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Abstract

The duration of load effect is a distinctive and important charac-
teristic of wood strength. It refers to the fact that wood products
can usually sustain a high load for a short time but can also sus-
tain long-term continuous lower loads, albeit with some deformation.
Modelling the duration of load effect and testing wood for specific
properties of this effect are important in ensuring structural safety of
wood construction. Damage accumulation models have been proposed
by several researchers to model the duration of load effects. The mod-
els assume that damage is accumulated over time according to the
load history, and once the accumulated damage reaches a threshold
value, the board will break. Different researchers have designed dif-
ferent experiments and proposed different methods for estimating the
model parameters.

In this work, we consider several damage accumulation models,
with a focus on the U.S. model. We investigate the effects of the dis-
tributional assumptions for the models, and propose several methods
to estimate parameters in the models. Our proposed methods are
evaluated via simulation studies. We apply our methods to a dataset
from Foschi and Yao (1986)’s experiments.



1 Introduction

The duration of load effect describes the deformation of a product under
constant long-term loading, a deformation that can lead to breakage of the
product. Models for this effect are usually formulated in terms of the ac-
cumulation of damage. This report reviews the duration of load effect on
wood products and the attempts that have been made to model the accumu-
lated damage resulting from that effect. We begin with a description of the
duration of load effect.

Under long-term loading, material such as wood deforms over time, with
some of the deformation being permanent. The process of deformation of a
material under constant loading is called creep.

Duration of load is associated with the creep-rupture behavior that occurs
in the third phase of deformation. The magnitude of deformation depends
on load level, which is generally controlled by code requirements to ensure
an acceptable deformation limit of the structure over time.

Creep and duration of load effects of wood are of critical importance to
timber engineering. To account for the duration of load behavior, design
codes use adjustment factors recommended for sawn lumber and engineered
wood products. The adjustment factors specified for wood products and
connectors in the North American wood design standards are based on early
damage accumulation models with parameters calibrated to experimental
results for dimension lumber (Karacabeyli and Soltis, 1991). An impor-
tant question is whether the early damage accumulation models apply to
the current wood products, especially to the recent generation of composite
wood-based products. To accurately model the behavior of these current
wood products, the applicability of accumulation of damage models must
be studied and, if needed, the models and/or parameters must be updated.
Statistical approaches are crucial in addressing this issue.

The duration of load test is a constant load test at a load level 7, defined
in a ramp load test. Figure 1 illustrates the load history in the ramp load test
and in the constant load test. Let 7(¢) denote the load at time ¢. In the ramp
load test with rate k, the applied load is linear in ¢, that is 7(¢) = kt. In the
ramp load test, the breaking time is Ty, and the breaking load is 7(7s) = kT5.
Figure 2 provides a schematic of the duration of load test set up.

In the constant load test, the load first increases linearly at constant rate
k until a predetermined time 7j, similar to the initial period of the ramp
load test, and then the load remains constant during the rest of time (see
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Figure 1: An illustration of the ramp load test and the constant load test.
In the ramp load test, the load increases linearly over time until the wood
specimen fails. In the constant load test, the load first increases linearly
until it reaches a pre-determined load 7, at time T, and then stays constant
thereafter until the specimen fails or the experiment ends.
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Figure 2: Diagram showing how the loads are applied in the bending tests.
In the diagram, a = distance from reaction to nearest load point (or, half
of shear span) (mm/in), P = bending load applied to specimen (N/Ibf),
b = specimen width (mm/in), d = specimen depth (mm/in), L = span of
specimen (mm/in), and X = half of span (mm/in).



Figure 1). That is

{kt for 0 <t < Ty,
7(t) =
KTy  for t > Ty.
The pre-determined load level £Tj is denoted by 7,, i.e., 7, = kTy. The load
level 7, is usually set at a certain percentile of the empirical distribution of
the short-term strength of the wood specimens tested during a ramp load
test with load equal to kt, the same value of k£ as in the constant load test.
The first part of the constant load test (i.e., 7(t) = kt when 0 < ¢ < Tj)
is called the ramp loading part of the constant load test and the second part
of the constant load test (i.e., 7(t) = 7, when t > Tj) is called the constant
loading part of the constant load test (see Figure 1).

There are also other ways to set up duration of load experiments. The
most popular one in industry can be summarized in three phases of defor-
mation under constant loading:

1. an initial deformation triggered by the application of the constant load
2. a secondary deformation entirely dependent on the load level applied;

3. athird deformation characterized by a spike in deformation until failure
oCCurs.

In this paper, we focus on the experiments set up shown in Figure 1.

The duration of load effect is usually modelled in terms of the accumu-
lation of damage. Proposing a model for damage accumulation based on
physical laws is difficult, since our knowledge of material behavior at the
microscopic level where the deterioration happens is generally incomplete.
As an alternative, damage accumulation models have been proposed based
instead on a combination of our incomplete understanding of the phenomena
at the macroscopic level and examination of experimental data (Yao, 1987).
In an accumulation of damage model, a wood specimen accumulates damage
depending on some load 7 that may vary over time. The damage accumu-
lated by time ¢ is denoted a(t) with, by convention, «(0) = 0 and a(T") = 1,
where T is the breaking time of the specimen; « is a non-decreasing function
of t. The accumulated damage process cannot be observed, but it may be
inferred based on the observed breaking times. The advantage of damage
accumulation models is that they may facilitate the prediction of damage



produced by an arbitrary load sequence, which may be useful in reliability
tests.

All damage accumulation models we review are based on the following
differential equation:

do(t)

o = ), 7(t),9), (1)

where f is a known function, 7(¢) is the known load at time ¢, and @ is a
vector of parameters, usually unknown.

The short term strength 7, is often included as an argument of f in
equation (1), in the form of o(t) = 7(t)/7s. However, authors define 7, in
different ways. Gerhards and Link (1987) treat 75 as a specimen dependent
random parameter with an assumed distribution and do not define 7 in terms
of any breaking time or load pattern. Foschi and Yao (1986) also treat 75 as
a specimen dependent parameter, but define 7, as the breaking load 7(7}) in
the ramp load test, when the loading rate £ is set so that the mean breaking
time is expected to be around one minute. Different definitions of 7, lead
to different damage accumulation models. We mostly focus on the model of
Foschi and Yao (1986) in this report.

In the literature, the parameter vector 6 is often treated as a constant
vector, depending on the type of wood specimen but constant among speci-
mens of the same type. However, this implies that all specimens of the same
type, when subjected to the same load, have the same breaking time 7', since,
for a fixed 6 and load, at most one value of T" can satisfy a(7T") = 1. Clearly
this is not realistic, as breaking times do vary from specimen to specimen.
A perhaps more realistic approach is to treat the parameters 6 as random
effects, which vary from specimen to specimen. This approach was taken by
Foschi and Yao (1982, 1986), as well as Gerhards and Link (1987).

Authors have proposed various parameter estimation methods from break-
ing times Ty’s in the ramp load test and/or breaking times 7.’s in the constant
load test. However, the estimation of parameters has been done in an ad hoc
way with no statistical principles, thereby leaving room for possible improve-
ment. These authors have not discussed the distributions of the breaking
times. Also, no one has considered random effects in the U.S. model.

In this paper, we review several damage accumulation models in the liter-
ature: the Madison Curve model, the U.S. model, and the Canadian model.
We derive the solutions or the approximate solutions they imply for the break-
ing time T, in the ramp load test and the breaking time 7, in the constant
load test for the U.S. model and the Canadian model. We also review the




parameter estimation methods found in the literature. Finally, we discuss
the problem of scale for some models.

Section 5 gives some concluding remarks, which in particular argue that
the review presented in this paper is a timely one.

2 Damage models, scales and units of mea-
surement

This section reviews some fundamental issues that arise in modeling the
accumulated damage in a randomly selected wood specimen under a specified
stress loading, issues that have not always been recognized in developing
those models. No model that describes a physical phenomenon should depend
on the units in which those properties will be measured. A first step in
meeting this requirement entails “non-dimensionalizing” the model, that is,
entails choosing the scales of the quantities involved in the models including
the baseline units for their scales. Those quantities then become unitless
numbers of the baseline units.

