot) + offg)

Table 24 presents the result of applying the R function summary(cox1).
Based on that we can make the following comments:

1. The estimated coefficient for having a single knot as the MSRC is
1.049 and it has a very significant, small p-value. Hence, fixing other
covariates, the hazard ratio between the lumber with a single knot
as MSRC and the one having a knot combination as the MSRC is
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Table 21: Drop 1 model path for the main effects model on the bending data.

Df AIC LRT Pr(Chi)
673.69

factor(knot) 2 690.73 21.042 2.697e-05 ∗ ∗ ∗
ksize 1 671.73 0.044 0.834587
rnl 1 673.56 1.866 0.171930
factor(offg) 1 679.24 7.554 0.005987 ∗∗
loc 1 671.71 0.021 0.883448
factor(face) 2 676.11 6.417 0.050423
factor(species) 2 671.32 1.635 0.441493
moist 1 674.17 2.483 0.115061
moe 1 704.00 32.315 1.311e-08 ∗ ∗ ∗

Table 22: This table compares the fits of the full model with those generated
by the reduced model produced by Methods I and II.

loglik Chisq Df p
1 -330.38
2 -324.84 11.063 8 0.20

exp(1.049)/exp(0.692) = 2.85554/1.99684 = 1.43, which means that
the former are 1.43 times more likely than the latter to fail at any
given load given survival to that load–to–failure. Similarly, the hazard
ratio between the lumber with a single knot as MSRC and the ones
with defects other than ‘knot’ is 2.856 with a similar interpretation to
the previous case. This is consistent with the side–by–side boxplots
of ‘mor’ against ‘knot’ in the exploratory data analysis (EDA), which
shows that pieces of lumber with a single knot as its MSRC possess a
lower ‘mor’ than ones with the other two categories of ‘knot’ as MSRC.

2. The estimated coefficient for the off–grade pieces of lumber is 1.452,
and exp(1.452) = 4.273, which means the off–grade pieces of lumber
have load–to–failure levels 4.273 times lower than standard ones. This
is also consistent with the conclusions suggested by our EDA.

3. Fixing the other covariates, pieces of lumber with a higher ‘moe’ level
have a decreased hazard of failure than ones with lower ‘moe’ levels.
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Table 23: In this table we show the results of including interaction terms in
the model.

Step Df AIC
668.75

+ factor(offg):moe 1 669.66
+ factor(knot):moe 2 671.33

+ factor(knot):factor(offg) 2 672.65
- factor(offg) 1 673.06
- factor(knot) 2 677.90

- moe 1 696.64

Table 24: Here we see the p-values for the various covariates in the final
model for the bending data.

coef exp(coef) se(coef) z p
factor(knot)1 1.049262 2.855543 0.316801 3.312 0.000926 ∗ ∗ ∗
factor(knot)2 0.691564 1.996836 0.361133 1.915 0.055495
factor(offg)1 1.452420 4.273444 0.491035 2.958 0.003098 ∗∗
moe -4.811266 0.008138 0.936015 -5.140 2.75e-07 ∗ ∗ ∗

This seems quite reasonable.

5.3 Model diagnostics for the Cox PH model

As in the case of a linear or generalized linear model, it is desirable to deter-
mine whether a fitted Cox regression model adequately describes the data.
The model checking procedures below are based on residuals. In linear re-
gression methods, residuals are defined as the difference between the observed
and predicted values of the dependent variable. However, when the partial
likelihood function is used in the Cox PH model, the usual concept of residual
is not applicable.

We will discuss three major residuals that have been proposed for use in
connection with the Cox PH model: the scaled Schoenfeld residuals [17], the
deviance residuals [19] and the Cox-Snell residuals [10]. Then we will talk
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about influence assessment and strategies for analysis of nonproportional
data.

Checking for the proportional hazards assumption. The main as-
sumption of the Cox PH models is that of proportional hazards [16]. Propor-
tional hazard means that the hazard function of one specimen is proportional
to that of any other, i.e., the hazard ratio is constant over increasing load.
Several methods are available for assessing that assumption. The kth Schoen-
feld residual [17] defined for the kth specimen on the jth explanatory variable
xj is given by

rsjk = δkx
j
ka

j
k,

where δk is the k specimen’s censoring indicator, xjk is the value of the jth

explanatory variable on the kth specimen,

ajk =

∑
m∈R(yk)

exp(x′mβ̂)xjm∑
m∈R(yk)

exp(x′mβ̂)
,

and R(yk) is the risk set at time yk. The MLE β̂ is obtained from maxi-
mizing Cox’s partial likelihood function. The Shoenfeld residuals for each
predictor xj must sum to zero. We define the scaled Schoenfeld residuals
by the product of the inverse of the estimated variance-covariance matrix of
the kth Schoenfeld residual and the kth Schoenfeld residual, so that the kth

Schoenfeld residual has an easily computable variance-covariance matrix.
Tests and graphical diagnostics for proportional hazards may be based

on the scaled Schoenfeld residuals. Conveniently, the cox.zph function calcu-
lates tests of the proportional hazards assumption for each covariate, by cor-
relating the corresponding set of scaled Schoenfeld residuals with a suitable
transformation of load (the default is based on the Kaplan-Meier estimate of

the survival function, i.e., Ŝ(r) for the bending data). If the PH assumption
holds for a particular covariate then the scaled Schoenfeld residual for that
covariate will not be related to survival time. Using the cox.zph function,
rho is the Pearson product-moment correlation between the scaled Schoen-
feld residuals and survival time. The null hypothesis is that the correlation
between the scaled Schoenfeld residuals and the ranked survival time is zero.
Rejection of the null hypothesis implies the PH assumption is violated.

As mentioned above, the R-function cox.zph computes a test for each
covariate, along with a global test for the model as a whole. The R-code
cox.zph(cox1) gives the results in Table 25.
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Table 25: This table reports the results obtained by application of the R-code
cox.zph(cox1). They provide a test of the model as a whole as well as for
each individual covariate. The columns of the matrix are from left to right,
the correlation coefficient between transformed survival time and the scaled
Schoenfeld residuals, a chi-square statistic, and the two-sided p-value. The
NA is just a placeholder, there since is no appropriate correlation for the
global model.

factor p-value
factor(knot)1 -0.0875 0.694 0.4048
factor(knot)2 0.1215 1.491 0.2220
offg 0.0439 0.190 0.6633
moe -0.0524 0.319 0.5722
GLOBAL NA 9.179 0.0568

These results show now no statistically significant evidence of non-proportional
hazards for any of the covariates. The global test is also not quite statisti-
cally significant at the 5% level. These tests are sensitive to linear trends in
the hazard. Moreover, we may plot the scaled Schoenfeld residuals against
load–to–failure for each covariate as in Figure 11. Interpreting these graphs
is greatly facilitated by smoothing, for which purpose cox.zph uses a smooth-
ing spline, shown on each graph by a solid line; the broken lines represent
± two-standard-error envelopes around the fit. Systematic departures from
a horizontal line indicate non–proportional hazards. The assumption of pro-
portional hazards appears to be supported for the covariate ‘offg’ (which is,
recall, a dummy variable, accounting for the two bands in the graph) and
‘moe’. However we see what appears to be a trend in the plot for ‘knot’,
with the ‘knot’ effect increasing with load. That is, the variability band for
‘knot’ (a categorical variable with 3 levels, accounting for the 3 bands in the
graph) displays a positive slope over load, suggesting non-proportionality of
hazard and conflicting with the finding of the test based on the R function
cox.zph.