In accumulated damage models time is such a quantity. Depending on
the nature of the applied stress load, the natural scale could be anything
from seconds to weeks. Years, although a seemingly natural scale for long
term load effects, would not be appropriate since the length of a year is not
well-defined. Minutes might be appropriate for modelling the duration of
load effect in a proof loading ramp load test. In any case time would be
expressed as a unitless number of baseline units on the designated scale.

Non—dimsenionalizing models can have a number of benefits such as sim-
plifying dynamic differential equation models. Of more direct relevance to
the topic of this paper, transcendental functions such as logz and exp(x)
can be used meaningfully. By their definition such functions as well as their
arguments must in principle be unitless (Matta et al. 2011), for otherwise
models involving them would be meaningless. Violations of this principle in
damage modeling can be seen in Cai et al. (2000; see their Figure 1 for exam-
ple), Foschi and Barrett (1982; see their Figure 2 for example) and Gerhards
(1988; see Equation (1) for example). The deficiency in these models can be
rectified by non-dimensionalizing them although thought would need to be
given as to how best to do that. In any case, in the review of the theory that
follows we explicitly describe how this change can be made.



3 Stochastic duration of load models

This section reviews some well-known damage accumulation models, the
Madison Curve model, the U.S. model and the Canadian model along with its
predecessors. Note that, for damage accumulation models, the accumulated
damage «(t) cannot be observed. Instead we only observe the failure time
T, and/or T.. Therefore, we focus on the solutions for Ty and 7, implied by
the damage accumulation models.

We review the solutions for the breaking time 77 in the ramp load test and
the breaking time 7, in the constant load test for the U.S. model. We discuss
both Gerhards and Link’s approach (1987) and Foschi and Yao’s approach
(1986) for the U.S. model.

We review the approximate solutions of the breaking time 7 in the ramp
load test and the breaking time 7. in the constant load test proposed by
Foschi and Yao (1986) for the Canadian model. We discuss Foschi and Yao’s
method for parameter estimation in the Canadian model.

We discuss the problem of scale, which is a common problem in damage
accumulation models. We propose a method to revise the damage accumu-
lation models to eliminate the problem of scale.

Table 1 summarizes commonly used notation and their definitions.

Sections 3.1 through 3.3 present details of some damage accumulation
models. Section 3.1 is a brief review of a damage accumulation model based
on the Madison Curve proposed by Hendrickson et al. (1987). Section 3.2
contains a review of an exponential damage accumulation model (the U.S.
model) proposed by Gerhards (1979). Section 3.3 contains a review of a
sequence of models including the Canadian model proposed by Foschi and
his collaborators. In this report, we will focus on the U.S. model and the
Canadian model. Section 3.4 discusses revisions of the damage accumulation
models to eliminate scale.

3.1 Madison curve

In North America, the duration of load effect was initially discussed in Wood’s
(1951) work. Unfortunately, this work is unavailable and we rely on Gerhards
(1977) for its contents. According to Gerhards, Wood conditioned small clear
bending specimens of dried Douglas-fir to achieve 6% and 12% moisture
contents and then subjected them to constant load levels ranging from 60%
to 95% of their short-term strength. Wood’s data from the constant load



Notations | Definitions Comments
a(t) damage accumulated by time ¢ 0<a(t)<1
T breaking time in the ramp load test a(Ty) =1
T. breaking time in the constant load test | a(7}) =1
7(t) applied load (applied stress) at time ¢ | -
Ts short term strength -
o(t) applied load ratio at time ¢ o(t) =7(t)/7s
00 threshold load ratio 0<o5<1

Table 1: Commonly used notation for damage accumulation models.

test are shown in Figure 3, but it is not clear whether that figure presents
all data from both moisture contents.
According to Gerhards (1977), Wood proposed a hyperbolic empirical
model:
o=a+ 0T, (2)

where o is the applied load ratio, T" is the breaking time, and a, b and c are
unknown parameters. Based on the partial data of Wood’s constant load test
and the results of a ramp load test by Markwardt and Liska (1948), Wood
estimated the parameters as: a = 18.03, b= 108.4 and ¢ = —0.04635. The
equation (2) with Wood’s estimates is called the Madison Curve. Gerhards
(1977) did not mention which loading rate was used to reach the constant
load in Wood’s experiments nor which moisture content level was used to
obtain the Madison Curve. Wood’s original plot of the Madison Curve is
shown in Figure 4.

According to Gerhards (1977), breaking times of various wood products
have been modelled based on the Madison Curve. The validity of the Madison
Curve has been questioned for a long time. However, due to its simplicity,
the Madison Curve is still used today as the basis for the National Design
Specification for Wood Construction (NDS) by the American Wood Council.

Based on the Madison Curve, a damage accumulation model for the du-
ration of load effect was developed by Hendrickson et al. (1987):

da(t) _ b
2 = afolt) — oo}, (3

where a, b and oy are model parameters. Here, (0 —0¢);+ = max{(c —0y),0},
which means that the damage will only accumulate when the applied load
ratio is larger than the threshold load ratio, i.e., o(t) > oy.

9
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Figure 3: Data from constant load tests by Wood (1951), reproduced from
Gerhards (1977). The z-axis is the breaking time 7" in hours and the y-axis
is the applied load ratio ¢ in percentage.

It is easy to show that, if for all ¢, o(t) = o, > 09, then for (3), the
solution for 7" with a(T") = 1 satisfies

0o = 09 + (1/a)/PT71/",

which has the same form of the Madison Curve. Wang (2009) called model (3)
the model derived from the Madison Curve. We call model (3) the Madison
Curve model.

3.2 The U.S. model

The U.S. model, also called the ezponential damage rate model (EDRM), was
proposed by Gerhards (1979). Based on the assumption that the accumu-

10
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Figure 4: Madison Curve with ramp loading test trends and constant loading
test trends by Wood (1951), reproduced from Gerhards (1977). The z-axis
is the breaking time T in seconds and the y-axis is the applied load ratio o
in percentage.

lated damage is an exponential function of the applied load ratio, Gerhards
proposed the following model:

da(t)

= exp{—a-+bo(t)}, (4)

where a and b are model parameters. Here, b > 0. Some authors consider
the parameters are fixed while others consider the parameters are random.

The U.S. model has been discussed in Gerhard and Link (1987) as well
as Foschi and Yao (1986). Although these represent the U.S. model in the
same form in their papers, they actually discuss two different models based
on their different definitions of the short term strength ;.

11



Gerhards and Link treat the short term strength 7, as a wood specimen
dependent parameter and assume that 7, follows a log-normal distribution
with median 7,,. They do not define 7, in terms of any breaking time or load
pattern.

Foschi and Yao treat the U.S. model in a different way. They also consider
the short term strength 7, as a specimen dependent parameter, but they
further define 74 as the breaking load 7(7%) of the ramp load test when the
loading rate k is set so that the mean breaking time is expected to be around
one minute.

In both approaches, the breaking time is random since the short term
strength 7, is random.

The Gerhards-Link and Foschi-Yao analyses had some common calcula-
tion steps and some differences in their analysis. The specific calculations
are given in the next three subsections.

Common steps in the Gerhards-Link and Foschi-Yao analyses

Although Gerhards and Link and Foschi and Yao define the U.S. model in
different ways, they still go through some common steps to calculate the
solution for the breaking time 7T in the ramp load test and the solution
for the breaking time 7. in the constant load test. The integration of the
differential equation is exactly the same in their analysis, but the solutions
appear in different forms due to their different definitions of the short term
strength 7, and their different notation for other parameters.

In this section, we review the common steps of their calculations for
solving the U.S. model for T, and T..

For the ramp load test, o(t) = kt/7s, we can integrate (4) to get a(t):

alt) = /Ot exp (—a -+ bs/7,) ds = 7= foxp (—a+ bkt/7,) — exp(~a)}. (5)
Based on the fact that a(T) = 1, we get the equation:

;——Z{exp (—a + bkTs/75) —exp(—a)} = 1. (6)

Gerhards and Link solve the above equation (6) for 7 in terms of a, b, k

and 5. Foschi and Yao solve the above equation (6) for Ty with another

condition that 7, = kT, so Foschi and Yao’s solution of T does not contain
Ts. The exact forms of the solutions are contained in the next two subsections.

12



For the constant load test, as we discussed in the Introduction, the applied
load is 7(t) = kt in the ramp loading part for 0 < ¢ < Tj and then 7(t) =
kTy = 7, in the constant loading part for t > Ty. If T, < Tj or equivalently,
if a(Ty) > 1, then the wood specimen breaks during ramp loading.

For the case that T, > Tj, the breaking time 7, will depend on the
damage accumulated during the ramp loading part and during the constant
loading part. The damage accumulated during the ramp loading part can be
calculated from (5):

ag = a(Ty) = ;_—Z{exp (—a + bkTy/75) — exp(—a)}
= ;——Z{exp (—a+ b1, /T5) — exp(—a)}. (7)

In the constant loading part of the constant load test, 7(t) = 7,, so we can
integrate (4) from Tj to find the damage accumulated during the constant
loading part, and then find the total damage accumulated by time ¢ > Tj:

t
at) = ao—l—/ exp(—a+br,/75)ds = ap+(t—Tp) exp(—a+br,/7s), for t > Tj.

To
(8)
Setting «(7.) in (8) equal to 1 and solving for T yields

T.=To+ (1= ag)/exp(—a + b7a/T) (9)

if T. > 1Tp.

The above steps for finding 7, are the same as in Gerhards and Link’s
analysis as well as Foschi and Yao’s analysis. Gerhards and Link solve for T,
as in (9) in terms of a, b, k, Ty and 75. Foschi and Yao solve for 74 in terms
of a and b, and substitute the result into (9), so Foschi and Yao’s solution of
T. does not contain 7,. The exact forms of the solutions are contained in the
next two subsections.

Solutions for 7, and 7. from Gerhards and Link’s (1987) approach

Gerhards and Link (1987) assume that 7, is log-normally distributed and
expressed 7, as follows:
Ts = Tm exp(wR)

where 7, is the median short term strength, w is a (unitless) scale parameter
and R is a standard normal random effect.

13



To get their forms of Ty, oy and T, let B = b/7s = b/{Tmexp(wR)}.
Then we can solve for the breaking time T in the ramp load test from (6):

In {Bkexp(a) + 1}‘

T = 10
Bi (10)
Note that, here, Ty # 74 /k.
Substituting B for b/7, in (7), we can write o as
1
ag = E{GXP (—a+ Bt,) — exp(—a)}. (11)

Substituting B for b/7, and substituting aq from (11) in (9), we can write
T, in the U.S. model as:

In {Bkexp(a) + 1} In {Bkexp(a) 4+ 1}

i <
Bk ! ! Bk =t
T.=
1 1 .. In{Bkexp(a)+ 1}
To — ok + exp(—BT,) {E + exp(a)} , if B > Tp.

(12)

Solutions for 7, and 7. from Foschi and Yao’s (1986) approach

Foschi and Yao (1986) define the short term strength of a wood specimen as
its breaking strength in the ramp load test with the ramp loading rate k set
so that the mean breaking time is around one minute. In other words, they
solve for 7, from 74 = 7(7Ts) = k7.
For the ramp load test, replacing 7, by kT in (6), we can solve for the
breaking time 7} in the ramp load test:
exp(a)b

T, = () 1 = Ab (13)

where A = exp(a)/{exp(b) — 1}.
Noticing the fact that 7, = kT, (13) is equivalent to:

_exp(a)bk
Ty = ) 1 = Abk. (14)

14



Substituting 7, from (14) in (7) and (9), we can write the solution for 7,
in terms of the model parameters A and b:

[ A, if Ab < T,
c T0+A{6Xp(b—T0/A)—1}, 1fAb>TQ

3.3 The Canadian model and its predecessors

Foschi and his collaborators proposed three models: Model I in Barrett and
Foschi (1978), Model II in Barrett and Foschi (1978, 1982) and the Canadian
Model in Foschi and Yao (1986).

Model I is a generalization of the Madison Curve model, and is given by

do(t) B b e
o = a{o(t) = oo}ia’(®), (15)

where a, b, c and oy are model parameters.

In Model I, the damage will accumulate only when 7(t)/7s — 09 > 0.
For the ramp load test with 7(¢) = kt, this means that damage can only
accumulate at time ¢ bigger than ¢ty = o¢7,/k.

Barrett and Foschi’s Model T takes the current damage status «(t) into
consideration if ¢ # 0. The current damage status appears in the model as
a multiplier. If ¢ = 0, Barrett and Foschi Model I reduces exactly to the
Madison Curve model.

Model II uses an additive model to include the current damage status.
The model is given by

do(t)
dt

= a{o(t) — oo}’ + calt), (16)

where a,b,c and oy are random model parameters. Again, if ¢ = 0, then
Model II reduces to the Madison Curve model.

In Model II, the damage will accumulate if either 7(t)/7s — 09 > 0 or
a(t) > 0. If 7(t) is non-decreasing, as in the ramp load test and the constant
load test, the damage will only accumulate when 7(t)/7s — o9 > 0.

Barrett and Foschi (1982) conducted an experiment on western hemlock
lumber with an approximately 10% moisture content. From these data, they
estimate the parameters in (16) as @ = 0.721568 x 107! hour™'; b = 34.0;
€=0.150 x 1072 hour™ " and &, = 0.5.

15



Foschi and Yao (1986) find that inclusion of the second term of Barrett
and Foschi’s Model II leads to some unreasonable results. For example, if
some damage was accumulated before some time ¢y (e.g., if a(ty) = 0.5)
and the load was quite small after ¢y (e.g., if o(t) = 0.01 for t > t;), the
damage would still increase exponentially according to model (16) since the
second term in (16) is dominant. However, in practice the damage should
not increase exponentially in this case. To correct this problem, Foschi and
Yao (1986) propose a third model which is called the Foschi and Yao model
or the Canadian model:

do(t)
dt

where a, b, c,n and oy are model parameters. This model is called the Cana-
dian model since it is the national standard of Canada.

In the Canadian model, the damage will accumulate only when 7(t)/75 —
og > 0.

Foschi and Yao (1986) assume that the parameters a, b, ¢, n, 0¢ and 75 in
the Canadian model are all random effects, which means that a,b,c, n, og
and 7, vary from specimen to specimen. There is a dependency among these
random effects. In practice, a can be solved in terms of the others. For all
boards of one type under the same conditions, the vector (a,b,c,n,oq, 7s)
follows the same distribution, no matter what the load pattern is. But for
specimens of different types or specimens of one type under different con-
ditions such as differing moisture contents, the vector (a,b, ¢, n,oq, 7s) may
follow a different distribution.

=a{7(t) — aoTs}b+ +c{7(t) — oo7s}La(t), (17)

Solutions for 7, and T,

To get a closed form solution for the breaking time T, in the ramp load
test, Foschi and Yao (1986) disregarded the second term of the differential
equation in (17) and obtained the following simplified model:

da(t)
dt

We can solve for «(t) explicitly in model (18) for the ramp load test with
7(t) = kt, and based on the fact that a(ty) = 0:

~a{T(t) — 007'5}3_. (18)

t
a
at) ~ /to a(ks — O'OTS)ljrdS = m(kt — UoTs)Tl- (19)

16



The model in (18) is over-parameterized, so Foschi and Yao use (19) to
solve for a in terms of the other specimen-specific parameters. Specifically,
they set a(7s) = 1 and solve (19) for a, yielding

o kD)
T {1 — o)

By replacing 7, with kT, an equivalent expression of the approximation
(20) yields:

(20)

{k(b+1)/a}!/O+D
k ( 1—0 0)

In the constant load test, the applied load is 7(¢) = kt in the ramp loading
part for 0 < t < Tj and then 7(t) = 7, in the constant loading part for ¢t > Tj.
As we discussed in Section 3.2, if Ty < Ty or equivalently, if «(7y) > 1, then
the specimen breaks during ramp loading.