An alternative and less sensitive way of assessing the proportional hazards
assumption is to plot log[− logS(r)] vs log(r) as in Figure 12. We see parallel
plots for ‘offg’ but nonparallel ones for ‘knot’ in confirmation of what we
learned above from the Schoenfeld residual plots. These results cast doubt
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Figure 11: Scaled Schoenfeld residuals against load-to-failure. The solid line
represents a spline smooth of those residuals with two sigma limits around
it. Note the apparent trend for ‘knot’ unlike the other two, pointing to a
possible problem with the proportional hazards assumption for this case.
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Figure 12: Graphical check of the proportional hazard assumption. We see
a slight lack of parallelism in the plots for the cases associated with ‘knot’.
The situation with off–grade is a little less clear but at any rate does not
give us grounds for rejecting the assumption of proportional hazards for that
factor.
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on the appropriateness of the Cox PH model, a major finding in our analysis.
Assessing goodness-of-fit. The ith Cox–Snell residual is defined as

rCi = Ĥ0(ti)× exp(x′iβ̂) = Ĥi(ti) = − log Ŝi(ti),

where Ĥ0(ti) and β̂ are the MLE’s of the baseline cumulative hazard function
and coefficient vector, respectively. The quantity rCi = − log Ŝi(ti) will have
a unit exponential distribution with fR(r) = exp(−r). Let SR(r) denote the
survival function for the Cox-Snell residual rCi. Then,

SR(r) =

∫ ∞
r

exp(−x)dx = exp(−r),

and
HR(r) = − logSR(r) = − log(exp(−r)) = r.

Therefore we can plot the cumulative hazard function HR(rCi) against
Cox-Snell residual rCi to check the fit of the model. We should see a straight
line with unit slope and zero intercept if the fitted model is correct. [Note
however, that the Cox-Snell residuals will not be symmetrically distributed
about zero and cannot be negative.] We see that plot in Figure 13. There is
some obvious evidence of a systematic deviation from the straight line with
an intercept zero and a slope one, which gives us some concern about the
adequacy of the fitted model.

Checking for outliers. The ith deviance residual is defined by

rDi = sign(rmi)
√
−2{rmi + δi log(δi − rmi)},

where: the sign function sign(), which is 1 or -1 according as rmi > 0 or
rmi < 0; rmi = δi − rCi is the martingale residual; δi is 1 or 0 according as
the observation is uncensored or censored.

In a fitted Cox PH model, the hazard of failure for the ith specimen at
any load depends on the value of exp(β′xi) that is called the risk score.
A plot of deviance residuals versus the risk score is a helpful diagnostic to
assess a given specimen relationship to the model. Potential outliers will
have deviance residuals whose absolute values are large. This plot will give
information about characteristics of observations that are not well fitted by
the model.

A plot of deviance residuals against the covariates can also be obtained.
Any unusual patterns may suggest features of the data that have not been
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Figure 13: Cumulative hazard plot of the Cox-Snell residual for Cox PH
model. Validity of the Cox PH model would mean that the cumulative hazard
plot would lie along the line which it does not, thus casting doubt on that
model.
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adequately fitted for the model. Very large or very small values suggest that
the observation may be an outlier in need of special attention.

The plots of deviance residuals against the risk score, index and covariates
are given in Figure 14. They show only one possible outlier, but none of them
seems to be well–scattered about zero. Therefore overall, they lead to further
doubt about the adequacy of the Cox PH model.

Influential observations. Figure 15 shows the change in each regres-
sion coefficient when each observation is removed from the data (influence
statistics). The changes plotted are scaled in units of standard errors and
changes of less than 0.1 are of little concern. These plots show the influence
of individual observations on the estimated regression coefficients for each
covariate. Most of the changes in the regression coefficients are less than
0.1 se.’s of the coefficients and all others are less than 0.2 se.’s. Data sets
where the influence plot is tightly clustered around zero indicate an absence
of influential observations and that is the case with these data leading us to
conclude that none of the observations are outliers.

Violation of the proportional hazards assumption. The analyses
described above have led to doubt about the validity of the proportional
hazards assumption for the predictor ‘knot’. One method for dealing with
this problem is to stratify the model by ‘knot’, meaning that we produce
a separate baseline hazard function for each level of ‘knot’. However by
stratifying the results in this way, we cannot get a hazard ratio for ‘knot’, its
effect being absorbed into the baseline hazard.

The two models are described symbolically below:

cox1 < −coxph(Surv(mor) ∼ factor(knot) + offg +moe,method =
“breslow”)
cox2 < −coxph(Surv(mor) ∼
strata(factor(knot)) + offg +moe,method = “breslow”)

Since the stratified model cox2 provides a smaller AIC value than the previ-
ous model cox1, we conclude that the stratified model gives a better fit for
this data. However, if the covariate ‘knot’ is of primary interest, this method
is not recommended. Therefore, we may try other appropriative alternatives,
such as the accelerated failure time model that will be discussed in the sequel.
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Figure 14: Deviance residuals against the risk score, index and covariates.
They show only one possible outlier but their lack of systematic scatter about
the zero line casts doubt on the suitability of the Cox PH model.
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Figure 15: Influence statistics. Since none of these normalized changes in
the regression coefficients exceeds 0.1 in absolute value, we see no outliers in
these data.
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6 Parametric survival models

The accelerated failure time (AFT) model [6, 9, 14] is an alternative to
the Cox PH model when the PH assumption is violated. The former is
more tractable than the latter for representing the difference in strengths
between two groups. The AFT models the direct effect of the explanatory
variables on the load–to–failure instead of hazard, as in the PH model. This
characteristic allows for an easier interpretation of the results because the
parameters measure the effect of the corresponding covariate directly on the
mean load–to–failure response.

6.1 The distribution of load–to–failure

AFT models are named for the distribution of strength data in our appli-
cation. The most commonly used ones include the exponential, Weibull,
log-logistic, and log-normal AFT models. Since each parametric distribution
is defined by a different hazard function, we can check the consistency of
survival data with a specific distribution by investigating the corresponding
underlying linearity. Four different plots can be obtained and the correspond-
ing distributions indicated, if these plots form a straight line pattern. The
plots and their associated distributions are given in Table 26, where Z(p)
means the pth-quantile from the standard normal distribution.

Table 26: Plots and associated distributions.

Plot Distribution indicated by a straight line pattern
-log[S(t)] vs. t Exponential, through the origin
log[−log(S(t))] vs. log(t) Weibull
log[(1− S(t))/S(t)] vs. log(t) Log-logistic
Z[1-S(t)] vs. log(t) Log-normal

For bending data, we present these four different plots in Figure 16. By
comparing the straightness of these lines, we may see that the distribution of
bending data is most likely to be one of Weibull, log-normal, or log-logistic.
Note that the left hand tail matters most in applications pointing to the
Weibull distribution in this case as it offers a better fit in that region. The
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exponential distribution, a special case of the Weibull would certainly not be
acceptable.

6.2 Variable selection

We fit the bending data using exponential, Weibull, log-logistic, and log-
normal AFT models. In both univariate and multivariate AFT models,
‘knot’, ‘offg’ and ‘moe’ are statistically significantly associated with load–
to–failure (MOR). No interactions are statistically significant in multivariate
AFT models. There is no big difference for the estimated Weibull, log-
logistic and log-normal models, but the estimated exponential model is quite
different. This indicates the distribution of MOR may be far away from the
exponential distribution. The results from the different AFT models applied
to the bending data are presented in Table 27, where η−1 is the estimated
load acceleration factor, the multiplicative constant which scales that load
up or down.
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Figure 16: Exploring potential distributions for the load–to–failure. Note
that a straight line fit is required for acceptability of a strength distribution,
particularly in the left hand tail. This rules out the exponential AFT model.
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Table 27: Results from fitted AFT models for the bending data. Here we use α stands generically for the
coefficient of the explanatory variable. η is the acceleration parameter, and p stands for p–value.

Coef Exponential Weibull Log-logistic Log-normal
α sd η p α sd η p α sd η p α sd η p

µ 1.41 0.45 1.44 0.00 1.41 0.00 1.42 0.00
knot1 -0.21 0.36 0.81 0.55 -0.23 0.04 0.79 0.00 -0.23 0.06 0.79 0.00 -0.21 0.05 0.81 0.00
knot2 -0.10 0.38 0.90 0.78 -0.12 0.04 0.88 0.02 -0.10 0.06 0.90 0.10 -0.10 0.06 0.90 0.11
ksize -0.00 0.01 1.00 0.98 0.00 0.00 1.00 0.97 0.00 0.00 1.00 0.97 -0.00 0.00 1.00 0.88
rnl -0.00 0.01 1.00 0.85 0.00 0.00 1.00 0.15 -0.00 0.00 1.00 0.32 -0.00 0.00 1.00 0.24
offg -0.30 0.50 0.74 0.54 -0.23 0.06 0.79 0.00 -0.25 0.10 0.77 0.02 -0.33 0.08 0.71 0.00
loc 0.00 0.01 1.00 0.95 0.00 0.00 1.00 0.99 0.00 0.00 1.00 0.77 0.00 0.00 1.00 0.61
face1 0.07 0.24 1.07 0.76 0.07 0.03 1.07 0.03 0.07 0.03 1.07 0.07 0.07 0.03 1.07 0.06
face2 -0.00 0.34 1.00 0.99 -0.06 0.04 0.94 0.19 -0.02 0.05 0.98 0.77 0.01 0.05 1.01 0.83
spec2 -0.04 0.41 0.96 0.91 -0.06 0.05 0.94 0.29 -0.05 0.06 0.95 0.43 -0.04 0.06 0.96 0.55
spec3 -0.11 1.13 0.89 0.92 -0.18 0.15 0.83 0.23 -0.13 0.15 0.87 0.38 -0.09 0.18 0.91 0.62
mois -0.02 0.12 0.98 0.86 -0.03 0.01 0.97 0.16 -0.02 0.01 0.98 0.30 -0.02 0.01 0.98 0.29
moe 0.66 0.83 1.93 0.42 0.77 0.11 2.15 0.00 0.64 0.12 1.89 0.00 0.64 0.13 1.89 0.00
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For the parametric models we discuss here, the AIC is given by

AIC = −2× log(maximumlikelihood) + 2× (a+ b),

where a is the number of parameters in the specific model and b the number
of one-dimensional covariates. For example, a = 1 for the exponential model,
a = 2 for the Weibull, log-logistic, and log-normal models. In Table 28, we
compare all these AFT models using the AIC, the smaller AIC the better.
The Weibull AFT model appears to be an appropriate AFT model according
to the AIC compared to the other AFT models. The exponential model
provides the worst fit, which is consistent with the conclusion we draw from
Figure 16.

Table 28: The AIC for the the various AFT models under consideration.

Model Log-likelihood a b AIC
Exponential -283.6 1 12 593.1685

Weibull -139 2 12 306.0937
Log-logistic -144.4 2 12 316.8026
Log-normal -144.5 2 12 317.0219

6.3 Checking the AFT assumption

A preliminary method for assessing an AFT model’s performance is through
a quantile-quantile (Q-Q) plot. For any value p in the interval (0,100), the
pth percentile is

t(p) = S−1(
100− p

100
).

Let t0(p) and t1(p) be the pth percentiles estimated from the survival functions
of the two groups of survival data. The percentiles for the two groups may
be expressed as

t0(p) = S−10 (
100− p

100
),

t1(p) = S−11 (
100− p

100
),
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where S0(t) and S1(t) are the survival functions for the two groups. So we
get

S1[t1(p)] = S0[t0(p)].

Under the AFT model, the assumption is S1(t) = S0[t/η], and so

S1[t1(p)] = S0[t1(p)/η].

Therefore, we get
t0(p) = η−1t1(p).

The percentiles of the survival distributions for the two groups can be
estimated by the KM estimates of the respective survival functions. If the
accelerated failure time model is appropriate, a plot of percentiles of the KM
estimated survival function from one group against another should give an
approximate straight line through the origin. The slop of this line will be an
estimate of the acceleration factor η.

For the 3-level categorical covariate ‘knot’, we have 3 possible pairwise
combinations. The Q-Q plot in Figure 17 approximates well a straight line
from the origin indicating that the AFT model may be appropriate.

6.4 Model Diagnostics for the AFT Model

Overall goodness-of-fit. We check the goodness of fit of the model
using residual plots. The cumulative hazard plot of the Cox-Snell residuals
in the Weibull model is presented in Figure 18. The plotted points mostly
lie on a line that has a unit slope and zero intercept, although we see some
divergence at the right hand end. In any event, comparing Figures 13 and
18, we see that the Weibull AFT model provides a much better fit than the
Cox PH model. We conclude that the Weibull produces the best fitting AFT
model based on AIC criteria and residuals plot.

Checking for outliers. Similarly, the plots of deviance residuals against
the risk score, index and covariates are given in Figure 19. They display only
one possible outlier, but none of them seem to be systematically distributed
about zero. Therefore, overall, we have little concern about the adequacy of
the fitted log-normal AFT model.

Influential observations. Figure 20 shows the change in each regression
coefficient when each observation is removed from the data (influence statis-
tics). The changes plotted are scaled in units of standard errors. Changes
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Figure 17: Q-Q plot for load–to–failure.
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Figure 18: Cumulative hazard plot of the Cox-Snell residual for the Weibull
AFT model.
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Figure 19: Deviance residuals against the risk score, index and covariates.
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of less than 0.04 are of little concern. These plots indicate the influence
of individual observations on the estimated regression coefficients for each
covariate. Most of the changes in the regression coefficients are less than
0.02 se.’s of the coefficients and all others are less than 0.03 se.’s. Therefore
data sets where the influence plot is tightly clustered around zero indicate
an absence of influential observations.

6.5 Interpretation of results

Finally, we can fit the Weibull AFT model with only statistically significant
covariates – ‘knot’, ‘offg’ and ‘moe’ or in symbolic form:

wei < −survreg(Surv(mor) ∼ factor(knot)+offg+moe, dist = “weibull”)

The summary for this model is given in Table 29:

Table 29: Summary for the final Weibull AFT model.

coef se(coef) η(coef) p
(Intercept) 1.0174 0.1796 1.47e-08
factor(knot)1 -0.1428 0.0412 0.8669274 5.31e-04 ∗ ∗ ∗
factor(knot)2 -0.0978 0.0471 0.9068303 3.79e-02 ∗
offg -0.2118 0.0661 0.8091265 1.35e-03 ∗∗
moe 0.7057 0.1119 2.0252639 2.86e-10 ∗ ∗ ∗
Log(scale) -1.9688 0.0786 - 2.00e-138
Loglik(model)= -145

We conclude that the acceleration factor η for ‘offg’ is 0.81 (less than 1),
which indicates that a smaller survival load is more likely for off–grade lum-
ber. The η’s for ‘knot’ are also less than 1 implying that this variable yields a
lower load–to–failure, and the single knot–group is more likely to break than
the knot–combination group since it has an even smaller acceleration factor.
The acceleration factor η for ‘moe’ is 2.03 (more than 1), indicating that a
larger survival load is more likely for a piece of lumber with a higher MOE
value. These conclusions are consistent with the ones drawn from application
of the Cox PH model.
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Figure 20: Influence statistics.
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6.6 Simulation Study

In practice the model relating the strength of a piece of lumber to its co-
variates cannot be known and we explore through simulations studies the
inferential effect of mis-specifying that model. However, to constrain the
scope of our study to a practical limit, we will assume that the structural
link between the response and the covariates is correct based on our belief
that diagnostic assessments of data would suggest a reasonable choice for
that link. Thus we restrict our studies to the effect of mis-specifying the
random error component of an AFT model for the strength. More precisely,
we looked at the estimates for the coefficients in that link when the standard
Normal distribution, the Cauchy t1 distribution, the Student t2 distribution
and the standard Gumbel distribution are assumed for the error distribution
when the true distribution is none of these. The details follow below.

A simulation study was conducted to compare the estimates for the
AFT models with Weibull, exponential, log-normal and log-logistic distri-
bution assumptions. Also, one of our interests is to investigate predic-
tive accuracy. One commonly used measure of predictive accuracy is the
expected squared error of the estimate. This quantity is defined as the ex-
pected squared difference between predicted and observed values, that is, the
average squared difference between predicted and observed values if the ex-
periment were repeated finitely often and new estimates were made at each
replication.