For the case that T, > T}, Foschi and Yao propose an approximate method
to find T, the breaking time during constant loading.

First, they use the integration (19) of the approximate model (18) to
calculate ag, the approximate accumulated damage during the ramp loading
part of the constant load test:

T, ~

(21)

k(b+ 1)

Substituting (20) into (22) gives an approximation for ay:

Ta— 0075\
g & (a—05> : (23)

Ts — 00T

ag = a(Ty) ~ (kTy — c707'5)bJrl = L)(Ta — 0'0T5>b+1. (22)

k(b + 1

Second, they solve for a(t)—a(Ty),t > T by integrating the full Canadian
model (17) for the constant loading part of the constant load test. The
accumulated damage at time ¢ > T} is given by

t

at) = a0+/ da(s)

= {ag+ (a/c) (1, — 0o7s)" "} exp{c(t, — o07s)"(t — T0)} — (a/c)(Ta — 0o7s)P ™.

They then find the breaking time 7T, for the constant loading part of the
constant load test by solving a(T,) = 1, and obtained:

T.=Ty+———In { L+ (/0){ra — oom) } ()

Ty — 00Ts)"™ ag + (a/c) (1, — 0oTs)0 "

17



To sum up, Foschi and Yao give an approximate solution for the breaking
time 7, in the Canadian model:

({k(b+1)/a} /O {k(b+1)/a}H/C+D
k(1 — o) ! k(1 — o9)

S TU:

Tc ~ _ b—n
Ty + ! ln{ L+ (a/¢)(ra = 00T:) }
(14 — 0oTs)" ag + (a/c) (1, — ooTs)b™"
{0+ 1) ey
\ k(l - UO)

> T(),

(25)

with a approximated as in (20) and «q approximated as in (23).

Parameter estimation

Foschi and Yao (1986) proposed a criterion to estimate parameters in the
Canadian model. They treated b, ¢,n and oy as independent random effects
which follow log-normal distributions with means p, fic, p, and p,, and stan-
dard deviations oy, 0., 0, and o,, respectively. They treated 7, as a random
effect, which is independent of b, ¢, n and oy, with a distribution equal to the
empirical distribution of the short term strength of the boards from the one
minute ramp load test. They treated a as another random effect, which can
be solved from others.

Let ¢ = (1, fhe, ons HoosTbs Oy Onsy 0oy ), Which is the vector of parameters
to be estimated. Foschi and Yao used a numerical algorithm to find a value
of ¢ to minimize a simulation-based function. The authors did not define a
probability model based function to minimize, but we see that their method
can be defined as minimizing an approximation to a function . To define 1),
let T,1), Te(2), - - -, Te(n) be the order statistics of the observed breaking times
in the constant load test and let F' = F(; ¢) be the cumulative distribution
function of the breaking times assuming that the Canadian model holds, with
parameters equal to ¢. Then

(o) =3 {1 = F7'G/N; 0)/ Ty Y (26)
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Foschi and Yao minimized an approximation of (26) via a Newton Raph-
son algorithm, an iterative method which requires calculation of F'(+; ¢) evalu-
ated at the current values of ¢, along with calculation of all partial derivatives
of F(+;¢) with respect to ¢. To carry out this algorithm, they approximated
F by simulating breaking times with distribution F'(-; ¢). The approximation
of F', which we denote by 2 , is simply the empirical distribution function of
the simulated breaking times. For derivative approximation, they simply cal-
culated the change in F' over the change in one element of ¢ when the others
are fixed. For instance, the partial derivative of F" at ¢ with respect to u, was
approximated by {F(:;¢1) — F(+; ¢2)}/(0.002u), where ¢y = (up + 0.001 115,
Hey Bns Hog30b; Oc; Ons UJo) and ¢2 = (lj“b - 0001:“(27 Hey Hns Hogs0b; Oc; On, UUO)'

Foschi and Yao (1986) obtained the following estimates: the means of
b,c,n and oy are estimated by 35.204,0.1559 x 107%,1.429 and 0.578 re-
spectively and the standard deviations of b,¢,n and og are estimated by
6.589,0.9621 x 1077,0.139 and 0.163 respectively. They did not report the
units of the parameters in their paper. We should be aware that these are
estimates of the means and variances of the log-normal distributed random
effects, but not the parameters we usually use to characterize log-normal
distributions.

Foschi and Yao’s approach to parameter estimation is problematic. The
range of oy under the log-normal assumption is not the same as the range of
oo from the experimental perspective. From the experimental perspective, if
o(t) = 7(t)/7s = 1, i.e., if the applied load equals the short-term strength,
the wood specimen will break for sure. This implies (1 —o¢);+ > 0 and yields
o9 < 1. However, the probability of getting a random sample larger than
1 from the log-normal distribution with mean 0.578 and standard deviation
0.163 is 0.017, which is not negligible.

3.4 The problem of scale

In the previous studies, researchers measured the breaking times in different
units of measurement and estimated the parameters in different units of
measurement. Gerhards and Link (1987) measured the breaking times in
minutes and estimated a and b with a unit of log(minute™"), while Foschi and
Yao (1986) measured the breaking times in hours and estimated a and b with
a unit of log(hour™'). However, the transformation between log(minute™?)
and log(hour™!) is not clear, which makes their results incomparable. This
problem is caused by the scale of the measurements. We call this problem
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the problem of scale.

To solve the problem of scale, we propose a general method to revise
the damage accumulation models by adding reference levels to the models.
We define all parameters in the revised damage accumulation models to be
unitless, and we scale the breaking times to be unitless before estimating
the model parameters. In this approach, the estimates will be the same
regardless of the unit of the measurements used in the experiments.

First, we consider the U.S. model:

da(t)

g = eXp {—a+0bo(t)}.

We notice that o(t) is unitless by definition. If we define both a and b to
be unitless, we need to add a unit quantity to the right side of the differential
equation since the left side of the differential equation has a unit, which is
the inverse of the unit of time. Based on this idea, we revise the U.S. model

dC:Z—it) = Aexp{—a +bo(t)}, (27)

where A = 1 hour ™}, and a and b are unitless model parameters. By intro-
ducing the unit quantity A, the solutions for Ty and T, in the revised U.S.
model are changed. Here, we show the solutions for T and 7, in the revised
Foschi and Yao’s version of the U.S. model. The idea can be applied to
Gerhards and Link’s version of the U.S. model without difficulty.

We can also choose A = 1 minute™!, or the inverse of other units of mea-
surement of time. The magnitude of the estimates will change accordingly.

For the ramp load test, the breaking time T is now given by

AT, = %. (28)
For the constant load test, the breaking time T, is now given by
B { Ab, if Ab < ATy,
] ATy + A{exp (b — ATy/A) — 1}, if Ab > \Ty,

(29)

where A = exp(a)/{exp(b) — 1}.
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We notice that by adding the unit quantity A to the model, we scale the
breaking times T and T, to be unitless. In the revised model, the parameter
estimates will be consistent regardless of the unit of measurements of the
breaking times since both a and b are unitless. Because A is a unit quantity
which is set as 1 hour™ and does not need to be estimated, adding A will
not complicate the estimation of the parameters.

The Madison Curve model can be revised in the same way as the U.S.
model.

Now we consider the Canadian model

do(t)
dt

=a{7(t) — aoTs}b+ +c{7(t) — oo7s}La(t), (30)

where the problem of scale also appears. First, as polynomial functions, the
terms {7(t)—o07s}5 and {7(¢)—07s}" in (30) need to be unitless for the sake
of unit comparability. However, the stress 7(¢) and the short term strenth
Ts have the unit of pressure while the threshold stress ratio oy does not have
a unit by definition. So the terms {7(t) — oo7s}% and {r(t) — oo7s}" are
not unitless in the Canadian model (30). One possible revision is to replace
{7(t) — oo7s}% and {7(t) — 0975} in (30) by the unitless terms {o(t) — oo}’
and {o(t) — oo} respectively.

Second, the two sides of the differential equation (30) should have the
same units if the model parameters a, b, ¢, n and o are considered as unitless.
By introducing two unit quantities A; and A, we revise the Canadian model
as

E0 = Nalo(t) — oo}y + declo(t) — ou) o), (31)

where \; = Ay = 1 hour ! and «a, b, ¢,n and o, are unitless parameters.
For the ramp load test, the breaking time T is now approximated by

b+1

Mg —m—.
1 a(l — gg)bt!

(32)
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For the constant load test, the breaking time 7. is now approximated by

( b+1 b+ 1
At if <\ T,
1 a(l _ O_O)b+171 a(l _ 0'0>b+1 iy 1 07

o b—n
Tyt 25! 1 ln{ 1+ (a/c)(oa — 00) } ,
c(og, — og)™ apg + (a/c)(oq — 09)P™™
b+1
if ——mm—— > \T1¢

-
2

(33)

where ag = {(1 — 0¢)/(0, — 00) }°FL.

In conclusion, the damage accumulation models can be revised by adding
one or more unit quantities to solve the problem of scale. After revising the
models, all parameters to be estimated are unitless, and the breaking times
are scaled before the estimation procedures, so the estimation results will not
depend on the units of the measurements used in the experiments.

4 Some results based on simulated data

In this section, we perform simulation studies to generate the breaking times
in the ramp load test and in the constant load test based on the U.S. model
and the Canadian model. The main objectives of this simulation study are
(1) to investigate the effects of the assumed distributions of the random
effects on the breaking times in the U.S. model, (2) to compare the data
simulated from both the Canadian and U.S. models to the data collected by
Foschi and Yao (1986) and (3) to fit the Weibull distribution, the log-normal
distribution, the Normal distribution, and the exponential distribution to the
data generated from both models.

For the simulations based on the U.S. model, we treat the model param-
eters a and b as random effects. We adopt our revision of Foschi and Yao’s
(1986) version of the U.S. model to get the solution for the breaking time T
in the ramp load test and the solution for the breaking time 7T, in the con-
stant load test, as discussed in Section 3.4. We generate random effects that
are Normal and/or log-normal, and study the effects of the mean, standard
deviation, and the type of distribution on the distribution of the breaking
times.
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For the simulation based on the Canadian model, we adopt Foschi and
Yao’s approach to get the approximate solution for the breaking time 7 in
the ramp load test and the solution for the breaking time 7. in the constant
load test, as discussed in Section 3.3.

Here, all comparisons are made on the logarithm of the breaking times.

4.1 Generating data based on the U.S. model

In this section, we generate the breaking time 7 in the ramp load test and
breaking time 7, in the constant load test based on our revision of Foschi
and Yao’s version of the U.S. model, as shown in (27), and compare the
distributions of the generated breaking times based on different assumptions
for the random effects, a and b. We consider different distributions for a and
b, including different means and standard deviations. Based on the revised
Foschi and Yao’s version of the U.S. model, we actually generate the scaled
breaking times ATy and AT, in this study rather than 7y and T,.. However,
for simplicity, we still refer to the generated values as T, and T..

Summary of the U.S. model

Recall that our revision of Foschi and Yao’s version of the U.S. model is given
by

da(t)

dt
where A = 1 hour !, a and b are unitless model parameters, and 7, is the
short term strength, which is defined as the breaking strength of the wood
specimen in the ramp load test when the ramp loading rate k is set so that
the mean breaking time is around one minute.
The breaking time T in the ramp load test is given by:

= Aexp{—a+bo(t)}. (34)

~exp(a)b
M= =T (35)
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The breaking time T, in the constant load test is given by:

( exp(a)b ” exp(a)b <\T
exp(b) — 1" exp(b)—1 "

AT, = _
AT+ Pl [eXp {b - AT()%} . 1] ,
p exp(a)

> \T

. exp(b) — 1

(36)

where Ty is the loading time in the ramp loading part of the constant load
test.

To generate Ty, we need to specify the distributions of @ and b, while to
generate T, we need to specify the loading time 7Ty in the loading part of the
constant load test, along with the distributions of a and b. T} is usually set
to be the p-th percentile of the generated T in the ramp load test.

We notice that, in the solution (35) for Ts, we do not need to specify
the loading rate k, which implies that the distribution of random effects a
and b should depend on the loading rate k. Otherwise, equation (35) would
imply that the breaking times do not depend on the loading rate k, which
contradicts the fact that, in experiments, the breaking times are shorter if
the loading rate is large.

We also notice that the constant load 7, does not appear explicitly in the
solution (36) for T, in the U.S. model. However, 7, is actually included in
the solution (36) since Ty = 7, /k.

Simulation setups

We denote the means of a and b by p, and p, respectively and denote the
standard deviations of a and b by o, and o} respectively. In all simulation
studies, we assume that a and b are independent.

To generate T, we generate n, = 1000 a’s and b’s from the assumed
distributions with means pu, and u, respectively and standard deviations o,
and oy, respectively, and then calculate T, from (35) based on the pairs of a

and b.
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To generate T,, we choose Ty as the p-th percentile of the generated T5’s,
and then generate 7.’s based on another n. = 1000 a’s and b’s, which are
independent of the a’s and b’s we generated for Tj.

The effect of distribution-type of ¢ and b on the breaking times

In this section, we will investigate the effects of the choice of the distribution
of the random effects on the generated breaking times 75 and 7,.. So far, to our
knowledge, random effects have not previously been used in the U.S. model.
However, researchers have used random effects in other damage accumulation
models, assuming that the random effects follow log-normal distributions, as
in Foschi and Yao (1986).

In this study, we compare three different types of distributional assump-
tions on the random effects a and b: (1) a and b are both Normal, (2) a and
b are both log-normal, and (3) @ is Normal and b is log-normal. We compare
the differences of the generated breaking times from the three scenarios when
the means and the standard deviations of a and b are the same.

For the means u, and pu; of the random effects a and b, we use p, = 42
and up = 50. We choose these values based on our estimates from the real
data from Foschi and Yao’s experiments . These values are similar to those
in the literature: Gerhards and Link (1986) considered a and b as fixed across
all wood specimens and estimated them as @ = 43.17 and b = 49.75.

Table 2 summarizes the setups of the simulation runs for studying the
effect of the type of distribution of the random effects a and b. Results are
displayed in Figure 5 to Figure 12.

Figure 5 to Figure 12 are generated when (p,, i1p) = (42,50) and p = 0.2
for the constant load test. We use these figures to compare the distributions
of T, and T, under the three different types of distribution of the random
effects.

Figure 5 and Figure 6 show that the distributions of the generated log,,(T%)
and log,,(7.) are similar under the three different distributional assumptions
when the standard deviations o, and o, are both relatively small. This can be
explained by the fact that when o, and g}, are both relatively small, the Nor-
mal distribution and the log-normal distribution are similar and, as a result,
the distributions of the generated breaking times T, and T, are similar.

Figure 7 shows results similar to those in Figure 5. The distributions
of the generated log,,(7s) are roughly the same under the three different
distributional assumptions, although there are observable differences in the
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a b
Breaking times || Distribution | o, || Distribution | o} || Figure for T,

»
—~

=
~—

T(T.) Normal 1 Normal 1 Figure 5
Normal 1 log-normal | 1 Figure 5
log-normal | 1 log-normal | 1 Figure 5

Normal 10 Normal 10 Figure 7
Normal 10 || log-normal | 10 Figure 7
log-normal | 10 || log-normal | 10 Figure 7

Normal 10 Normal 1 Figure 9 (10)
Normal 10 || log-normal | 1 Figure 9 (10)
log-normal | 10 || log-normal | 1 Figure 9 (10)

Normal 1 Normal 10 | Figure 11 (12
Normal 1 || log-normal | 10 | Figure 11 (12)
log-normal | 1 log-normal | 10 Figure 11 (12

alaps i pab e lals by
SEEEEEEEHEE

Table 2: Summary of the setups of the simulation runs for studying the effect
of the type of distribution of the random effects a and b when p, = 42 and
1y = 50, and p = 0.2 for the constant load test.

lower tail and the upper tail of the distribution of the generated log,(7%).
The differences can be explained by the fact that the log-normal distribution
is heavy-tailed, so the distribution of the generated log,,(T5) is heavy-tailed
when o, and o} are large.