The method. Our final log-linear form of the AFT model with respect
to load Y is given by:

log Yi = µ+ α1 knoti + α2 offgi + α3moei + σ εi,

where µ = 1.0, α11 = −0.1, α12 = −0.1, α2 = −0.2, α2 = 0.7 and σ =
0.1 are fixed. The significant X variables ‘knot’, ‘offg’ and ‘moe’ values
from the original sample are also fixed with respect to replication of the
study. The errors εi were generated parametrically from a standard Normal
distribution, from a Cauchy t1 distribution, from a Student t2 distribution
and from a standard Gumbel distribution. The response values Yi, however,
are randomly generated by the AFT model, based on the error component
of the model. We then regress the response values Yi on the fixed X matrix
(knot, offg and moe) to obtain the regression coefficients estimates at each
replication. We also obtain the average squared difference between predicted
and observed values 1

98

∑
(Yi − Ŷi)2 at each replication.
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Since there are 4 settings of the errors term distributions and 4 settings of
AFT models with different distribution assumptions (Weibull, exponential,
log-normal and log-logistic), there were a total of 4×4 (16) different settings
for the simulation we conducted. Each simulation involved 1000 replications
with a sample size 98.

Simulation results. For each simulation, the estimates were computed
using the Weibull AFT model, the exponential AFT model, the log-normal
AFT model and the log-logistic model. Let’s take the coefficient α2 for the
covariate ‘offg’ for example. Table 30 shows the average values of the param-
eter estimates for α2 and their standard deviations over the 1000 replications
with 4 different error terms.

Table 30: True value α2 = −0.2. Expected value, standard deviation of
parameter estimates.

Setting Weibull Exponential Log-normal Log-logistic
Normal -0.211(0.08) -0.214(0.07) -0.212(0.07) -0.211(0.07)

Cauchy t1 -0.224(0.15) -0.261(0.32) -0.240(0.35) -0.253(0.34)
Student t2 -0.233(0.46) -0.276(0.57) -0.265(0.47) -0.269(0.57)
Gumbel -0.245(2.10) -0.292(6.12) -0.283(5.10) -0.288(5.12)

Overall, based on this simulation study, the Weibull AFT model has
estimates of this coefficient, which are closer to the true values than those
for the other distributions. The patterns of the other coefficients are the same
in most cases. Moreover, the mean of predictive accuracy 1

98

∑
(Y − Ŷ )2 over

1000 replications shows that the Weibull AFT model with a standard normal
error performed better than other models since it gave the smallest mean
predictive accuracy. This confirms our choice of the Weibull AFT model
once again.

6.7 Cross-Validation

A stringent test of a model is an external validation - the application of
the ‘frozen’ model to a new population. It is often the case that the failure
of a model to validate externally could have been predicted from an hon-
est (unbiased) ‘internal’ validation. One well-known method for obtaining
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nearly unbiased internal assessments of accuracy is cross-validation. To un-
cover problems that may make prediction models misleading or invalid, the
predictive accuracy has to be unbiasedly validated using cross-validation.

Each time, we drop one record from the sample and the remaining data
are used as a training (model development) sample. That model is ‘frozen’
and applied to the dropped–out sample for computing predictive survival
probability. For example, we drop record 98, then fit a model on records 1
to 97 and use this model to predict the 98th record, so on so forth.

The following plot Figure 21 gives us an idea of how well the predicted
survival curve from the final Weibull AFT model tracks observed Kaplan-
Meier estimates. The predicted survival is slightly larger than the observed
in the lower tail and smaller than the observed in the upper tail. However, we
see that predicted survival curve mainly falls within the 95% error bounds of
the observed survival curve. Therefore, it does not produce large deviations
from the true values.

Thus overall, the AFT model seems promising for appllcation in this
context. Thus in Section 7 we add a Bayesian version of the AFT to enable
prior information to be incorporated.

7 A Bayesian version of AFT

Let YI denote the event time. The following regression model is assumed

log(Yi) = β′xi + εi,

where β is the vector of the corresponding regression coefficients and xi is
the vector of covariates. The error term εi are assumed to be independent
and identically distributed with a univariate density gε(e). This density is
expressed as a mixture of Bayesian G-splines (normal densities with equidis-
tant means and constant variances). [13] specify the error density gε(e) as a
shifted and scaled penalized Gaussian mixture (PGM), which is expressed as

gε(e) = γ−1
K∑

j=−K

ωj(a)ϕ{τ−1(e− α)|µj, θ}, (8)

where α and τ are the intercept and scale parameter, respectively, µj is a
fine grid of equidistant knots centered around zero (µ0 = 0) and θ2 is a fixed
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Figure 21: Comparing observed and predicted survival curves.
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basis variance, common for all mixture components. The mixture weights
are given by

ωj(a) =
exp(aj)∑K

k=−K exp(ak)
, j = −K, . . . ,K.

Here 0 < ωj < 1, j = −K, . . . ,K and
∑K

j=−K ωj = 1 to ensure that gε is a
density. For details, see [13].

7.1 Results

For the analysis of the bending and tension data, the AFT and Bayesian
AFT model were fitted. In both models, we included the following covariates:
‘knot’, ‘offg’ and ‘moe’. A Bayesian approach with the MCMC methodology
is used to estimate the model parameters. The computation was performed
using the bayesSurv library in R. The estimates for the regression coefficients
to be quite close to each other for the bending data. However for tension
data the estimates do differ especially for the covariate ‘knot’.

Comparison of the two approaches. For the bending data set we
applied the reduced Weibull AFT model given by

logYi = µ+ α1knoti + α2offgi + α3moei + σεi,

where µ and αi are regression parameters, σ is a scale parameter, and ε is
the random error. The R output for the reduced model appears below:

survreg(formula = Surv(mor) ~ factor(knot) + offg + moe , data = eortc , dist

= "weibull")

Value Std. Error z p

(Intercept) 1.0174 0.1796 5.67 1.47e-08

factor(knot)1 -0.1428 0.0412 -3.46 5.31e-04

factor(knot)2 -0.0978 0.0471 -2.08 3.79e-02

offg -0.2118 0.0661 -3.20 1.35e-03

moe 0.7057 0.1119 6.31 2.86e-10

Log(scale) -1.9688 0.0786 -25.04 2.00e-138

Scale= 0.140

Next we give the R output for Bayesian Weibull AFT model:

Mean SD Naive SE Time -series SE

factor.knot.1 -0.16031 0.04631 0.0002929 0.002302

factor.knot.2 -0.08622 0.05023 0.0003177 0.001883

offg -0.21302 0.08625 0.0005455 0.005014

moe 0.67881 0.10831 0.0006850 0.013821
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Note that the Bayesian approach does not generate p-values like the non-
Bayesian one as the two paradigms for inference are quite different. However
the coefficient estimates from these two approaches are similar.

Turning to the tension data we get the following listing for the R output
for weibull AFT model:

survreg(formula = Surv(mot) ~ factor(knot) + offg + moe , data = eortc ,dist =

"weibull")

Value Std. Error z p

(Intercept) -0.0352 0.3170 -0.111 9.11e-01

factor(knot)1 -0.0878 0.0713 -1.232 2.18e-01

factor(knot)2 0.0148 0.0953 0.155 8.77e-01

offg -0.4927 0.1449 -3.402 6.70e-04

moe 1.0643 0.1945 5.471 4.48e-08

Log(scale) -1.4140 0.0763 -18.528 1.24e-76

Scale= 0.243

The R output for Bayesian Weibull AFT model is given by:

Mean SD Naive SE Time -series SE

factor.knot.1 -0.07334 0.0833 0.0005268 0.005585

factor.knot.2 0.08435 0.1118 0.0007073 0.007004

offg -0.39563 0.1611 0.0010188 0.004488

moe 1.22327 0.2154 0.0013622 0.030248

The discrepancy between the two approaches seems somewhat larger for ten-
sion than for bending.

Predictive distribution for the Bayesian AFT model. The Bayesian
approach also enables us to develop a predictive distribution for lumber
strengths given the covariates. The one used here is provided in the R func-
tion predictive2 of the bayesSurv library is based on the Bayesian AFT model.
It differs from the to the hierarchical Bayes method developed by [20]. The
two approaches are to be compared in future work.

The function predictive2 computes predictive densities, survivor and haz-
ard curves for specified combinations of covariates. To compute the predictive
survival functions, we need to specify the combinations of covariates: ‘knot’,
‘offg’, and ‘moe’, for which the survival functions are computed as follows:

eortc.pred <- data.frame(mor=c(1, 1), knot=eortc$knot ,offg=eortc$offg ,moe=

eortc$moe)

Computation of the values of predictive survival function on the equidis-
tant grid of 5 time values from 1 to 10 is then performed using the following
code:
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pred <- predictive2(Surv(mor)~factor(knot)+offg+moe , grid=seq(1, 10, length

=5), Gspline=list(dim=1, K=15),quantile=c(0.025 , 0.975) , only.aver=FALSE

, predict=list(Surv=TRUE , density=FALSE , hazard=TRUE , cum.hazard=FALSE)

,data=eortc.pred)

We give a complete listing of the output for all the items in the test sam-
ples in Appendix C. Here we provide just the first ten predictions for bending
test and tension samples. The first ten lines of R output for bending data:
predictive survival probabilities The R output for bending data: predictive
survival probabilities given the relevant combinations of the covariates ‘knot’,
‘offg’, and ‘moe’ for each piece:.

> pred$grid

[1] 1.00 3.25 5.50 7.75 10.00

[,1] [,2] [,3] [,4] [,5]

[1,] 0.9999985 0.9986256 0.9100139 0.291686169 0.0084855182

[2,] 0.9999940 0.9931019 0.6262136 0.047264637 0.0013653316

[3,] 0.9999956 0.9958788 0.7360959 0.052465177 0.0009051875

[4,] 0.9999979 0.9981359 0.8711861 0.189736563 0.0034501664

[5,] 0.9999765 0.9541225 0.1857986 0.002057685 0.0002222578

[6,] 0.9999990 0.9988219 0.9267654 0.366402726 0.0184144255

[7,] 0.9999994 0.9993006 0.9654483 0.583086212 0.0748428375

[8,] 0.9999935 0.9928616 0.6137014 0.019852839 0.0005825212

[9,] 0.9999986 0.9984618 0.8987351 0.257551609 0.0075251075

[10,] 0.9999988 0.9988708 0.9308221 0.373069890 0.0165692096

[

Thus for piece # 1, for example, the probability of the piece surviving to a
load of 7.75 is about 0.29. In contrast for piece #8 that probability is just
0.02. What was the actual failure load in these cases?

The first ten lines of R output for tension data: predictive survival prob-
abilities given the relevant combinations of the covariates ‘knot’, ‘offg’, and
‘moe’ for each piece:

$grid

[1] 1.00 3.25 5.50 7.75 10.00

[,1] [,2] [,3] [,4] [,5]

[1,] 0.9998054 0.47894740 0.031226112 0.0014119742 9.035891e-05

[2,] 0.9999960 0.88981999 0.277166112 0.0342113185 3.458908e-03

[3,] 0.9999992 0.99252661 0.786548845 0.3670187402 1.150359e-01

[4,] 0.9996624 0.35901186 0.012683602 0.0003876112 2.030179e-05

[5,] 0.9998526 0.51468008 0.037815390 0.0018173140 1.192733e-04

[6,] 0.9999741 0.69778485 0.086562849 0.0050160783 3.371247e-04

[7,] 0.9998313 0.44885159 0.021959031 0.0007690396 4.226916e-05

[8,] 0.9999986 0.96408794 0.528730459 0.1312943332 2.233619e-02

[9,] 0.9999670 0.70129198 0.099240712 0.0070185758 5.497349e-04

[10,] 0.9999907 0.83292569 0.204574367 0.0219364470 2.153119e-03
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8 Summary and concluding remarks

This study is based on the wood strength data collected in a FPInnovations
(FPI) laboratory. However, the sample sizes for both bending and testing
were small making all our findings provisional, bending confirmation with
larger datasets.

We employed survival analysis methods in a very different context from
that in which they were first developed, namely to model the load–to–failure
in manufactured lumber. The present study shows that a type of wood defect
(knot), a lumber grade status (off-grade: Yes/No) and a lumber’s modulus of
elasticity (moe) have statistically significant effects on wood strength prop-
erties including bending strength and tension strength.

Forms of non-parametric and parametric bivariate-strength survival func-
tions (Biv-KM and Biv-Weibull) have been explored to obtain the joint
strength distributions. The association between MSRC and FC was exam-
ined by using Cramer’s V statistic and found to be just 0.3, indicating the
strength of association is not that strong. However, this measure of strength
highly depends on how the covariate values are aggregated into sub cate-
gories and in our case, these lumber categories were fairly fine, making a low
V level inevitable with such a small dataset.

The Cox PH model is routinely applied to the analysis of survival data,
but the proportional hazards (PH) assumption does not hold for ‘knot’ in this
analysis. We also use four different accelerated failure time (AFT) models to
fit the data. We found that the Weibull AFT model was the best fit for this
dataset. The study considered here provides an example of a situation where
Cox PH model is inappropriate and where the Weibull AFT model provides a
better description of the data. We see that the Weibull AFT model is a more
valuable and realistic alternative to the Cox PH model in some situations.
Moreover, the AFT model has a more realistic interpretation in terms of
an effect on the expected load–to–failure. It also provides more informative
results. In this context the AFT model has explanatory advantage over
the Cox PH alternative, in that the covariates have a direct effect on load
to failure rather on hazard functions as in the Cox PH model. This leads
us to recommend subject to confirmation with a larger sample, the AFT
alternative over the Cox PH model. Subject to the same caveat, we see the
final, Weibull AFT model as being suitable for changing the grading rules in
the future should that prove necessary. As well, this model could be used to
develop machine grading rules as new technologies come on stream.
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The finding reported in the previous paragraph led us to further develop
the AFT approach within a Bayesian context. The results for the data from
the tension tests unlike that for bending, differed to quite a degree, in that
even small discrepancies on the log scale can turn into large one on the
original scale. Finally we demonstrated the value of the Bayesian approach
by developing a predictive distribution for the load–to–failure.

The Cox PH model and the Weibull AFT model yield the same significant
covariates - ‘knot’, ‘off-grade’ and ‘moe’, indicating these three are the most
important predictors for modeling reliability. In our study, a piece of lumber
with a ‘knot’ defect is more likely to break than one with other defects; in
particular, a piece of lumber with a ‘single knot’ defect is even more likely to
break than one with a ‘knot combination’ defect. Not surprising, off-grade
lumber is more likely to have lower survival loads than the standard ones.
Finally the survival load increases log–linearly as a function of ‘moe’ .

These significant covariates can be used in conjunction with the final
AFT model to match pieces of lumber in describing the relationships among
strength properties. Obtaining matched pairs in this way can be used to ad-
dress the challenging problem of estimating the degree of association between
bending and tension survival loads. This is another potential benefit to be
realized from the work reported here. Moreover it may have application in
duration of load studies currently underway.

In practice the model relating the strength of a piece of lumber to its
covariates cannot be known and we explore through simulation studies the
inferential effect of mis-specifying that model. These studies were conducted
to compare the coefficients estimates from the AFT models with Weibull, ex-
ponential, log-normal and log-logistic distribution assumptions. The Weibull
AFT model leads to somewhat better estimates of coefficients than the other
incorrectly specified models. As well, it provides the best mean predictive
accuracy. This confirms our choice of the Weibull AFT model in another
way.