Figure 8 shows that the distributions of the generated log,,(7.) are dif-
ferent under the three distributional assumptions, especially in the centre of
the distribution. In other words, those generated breaking times 7, which
are slightly larger than the loading time 7{, are more sensitive to the dis-
tributional assumptions of the random effects a and b when o, and o, are
large.

Figure 9 and Figure 10 show that the distributions of the generated
log,(T5) and log,((7,) are mainly affected by the distributional assumptions
on a when o, is relatively large and o, is relatively small. The lower left
panels of Figure 9 and Figure 10 show that the distribution of the generated
log,y(Ts) and the distribution of the generated log,,(7.) both stay roughly
the same when the distributional assumption on b changes from Normal to
log-normal. However, from the lower right panels of Figure 9 and Figure 10,
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the distributions of the breaking times are quite different when the distribu-
tional assumption on a changes from Normal to log-normal, which means the
distributional assumption on a has an effect on the distribution of log,y(7%)
and log (7).

Figure 11 and Figure 12 show that the distributions of the generated
log,,(T5) and log,,(7.) are mainly affected by the distributional assumption
on b when o, is relatively small and o} is relatively large. The lower right
panels of Figure 11 and Figure 12 show that the distribution of the generated
log,,(7Ts) and the distribution of the generated log,,(T.) both stay roughly the
same when the distributional assumption on a changes from Normal to log-
normal. However, from the lower left panels of Figure 11 and Figure 12, the
distributions of the generated breaking times are different when the distribu-
tional assumption on b changes from Normal to log-normal, which means the
distributional assumption on b has an effect on the distribution of log,,(T%)
and log; (7).

In conclusion, the distributions of T, and T, are not greatly affected by
the distributional assumptions if the standard deviations of both random
effects a and b are relatively small. The distributions of T, and 7T, are mainly
affected by the distributional assumption on the random effect with a large
standard deviation, and not greatly affected by the distributional assumption
on the random effect with a small standard deviation.

The effect of the means and standard deviations of a and b on the
breaking times

In this section, we assume that both a and b are Normal, and investigate the
effects of the means and the standard deviations of a and b on the breaking
times T, and T..

We investigate the effects of the means of the random effects a and b on
the breaking times T, and T, by fixing the standard deviations of a and b.
First, we compare the empirical cumulative distributions of the generated T’s
and T.’s as a function of u, with o4, 0, and p, fixed. Second, we compare
the empirical cumulative distributions of the generated T,’s and T.’s as a
function of u;, with o,, 0, and p, fixed.

Similarly, we investigate the effects of the standard deviations of the ran-
dom effects of a and b on the breaking times T and T, by fixing the means
of a and b.

Table 3 summarizes the setups of the simulation runs for studying the
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effect of the mean and the standard deviation of the random effects a and
b when a and b are both Normal. Results are displayed in Figure 13 and
Figure 14.

Figure 13 compares the empirical cumulative distributions of the gener-
ated log,y(Ts) and the empirical cumulative distributions of the generated
log,,(T.) based on the assumption that a and b are both Normal, o, = 1 and
op = 1 are fixed, and either pu, or p; is not fixed. Figure 14 shows the com-
parisons of the empirical cumulative distributions of the generated log,(75)
and the empirical cumulative distributions of the generated log,,(7.) based
on the assumption that a and b are both Normal, pu, = 42 and p, = 50 are
fixed, and either o, or oy is not fixed.

a b
T Lo | Oa |l o | Op Figure
Tiand T, || 37 | 1 | 50 | 1 || Figure 13
Tiand T, || 42 | 1 | 50 | 1 || Figure 13
Tsand T, || 47 | 1 | 50 | 1 || Figure 13
Tiand T, || 42 | 1 || 45| 1 | Figure 13
Tiand T, || 42 | 1 | 50 | 1 || Figure 13
Teand T, || 42 | 1 | 55| 1 || Figure 13
Tiand T, || 42 | 1 | 50 | 1 || Figure 14
Toand T, || 42 | 3 | 50 | 1 || Figure 14
Tsand T, || 42 | 5 | 50 | 1 || Figure 14
Toand T, | 42 | 1 | 50| 1 | Figure 14
Tsand T, || 42 | 1 | 50 | 3 || Figure 14
Tiand T, || 42 | 1 | 50 | 5 || Figure 14

Table 3: Summary of the setups of the simulation runs for studying the effect
of the mean and the standard deviation of the random effects a and b when
a and b are both Normal, and p = 0.2 in the constant load test.

Figure 13 shows that the means of the random effects a and b mainly
affect the locations of the distributions of the breaking times. In the upper
left panel, upper right panel and the lower left panel, the location shifts are
uniform over the range of the generated breaking times. In the lower right
panel, the location shift effect is significant in the lower part of the distribu-
tion of the generated T, but is small in the upper part of the distribution

28



of the generated 7. This panel shows that the magnitude of p; affects the
breaking time more for small values of T, and does not affect the maximum
breaking time 7, in the constant load test. The two upper panels also show
that the generated Ti’s and T,’s increase when p, increases, and the two lower
panels show that the generated T,’s and T.’s decrease when py, increases since
log(Ts) = a + log(b) — log{exp(b) — 1}, the effect of p, on Ty’s distribution
is clear. Since exp(b) dominates b, the effect of py, is also clear. For T, this
cannot be explained easily since the solution (36) is complicated. From Fig-
ure 13, we also notice that in order to generate reasonable breaking times
Ty, i.e., with the mean of Ti’s around 1 minute, u, — up should be between 5
and 10.

Figure 14 shows that the standard deviations of the random effects a and
b mainly affect the shapes of the distributions of the breaking times. The
variation among the generated 7;’s and the variation among the generated
T.’s increase when either o, or o, increases. The breaking times 7.’s in the
constant load test concentrate more in the upper tail when either o, or oy is
large. In other words, if o, and o, are small, we would expect more boards
to break during the early stage of the constant load test, and if either o, or
op is large, we would expect few boards to break during the early stage of
the constant load test and more boards to break at almost the same time at
the late stage in the constant load test.

In conclusion, the locations of the distributions of the generated T, and
T, are mainly affected by the means of the random effects a and b, and the
shapes of the distributions of the generated T and T, are mainly affected by
the standard deviations of the random effects a and b.

4.2 Generating data based on the Canadian model

In this section, we generate the breaking time 7, in the constant load test
based on the Canadian model using the parameter estimates from Foschi and
Yao (1986).

In Section 3.3 and Section 3.4, we discussed the Canadian model and the
revised Canadian model. The forms of the solutions for the breaking times of
the Canadian model and those of the revised Canadian model are different,
unlike the solutions for the breaking times of the U.S. model and those of
the revised U.S. model, which only differ by a unit quantity A. To use the
parameter estimates from Foschi and Yao (1986), we adopt the Canadian
model in this section for generating breaking times because Foschi and Yao
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estimated the parameters using the Canadian model.

Summary of the Canadian model
Recall that the Canadian model is given by

do(t)
dt

= a{7(t) — JoTs}b+ +c{7(t) — oo7s}La(t), (37)

where a, b, c,n and oy are model parameters.
For the ramp load test, the breaking time 7§ is approximated by

Ak +1)/a}/ D
To~ k(1 — o)

(38)

For the constant load test, the breaking time 7, is approximated by

( {kb+ /a0 {k(b+ 1)/a}/ 0
K1—o00) k(1 — o)

S T07

Tc ~ _ b—n
T, + 1 ln{ 1+ (a/c)(Ta — 00Ts) } ’
c(1a — o07s)" Lo + (a/c) (T — 007)0 ™
A+ 1) /a0
\ k<1 - UU)

> T07

(39)
with a approximated by

o kED)
T {1 — o)}t

(40)

and «q approximated by
b+1
Ta — 00T,
ap ~ (“—OS> . (41)
Ts — 00Ts

We discussed Foschi and Yao’s method of parameter estimation in Sec-
tion 3.3. They treated b,c,n and oy as independent random effects which
follow log-normal distributions with means uy, ftc, pt, and p,, and standard
deviations oy, 0., 0, and o,, respectively. They treated 75 as a random effect,
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which is independent of b, ¢,n and o¢, with distribution equal to the empiri-
cal distribution of the short term strength of the wood specimens in the one
minute ramp load test. They treated a as another random effect, but did
not need to specify its distribution since a can be expressed in terms of the
other random effects.

They obtained the following estimates: the means of b,c,n and oy are
estimated by 35.204, 0.1559 x 1079, 1.429 and 0.578 respectively and the stan-
dard deviations of b, ¢, n and o are estimated by 6.589,0.9621 x 10~7,0.139
and 0.163 respectively. We should be aware that these are estimates of the
means and variances of the log-normal distributed random effects, but not
the parameters we usually use to characterize log-normal distributions.

Simulation setups

In this section, we describe the setups of generating simulated breaking times
based on the Canadian model.

As discussed in the previous section, we have the estimates of the distri-
butions of the random effects b, ¢,n and oy from Foschi and Yao (1986). We
also have the loading rate k = 6474 x 60 psi/hour from Foschi and Barrett
(1982). We need the distribution of either 7, or a to generate the breaking
time T, in the constant load test. These distributions are not available to us.

There are two alternatives for generating the breaking time T,.. We can
generate 7, using the U.S. model and then calculate a from (40) given 7y, or
we can generate a based on some distribution and then calculate 7, from (40)
given a. We adopt the first approach in this section since we do not have
much information on the distribution of a.

The procedures for generating 7, based on the Canadian model are de-
scribed as follows. First, we generate n, = 1000 7§’s from the U.S. model
when (g, to, 04, 0p) = (42, 50,0.4,0.4) and we calculate 7, using the fact that
T, = 75/k in Foschi and Yao’s version of the U.S. model. Second, we generate
n. = 1000 b’s, ¢’s, n’s and oy’s from the log-normal distributions with the
means i, = 35.204, p. = 0.1559 x 1075, u,, = 1.429 and p,, = 0.578 respec-
tively and the standard deviations o3, = 6.589, o, = 0.9621x 107", 0,, = 0.139
and o,, = 0.163 respectively. Third, we calculate a from (40) and oy from
(41) for the vector (74,b,c,n,00), and then calculate the breaking time 7,
from (39).

In the following sections, we compare the generated breaking times to
those in Foschi and Yao’s data (Section 4.3) and we fit standard models to
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the breaking times (Section 4.4).

4.3 Comparisons of the generated data with Foschi
and Yao’s data

In this section, we compare the generated breaking times based on the U.S.
model and the Canadian model from the previous sections with the breaking
times from Foschi and Yao’s experiments. We do not discuss parameter
estimation in this section.

The empirical distribution of the logarithm of the breaking times 7.’s
from Foschi and Yao’s experiments are shown in Figure 15. According to
Foschi and Yao (1986), the constant load was set to be the 20-th percentile
of the short term strength in their ramp load test. We do not have the data
from their ramp load test.

By trial and error, we find that the empirical distribution of the generated
breaking time 7. is close to the empirical distribution of the breaking time
T. from Foschi and Yao’s experiments when (4, iy, 04, 05) = (42,50, 0.4,0.4)
in the U.S. model, as shown in the left panel of Figure 15. The empirical
distribution of the generated breaking time 7. based on the Canadian model
is shown in the right panel of Figure 15 for comparison.

The left panel of Figure 15 shows that the empirical distribution of the
generated breaking time T, based on the U.S. model and the empirical dis-
tribution of the breaking time 7, from Foschi and Yao’s experiments do not
seem consistent overall. However, the two curves are in close agreement over
the ramp loading part, i.e., when T, < Tj, but differ in the constant load
part, i.e., when T, > Ty. In particular, in the dataset, the percentage of wood
specimens breaking increases rapidly for the times with log,,(7.) > 2.

The right panel of Figure 15 also shows that the empirical distribution
of the generated breaking times 7.’s based on the Canadian model differs
from the empirical distribution of the breaking times 7.’s from Foschi-Yao
experiments. Again, the two curves are close during the ramp loading part,
but different during the constant load part. The percentage of the generated
specimens that break shows the same rapid increase as does the percentage
of the breaking specimens from the Foschi-Yao experiments. However, the
rapid increase occurs later in the generated specimens.

The generated T.’s based on the revised U.S. model or the Canadian
model do not fit the data from the Foschi-Yao experiments well. In an
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attempt to improve the fit, we tried various values for p,, py, o, and o,
in the U.S. model and various values for k£ in the Canadian model. For the
values we tried, the empirical distribution function of the breaking times
T.’s generated from the U.S. model did not show the rapid increase at the
same stage as the data from the Foschi-Yao experiments. The empirical
distribution function of the breaking times 7.’s generated from the Canadian
model is closer to that of the data from the Foschi-Yao experiments when k
is large.

4.4 Fitting the generated failure strengths to distribu-
tions

In this section, we investigate the type of distribution of the generated break-
ing times based on the U.S. model and the Canadian model. We simulate
breaking times from each model as described in Sections 4.1 and 4.2. We
then fit the Weibull distribution, the log-normal distribution, the Normal
distribution and the exponential distribution to the simulated data.

In this section, we study the breaking times T" = T in the ramp load
test, and T" = T, — Ty for T, > T in the constant load test. We do not
separately consider the distribution of T, for T, < Ty because by definition,
P(T,. <t)= P(Ts <t) whenever t < Tj.

We assess the fits of the parametric distributions as follows. First, we
calculate the maximum likelihood estimates of the parameters of the distri-
bution to be fitted using parametric models and the R-function survreg. For
the breaking times generated from the U.S. model, there is no censoring, but
for the breaking times generated from the Canadian model, there is censoring
since some boards do not break during the constant load test. To study how
well the fitted distribution matches that of the generated breaking times,
we simulate n = 1000 T%;’s from the fitted distribution. Then we draw the
quantile-quantile plot of the logarithm of the generated breaking times 1’s
from the damage accumulation models and the logarithm of the simulated
Tyy's from the fitted distribution. The quantile-quantile plots are shown in
Figure 16 to Figure 20.

Table 4 summarizes the setups of the simulation runs that produce Fig-
ure 16 to Figure 20.

In all scenarios, the Normal distribution and the exponential distribution
fit the generated breaking times poorly, so we only show one set of quantile-
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T Model Fitted distribution Oa | Op Figure

Ty U.S. Weibull, log-normal, | 0.4 | 0.4 | Figure 16
Normal & exponential

Ty U.S. Weibull & log-normal | 10 | 10 | Figure 17

T, U.S. Weibull & log-normal | 0.4 | 0.4 | Figure 18

T, U.S. Weibull & log-normal | 10 | 10 | Figure 19

T, | Canadian | Weibull & log-normal | 0.4 | 0.4 | Figure 20

Table 4: Summary of the setups of the simulation runs for studying the
distribution of the generated breaking times when p, = 42 and p, = 50, and
p = 0.2 in the constant load test.

quantile plots for the Normal distribution and the exponential distribution.
See Figure 16. The fitting results for the Weibull distribution and the log-
normal distribution are shown in all figures in this section.

Figure 16 shows that the log-normal distribution fits generated breaking
times T’s very well although there are slight differences in the lower tail and
the upper tail. The other types of distribution do not provide reasonable fits
for the generated breaking times.

Figure 17 shows similar results as in Figure 16. The log-normal distri-
bution fits the generated breaking times Ty’s very well when the standard
deviations of the random effects a and b are large, but the Weibull distribu-
tion fits the generated breaking times T,’s poorly.