Finally, to uncover problems that may make prediction models mislead-
ing or invalid, predictive accuracy has been unbiasedly assessed using cross-
validation. We observe that predicted survival curve from the final Weibull
AFT model tracks the observed Kaplan-Meier estimates very well. This
study has shown the power of employing survival analysis methods in re-
liability in this very different context from that which originally led to its
development.
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A Appendix A: R code for analysis of bend-

ing data

require(bayesSurv)

library(coda)

library(lattice)

library(smoothSurv)

# specifiy the prior

prior.error <- list(K=15, c4delta=1.5, order=3, prior.intercept="normal", mean.intercept=0,

var.intercept=100,prior.scale="gamma", shape.scale=1, rate.scale=0.005,prior.lambda="gamma",

shape.lambda=1, rate.lambda=0.005)

prior.betaGamma <- list(mean.prior=rep(0, 4), var.prior=rep(100, 4))

prior.b <- list(prior.D = "inv.wishart", df.D = 2, scale.D = 0.002*c(1,0,1))

# intital value for the regression parameters

library(survival)

table<-read.table("bending.txt", header = TRUE)

eortc <-data.frame(table)

# Reduced AFT model

fit0 <-survreg(Surv(mor)~factor(knot)+offg+moe,dist="weibull",data=eortc)

summary(fit0)

beta.init <- fit0$coeff[-(1:2)]

gamma.init <- fit0$coeff["moe"]

init <- list(beta = c(gamma.init, beta.init), D = c(1, 0, 1), lambda = 100,

intercept = fit0$coeff["(Intercept)"],

scale = fit0$scale, gamma = 0, sigma = 0.2)

# MCMC sampling

library(bayesSurv)

sample <- bayessurvreg2(Surv(mor)~factor(knot)+offg+moe, prior=prior.error, init=init,

prior.beta=prior.betaGamma, prior.b=prior.b, nsimul=list(niter=125000, nthin=5, nburn=100000),

store=list(b=TRUE), data=eortc)

library(coda)

betaGamma <- read.table("beta.sim", header=TRUE)

betaGamma <- mcmc(betaGamma)

summary(betaGamma)

HPDinterval(betaGamma)

exp.betaGamma <- mcmc(exp(betaGamma))

summary(exp.betaGamma)
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HPDinterval(exp.betaGamma)

# Compute predictive quantities based on a Bayesian survival regression model fitted

# This function computes predictive densities, survivor and hazard curves

# for specified combinations of covariates.

eortc.pred <- data.frame(mor=c(1, 1), knot=eortc$knot,offg=eortc$offg,moe=eortc$moe)

pred <- predictive2(Surv(mor)~factor(knot)+offg+moe, grid=seq(1, 10, length=5),

Gspline=list(dim=1, K=15),quantile=c(0.025, 0.975), only.aver=FALSE,

predict=list(Surv=TRUE, density=FALSE, hazard=TRUE, cum.hazard=FALSE),data=eortc.pred)

pred$grid

pred$Surv

pred$hazard

plot(pred$Surv[1,],type="l",ylab="Survivor")
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B Appendix B: R code for analysis of tension

data

require(bayesSurv)

library(coda)

library(lattice)

library(smoothSurv)

# specifiy the prior

prior.error <- list(K=15, c4delta=1.5, order=3, prior.intercept="normal", mean.intercept=0,

var.intercept=100,prior.scale="gamma", shape.scale=1, rate.scale=0.005,

prior.lambda="gamma", shape.lambda=1, rate.lambda=0.005)

prior.betaGamma <- list(mean.prior=rep(0, 4), var.prior=rep(100, 4))

prior.b <- list(prior.D = "inv.wishart", df.D = 2, scale.D = 0.002*c(1,0,1))

# intital value for the regression parameters

library(survival)

table<-read.table("tension.txt", header = TRUE)

eortc <-data.frame(table)

###Reduced AFT model

fit0 <-survreg(Surv(mot)~factor(knot)+offg+moe,dist="weibull",data=eortc)

summary(fit0)

beta.init <- fit0$coeff[-(1:2)]

gamma.init <- fit0$coeff["moe"]

init <- list(beta = c(gamma.init, beta.init), D = c(1, 0, 1), lambda = 100,

intercept = fit0$coeff["(Intercept)"],

scale = fit0$scale, gamma = 0, sigma = 0.2)

# MCMC sampling

library(bayesSurv)

sample <- bayessurvreg2(Surv(mot)~factor(knot)+offg+moe, prior=prior.error, init=init,

prior.beta=prior.betaGamma, prior.b=prior.b, nsimul=list(niter=125000, nthin=5, nburn=100000),

store=list(b=TRUE), data=eortc)

library(coda)

betaGamma <- read.table("beta.sim", header=TRUE)

betaGamma <- mcmc(betaGamma)

summary(betaGamma)

HPDinterval(betaGamma)

exp.betaGamma <- mcmc(exp(betaGamma))

summary(exp.betaGamma)
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HPDinterval(exp.betaGamma)

eortc.pred <- data.frame(mot=c(1, 1), knot=eortc$knot,offg=eortc$offg,moe=eortc$moe)

pred <- predictive2(Surv(mot)~factor(knot)+offg+moe, grid=seq(1, 10, length=5),

Gspline=list(dim=1, K=15),quantile=c(0.025, 0.975), only.aver=FALSE,

predict=list(Surv=TRUE, density=FALSE, hazard=TRUE, cum.hazard=FALSE),data=eortc.pred)

pred$grid

pred$Surv

pred$hazard
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C Appendix C: bayesSurv predictions

• The R output for bending data: predictive survival probabilities given
the relevant combinations of the covariates ‘knot’, ‘offg’, and ‘moe’ for
each piece:

> pred$grid

[1] 1.00 3.25 5.50 7.75 10.00

[,1] [,2] [,3] [,4] [,5]

[1,] 0.9999985 0.9986256 0.9100139 0.291686169 0.0084855182

[2,] 0.9999940 0.9931019 0.6262136 0.047264637 0.0013653316

[3,] 0.9999956 0.9958788 0.7360959 0.052465177 0.0009051875

[4,] 0.9999979 0.9981359 0.8711861 0.189736563 0.0034501664

[5,] 0.9999765 0.9541225 0.1857986 0.002057685 0.0002222578

[6,] 0.9999990 0.9988219 0.9267654 0.366402726 0.0184144255

[7,] 0.9999994 0.9993006 0.9654483 0.583086212 0.0748428375

[8,] 0.9999935 0.9928616 0.6137014 0.019852839 0.0005825212

[9,] 0.9999986 0.9984618 0.8987351 0.257551609 0.0075251075

[10,] 0.9999988 0.9988708 0.9308221 0.373069890 0.0165692096

[11,] 0.9999987 0.9987805 0.9231058 0.340026654 0.0127028066

[12,] 0.9999966 0.9969031 0.7902563 0.084992486 0.0012787989

[13,] 0.9999990 0.9987765 0.9228106 0.349938051 0.0165193321

[14,] 0.9999964 0.9967262 0.7802083 0.077487592 0.0011847014

[15,] 0.9999960 0.9953560 0.7217239 0.050658317 0.0010662659

[16,] 0.9999995 0.9993386 0.9685954 0.615640313 0.0855803066

[17,] 0.9999984 0.9985678 0.9052124 0.276051746 0.0074214827

[18,] 0.9999987 0.9988268 0.9270599 0.356492251 0.0145164328

[19,] 0.9999929 0.9919269 0.5825357 0.015827700 0.0005393558

[20,] 0.9999984 0.9982422 0.8820113 0.214169702 0.0053299396

[21,] 0.9999969 0.9965556 0.7781415 0.079456422 0.0015190358

[22,] 0.9999952 0.9953564 0.7116372 0.042693883 0.0008068100

[23,] 0.9999995 0.9992514 0.9635842 0.580865439 0.0697211583

[24,] 0.9999994 0.9991135 0.9522343 0.500463925 0.0428560464

[25,] 0.9999956 0.9958788 0.7360959 0.052465177 0.0009051875

[26,] 0.9999980 0.9977671 0.8486286 0.151556204 0.0031158728

[27,] 0.9999998 0.9995616 0.9837820 0.774312822 0.2235565045

[28,] 0.9999975 0.9972487 0.8162455 0.111187539 0.0021249073

[29,] 0.9999967 0.9970679 0.7999239 0.093026114 0.0013858671

[30,] 0.9999986 0.9987317 0.9189522 0.323711518 0.0111068033

[31,] 0.9999973 0.9976235 0.8349459 0.130605350 0.0019932773

[32,] 0.9999935 0.9928616 0.6137014 0.019852839 0.0005825212

[33,] 0.9999978 0.9980465 0.8645571 0.176878438 0.0030674481

[34,] 0.9999945 0.9944246 0.6719481 0.030972883 0.0006927562

[35,] 0.9999977 0.9975265 0.8331147 0.130268517 0.0025584156

[36,] 0.9999993 0.9992190 0.9594581 0.537161880 0.0551032047

[37,] 0.9999976 0.9971649 0.8090804 0.115730107 0.0026489318

[38,] 0.9999988 0.9986451 0.9132915 0.304414723 0.0107248856

[39,] 0.9999960 0.9963326 0.7589458 0.064010383 0.0010283479

[40,] 0.9999963 0.9958868 0.7454982 0.060861344 0.0012180852

[41,] 0.9999958 0.9950623 0.7092285 0.046149151 0.0010016186

[42,] 0.9999983 0.9985065 0.9001778 0.260718610 0.0064977548

[43,] 0.9999997 0.9995634 0.9823701 0.754622956 0.2023974662

[44,] 0.9999992 0.9989444 0.9375292 0.416574907 0.0254424890

[45,] 0.9999972 0.9974986 0.8267209 0.120385950 0.0018085205

[46,] 0.9999989 0.9987508 0.9219078 0.337117378 0.0136069069
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[47,] 0.9999942 0.9940702 0.6579371 0.027755646 0.0006614979

[48,] 0.9999992 0.9989813 0.9407753 0.433427557 0.0282986428

[49,] 0.9999765 0.9541225 0.1857986 0.002057685 0.0002222578

[50,] 0.9999998 0.9995094 0.9809746 0.742309266 0.1839880784

[51,] 0.9999981 0.9982982 0.8835843 0.216869891 0.0044090836

[52,] 0.9999985 0.9986802 0.9145910 0.307585291 0.0097076635

[53,] 0.9999975 0.9978491 0.8503901 0.152681073 0.0024525144

[54,] 0.9999958 0.9961138 0.7477211 0.058005599 0.0009632071

[55,] 0.9999982 0.9979764 0.8628674 0.175032417 0.0038355381

[56,] 0.9999977 0.9979511 0.8576284 0.164520908 0.0027373896

[57,] 0.9999986 0.9983931 0.8934134 0.242661510 0.0066985895

[58,] 0.9999983 0.9981593 0.8759118 0.200621903 0.0047664595

[59,] 0.9999997 0.9993685 0.9722549 0.654392850 0.1083577920

[60,] 0.9999998 0.9995274 0.9819632 0.753351889 0.1967459155

[61,] 0.9999947 0.9947565 0.6855730 0.034519402 0.0007270842

[62,] 0.9999975 0.9972487 0.8162455 0.111187539 0.0021249073

[63,] 0.9999935 0.9928616 0.6137014 0.019852839 0.0005825212

[64,] 0.9999964 0.9967262 0.7802083 0.077487592 0.0011847014

[65,] 0.9999899 0.9853489 0.4147551 0.005256465 0.0003846893

[66,] 0.9999953 0.9944137 0.6830334 0.038202177 0.0008905710

[67,] 0.9999992 0.9990084 0.9432247 0.438664995 0.0274348844

[68,] 0.9999926 0.9914183 0.5665135 0.014128269 0.0005199462

[69,] 0.9999970 0.9973649 0.8181480 0.110717244 0.0016479562

[70,] 0.9999945 0.9944246 0.6719481 0.030972883 0.0006927562

[71,] 0.9999967 0.9970679 0.7999239 0.093026114 0.0013858671

[72,] 0.9999994 0.9991718 0.9571365 0.533262700 0.0523207496

[73,] 0.9999985 0.9983200 0.8878419 0.228191364 0.0059706047

[74,] 0.9999989 0.9987995 0.9259140 0.353787910 0.0153228628

[75,] 0.9999962 0.9965364 0.7697733 0.070498620 0.0011017376

[76,] 0.9999982 0.9984413 0.8949011 0.245721960 0.0056977330

[77,] 0.9999978 0.9980465 0.8645571 0.176878438 0.0030674481

[78,] 0.9999973 0.9976235 0.8349459 0.130605350 0.0019932773

[79,] 0.9999966 0.9969031 0.7902563 0.084992486 0.0012787989

[80,] 0.9999985 0.9983200 0.8878419 0.228191364 0.0059706047

[81,] 0.9999975 0.9978491 0.8503901 0.152681073 0.0024525144

[82,] 0.9999929 0.9919269 0.5825357 0.015827700 0.0005393558

[83,] 0.9999993 0.9992471 0.9615664 0.552727076 0.0612050492

[84,] 0.9999996 0.9993003 0.9673397 0.611244019 0.0836654736

[85,] 0.9999924 0.9908810 0.5502335 0.012612965 0.0005017490

[86,] 0.9999960 0.9963326 0.7589458 0.064010383 0.0010283479

[87,] 0.9999993 0.9991124 0.9516823 0.489345513 0.0383103672

[88,] 0.9999900 0.9895592 0.5351473 0.024459781 0.0006533109

[89,] 0.9999974 0.9977401 0.8428325 0.141372543 0.0022063407

[90,] 0.9999937 0.9932895 0.6287999 0.022217631 0.0006066941

[91,] 0.9999977 0.9979511 0.8576284 0.164520908 0.0027373896

[92,] 0.9999926 0.9889995 0.5145798 0.013107458 0.0005376674

[93,] 0.9999987 0.9985876 0.9086654 0.288463381 0.0095242196

[94,] 0.9999995 0.9993628 0.9702309 0.630091796 0.0936612401

[95,] 0.9999954 0.9956268 0.7240681 0.047368529 0.0008533286

[96,] 0.9999976 0.9973926 0.8248544 0.120453201 0.0023281923

[97,] 0.9999960 0.9963326 0.7589458 0.064010383 0.0010283479

[98,] 0.9999970 0.9970999 0.7922647 0.146679365 0.0051763286

• The R output for tension data: predictive survival probabilities given
the relevant combinations of the covariates ‘knot’, ‘offg’, and ‘moe’ for
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each piece:

$grid

[1] 1.00 3.25 5.50 7.75 10.00

[,1] [,2] [,3] [,4] [,5]