Figure 18 shows that neither the Weibull distribution nor the log-normal
distribution fits the generated breaking times (7.—Tp)’s for those T, > Tj well
as a whole. The left panel of Figure 18 shows that the Weibull distribution
is heavier than the distribution of (7. — Tp) in the lower tail, but provides a
reasonable fit for other (7. — Tp)’s. The right panel of Figure 18 shows that
the log-normal distribution fits the distribution of (7. —Tj) well in the centre
of the distribution, but is heavier than the distribution of (7, — Tp) in the
lower tail and the upper tail.

Figure 19, where the standard deviations of the random effects a and b are
large, shows similar results as in Figure 18. The left panel of Figure 19 shows
that the Weibull distribution fits the distribution of (7, —Tp) reasonably well
although there are still minor differences in the lower tail and the centre.
The right panel of Figure 19 shows that the fitted log-normal distribution is
lighter than the distribution of (7. — Tj) in the lower tail and heavier in the
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upper tail.

Figure 20 shows similar results as in Figure 18 and Figure 19 when the
breaking times 7T.’s are generated from the Canadian model. The Weibull
distribution fits the data (T, — Tp)’s well except for the lower tail.

In conclusion, if the breaking times 7;’s are generated from the U.S.
model under the conditions described, the T’s seem to follow a log-normal
distribution and if the breaking times 7,.’s are generated from the U.S. model
or the Canadian model under the conditions described, all (T, — T)’s which
satisfy T, > Ty and T,—Tj not close to 0 seem to follow a Weibull distribution.

5 Concluding remarks

We believe this paper’s review of damage models is timely. New manufac-
tured lumber products are under active development and both the models
and principles underlying their development will be needed in setting design
values. A wealth of information is available on creep rupture and duration of
load effect of lumber, panel products and glulam, and laminated veneer lum-
ber (LVL). Strand-based products, such as laminated strand lumber (LSL)
and oriented strand lumber (OSL) may have different creep and creep-rupture
behaviour than solid lumber or veneer-based products, and changes to the
composition or manufacturing parameters can easily change a product that
has similar duration of load and creep effects as solid lumber to one that does
not.

However, while a significant amount of information is available for dura-
tion of load and creep effects of lumber, limited information is available on
structural composite lumber. It was found out that while some structural
composite lumber products, such as LVL, have consistently demonstrated
engineering equivalence to the duration of load of solid sawn lumber, such
equivalence is more difficult to demonstrate for other structural composite
lumber products, such as LSL and OSL, and more tests are necessary to
define their creep and creep-rupture behaviour.

The increasingly global nature of the lumber industry points to a need to
rationalize methods and procedures and we believe this review may assist in
that way as well. North America, Europe and Japan have different methods
for evaluating load duration and creep, and consequently Canada/United
States, Europe and Japan have different standards on this topic. China is
interested in having a standard in this area and is using ASTM D 6815 as a
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seed document, while ISO will likely develop a standard based on one of the
existing standards. Canada, United States and Japan have been discussing
the duration of load topic but additional comparison data are necessary to
come up with a resolution. Statistical tools will come in handy for such
comparison and may pave the road for a mutually recognized method for
assessing creep and duration of load effects. Our companion reports (Zhai
2012; Zhai et al. 2012) describe such tools.
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Figure 5: Comparisons of the generated T in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, = 1 and o, = 1. Upper left: the empirical cumulative distributions
of log,y(Ts) from the three scenarios. Upper right: the quantile-quantile
plot of the generated log,,(7s) from the assumption that a and b are both
Normal and the assumption that a and b are both log-normal. Lower left:
the quantile-quantile plot of the generated log,,(7s) from the assumption
that a and b are both Normal and the assumption that a is Normal and b is
log-normal. Lower right: the quantile-quantile plot of the generated log,,(T%)
from the assumption that a and b are both log-normal and the assumption
that a is Normal and b is log-normal.
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Figure 6: Comparisons of the generated T, in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, =1, 0, = 1 and p = 0.2. The panels are in the same arrangement as
in Figure 5.
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Figure 7: Comparisons of the generated T, in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, = 10 and o0, = 10. The panels are in the same arrangement as in
Figure 5.
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Figure 8: Comparisons of the generated T, in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, = 10, 0, = 10 and p = 0.2. The panels are in the same arrangement
as in Figure 5.

42



ECDF of log;o(Ts) QQ plot for logso(Ts)

° _
<] E o ] °
8 N
« _] | o
o g; — g)
0 S
g o© o o _|
g o g -
c Q -
S x| z
§ ° 5 o
o S
o 7 L_‘: _
ERS]
o j=2) | 7| @0
e T T T T T T T L T T T T T T T
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
10g10(Ts) log10(Ts): @ and b are Normal
- QQ plot for logo(Ts) - QQ plot for logso(Ts)
£ 3
g 9 g 97 B
8 S S 8 9 o6 °
o o
2 n 2 n
he] he]
= =
© ©
T © 7 T © 7
€ €
s v | 5 v |
z ! z !
o o
[ — © —
S £ 9
s ! T T T T T T T s ! T T T T T T T
[=2] [=2]
o -15 -10 -5 0 5 10 15 o -10 -5 0 5 10 15 20
log10(Ts): @ and b are Normal 10g10(Ts): @ and b are log—normal

Figure 9: Comparisons of the generated T in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, = 10 and 0, = 1. The panels are in the same arrangement as in
Figure 5.
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Figure 10: Comparisons of the generated T, in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, = 10, 0, = 1 and p = 0.2. The panels are in the same arrangement as
in Figure 5.
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Figure 11: Comparisons of the generated T in the U.S. model based on the
three different distributional assumptions of a and b when p, = 42, u, =
50,0, = 1 and o0, = 10. The panels are in the same arrangement as in
Figure 5.
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Figure 12: Comparisons of the generated T, in the U.S. model based on the
three different distributional assumptions of a and b when p, = 43, =
50,0, =1, 0, = 10 and p = 0.2. The panels are in the same arrangement as
in Figure 5.
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Figure 13: Comparisons of the empirical cumulative distributions of the gen-
erated T and 7T, from the U.S. model based the assumption that a and b are
both Normal, 0, = 1 and 0, = 1. One mean is fixed at the value stated in
the plot title.
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Figure 14: Comparisons of the empirical cumulative distributions of the gen-
erated T and 7T, from the U.S. model based the assumption that a and b are
both Normal, u, = 42 and p, = 50. One standard variation is fixed at the
value stated in the plot title.
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Figure 15: Comparisons of the empirical cumulative distributions of breaking
times T.’s from Foschi and Yao’s experiments and the generated T, based on
the U.S. model (left panel), and the Canadian model (right panel).
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Figure 16: The quantile-quantile plots of the logarithm of the generated
breaking times Ty based on the U.S. model when (i, i, 04, 0p) = (42,50,
0.4,0.4) and the logarithm of simulated data from the fitted distributions.
The type of fitted distribution is shown in the title of the plot.
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Figure 17: The quantile-quantile plots of the logarithm of the generated
breaking times T based on the U.S. model when (u,, ty, 04, 0p) = (42,50,
10, 10) and the logarithm of simulated data from the fitted distributions. The
type of fitted distribution is shown in the title of the plot.
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Figure 18: The quantile-quantile plots of the logarithm of the generated
breaking times 7, based on the U.S. model when (4, tth, 04, 0p) = (42,50,
0.4,0.4) and p = 0.2, and the logarithm of simulated data from the fitted
distributions. The fitted distribution is shown in the title of the plot.
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Figure 19: The quantile-quantile plots of the logarithm of the generated
breaking times 7, based on the U.S. model when (4, ft, 04, 0p) = (42,50,
10,10) and p = 0.2, and the logarithm of simulated data from the fitted
distributions. The type of fitted distribution is shown in the title of the plot.
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Figure 20: The quantile-quantile plots of the logarithm of the generated
breaking times 7, based on the Canadian model and the logarithm of sim-
ulated data from the fitted distributions. The type of fitted distribution is
shown in the title of the plot.
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