[1,] 0.9998054 0.47894740 0.031226112 0.0014119742 9.035891e-05

[2,] 0.9999960 0.88981999 0.277166112 0.0342113185 3.458908e-03

[3,] 0.9999992 0.99252661 0.786548845 0.3670187402 1.150359e-01

[4,] 0.9996624 0.35901186 0.012683602 0.0003876112 2.030179e-05

[5,] 0.9998526 0.51468008 0.037815390 0.0018173140 1.192733e-04

[6,] 0.9999741 0.69778485 0.086562849 0.0050160783 3.371247e-04

[7,] 0.9998313 0.44885159 0.021959031 0.0007690396 4.226916e-05

[8,] 0.9999986 0.96408794 0.528730459 0.1312943332 2.233619e-02

[9,] 0.9999670 0.70129198 0.099240712 0.0070185758 5.497349e-04

[10,] 0.9999907 0.83292569 0.204574367 0.0219364470 2.153119e-03

[11,] 0.9998530 0.46731392 0.024430717 0.0008815748 4.898079e-05

[12,] 0.9999939 0.85385709 0.216696567 0.0219202425 1.961960e-03

[13,] 0.9999950 0.87280652 0.245992785 0.0274789845 2.609960e-03

[14,] 0.9999945 0.86357884 0.231097776 0.0245632078 2.263867e-03

[15,] 0.9999877 0.78482826 0.141577992 0.0107245182 8.193739e-04

[16,] 0.9999914 0.82165495 0.176644852 0.0154319699 1.271301e-03

[17,] 0.9999823 0.74344473 0.111599843 0.0073695973 5.261592e-04

[18,] 0.9999026 0.52291212 0.033406365 0.0013259340 7.630768e-05

[19,] 0.9998654 0.52572013 0.039657108 0.0018530985 1.170063e-04

[20,] 0.9965939 0.23053058 0.009752753 0.0004425914 2.916773e-05

[21,] 0.9999989 0.97922374 0.632656644 0.2012564002 4.246216e-02

[22,] 0.9999955 0.88154986 0.261357843 0.0306880639 3.006127e-03

[23,] 0.9999772 0.71345331 0.094377534 0.0057078479 3.911148e-04

[24,] 0.9999903 0.80989399 0.164391349 0.0136876622 1.098703e-03

[25,] 0.9999823 0.74344473 0.111599843 0.0073695973 5.261592e-04

[26,] 0.9999706 0.68169597 0.079259640 0.0044043018 2.905565e-04

[27,] 0.9999985 0.96077868 0.510771980 0.1214693828 1.994818e-02

[28,] 0.9996346 0.52515735 0.061121328 0.0051553143 4.966681e-04

[29,] 0.9999258 0.55971371 0.040893222 0.0017376665 1.026399e-04

[30,] 0.9999877 0.78482826 0.141577992 0.0107245182 8.193739e-04

[31,] 0.9999619 0.64835845 0.066118867 0.0033874231 2.157944e-04

[32,] 0.9998883 0.50438839 0.030134592 0.0011576106 6.581177e-05

[33,] 0.9999433 0.59590526 0.049781003 0.0022732569 1.381338e-04

[34,] 0.9999665 0.66521133 0.072451075 0.0038639981 2.504043e-04

[35,] 0.9999565 0.63116756 0.060243524 0.0029675607 1.859689e-04

[36,] 0.9998063 0.43049773 0.019715712 0.0006707382 3.648536e-05

[37,] 0.9999711 0.71647762 0.107440621 0.0079022823 6.312245e-04

[38,] 0.9997062 0.37651266 0.014182407 0.0004446272 2.349741e-05

[39,] 0.9996853 0.41965024 0.022165693 0.0008671941 5.108058e-05

[40,] 0.9999258 0.55971371 0.040893222 0.0017376665 1.026399e-04

[41,] 0.9999931 0.84363312 0.202809713 0.0195301266 1.698958e-03

[42,] 0.9999741 0.69778485 0.086562849 0.0050160783 3.371247e-04

[43,] 0.9999848 0.78589203 0.156139954 0.0140922738 1.253901e-03

[44,] 0.9997775 0.41229548 0.017682953 0.0005849070 3.150028e-05

[45,] 0.9999991 0.98356851 0.683767714 0.2520205617 6.301111e-02

[46,] 0.9999433 0.59590526 0.049781003 0.0022732569 1.381338e-04

[47,] 0.9997443 0.39428688 0.015843845 0.0005099922 2.720283e-05

[48,] 0.9999963 0.89762931 0.293387816 0.0380698340 3.975545e-03

[49,] 0.9999974 0.92932560 0.384977181 0.0669352848 8.670512e-03

[50,] 0.9999844 0.75773286 0.121031548 0.0083608889 6.100636e-04

[51,] 0.9999891 0.79761763 0.152701139 0.0121238075 9.490359e-04
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[52,] 0.9999772 0.71345331 0.094377534 0.0057078479 3.911148e-04

[53,] 0.9999799 0.72867956 0.102718815 0.0064889524 4.536836e-04

[54,] 0.9999799 0.72867956 0.102718815 0.0064889524 4.536836e-04

[55,] 0.9999619 0.64835845 0.066118867 0.0033874231 2.157944e-04

[56,] 0.9988301 0.21907043 0.004486177 0.0001127682 5.510785e-06

[57,] 0.9999862 0.77153081 0.131022366 0.0094748652 7.071388e-04

[58,] 0.9999974 0.92932560 0.384977181 0.0669352848 8.670512e-03

[59,] 0.9999503 0.61367144 0.054804611 0.0025980741 1.602714e-04

[60,] 0.9999957 0.89591535 0.300252785 0.0415080869 4.605245e-03

[61,] 0.9999741 0.69778485 0.086562849 0.0050160783 3.371247e-04

[62,] 0.9999978 0.93995269 0.420526246 0.0800782200 1.107736e-02

[63,] 0.9999980 0.94061762 0.415516736 0.0761939514 1.015331e-02

[64,] 0.9999706 0.68169597 0.079259640 0.0044043018 2.905565e-04

[65,] 0.9999665 0.66521133 0.072451075 0.0038639981 2.504043e-04

[66,] 0.9999565 0.63116756 0.060243524 0.0029675607 1.859689e-04

[67,] 0.9999967 0.90499127 0.309990452 0.0422847269 4.564020e-03

[68,] 0.9999880 0.80706679 0.173160654 0.0159886534 1.396356e-03

[69,] 0.9999565 0.63116756 0.060243524 0.0029675607 1.859689e-04

[70,] 0.9999741 0.69778485 0.086562849 0.0050160783 3.371247e-04

[71,] 0.9999665 0.66521133 0.072451075 0.0038639981 2.504043e-04

[72,] 0.9998883 0.50438839 0.030134592 0.0011576106 6.581177e-05

[73,] 0.9997775 0.41229548 0.017682953 0.0005849070 3.150028e-05

[74,] 0.9999989 0.97243893 0.577954055 0.1602413190 3.000493e-02

[75,] 0.9999950 0.87280652 0.245992785 0.0274789845 2.609960e-03

[76,] 0.9999916 0.84105330 0.211128872 0.0222396330 2.091078e-03

[77,] 0.9999804 0.75948974 0.135089844 0.0112158064 9.539373e-04

[78,] 0.9999827 0.77292609 0.145350003 0.0125789158 1.093920e-03

[79,] 0.9998063 0.43049773 0.019715712 0.0006707382 3.648536e-05

[80,] 0.9999260 0.60286509 0.059798590 0.0033893705 2.390340e-04

[81,] 0.9999981 0.94868665 0.463793009 0.1015015038 1.618479e-02

[82,] 0.9999894 0.81888826 0.185291522 0.0178693742 1.598415e-03

[83,] 0.9999979 0.94474179 0.438500371 0.0873552707 1.249622e-02

[84,] 0.9999914 0.82165495 0.176644852 0.0154319699 1.271301e-03

[85,] 0.9999975 0.92454040 0.361723917 0.0572751809 6.852269e-03

[86,] 0.9999351 0.57790629 0.045151132 0.0019879844 1.190647e-04

[87,] 0.9996624 0.35901186 0.012683602 0.0003876112 2.030179e-05

[88,] 0.9999962 0.90407587 0.324383072 0.0497298621 6.121239e-03

[89,] 0.9999823 0.74344473 0.111599843 0.0073695973 5.261592e-04

[90,] 0.9999891 0.79761763 0.152701139 0.0121238075 9.490359e-04

[91,] 0.9999772 0.71345331 0.094377534 0.0057078479 3.911148e-04

[92,] 0.9997443 0.39428688 0.015843845 0.0005099922 2.720283e-05

[93,] 0.9999026 0.52291212 0.033406365 0.0013259340 7.630768e-05

[94,] 0.9999914 0.82165495 0.176644852 0.0154319699 1.271301e-03

[95,] 0.9999891 0.79761763 0.152701139 0.0121238075 9.490359e-04

[96,] 0.9999916 0.84105330 0.211128872 0.0222396330 2.091078e-03

[97,] 0.9999613 0.67987018 0.087737982 0.0056118463 4.068430e-04

[98,] 0.9819035 0.07413874 0.001294146 0.0000372117 1.918832e-06
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