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Abstract

The duration of load effect is a distinctive and important charac-
teristic of wood strength. It refers to the fact that wood products can
usually sustain higher loads for short time but lower loads for long
time. Characterizing the duration of load effect and testing wood for
specific properties of this effect are important in ensuring structural
safety of wood construction.

This paper focuses on one well known damage accumulation model,
the so–called US model because of both its importance and relative
simplicity. We focus on methods for implementing that model and
study their performance through simulation studies. We also demon-
strate their use on a real dataset for illustration.

1 Introduction

This report presents statistical methods for fitting the so–called US Model
that represents the impact of the duration of load effect on the allowable
properties of dimension lumber. A thesis (Zhai 2012) and a companion pa-
per Zhai et al. (2012) describe that effect in detail and review engineering
approaches to the development of such models. We begin with a description
of that effect for completeness.
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Duration of load is associated with the creep-rupture behavior of wood
products which may occur in the third phase of deformation under high con-
stant loading. Under lower loads applied for long term, a wood product
deforms or creeps and the rate of deformation is directly related to the mag-
nitude and rate of loading, type of product and its properties, ambient envi-
ronmental conditions, and the duration of loading. A product loaded within
its elastic limits deforms but then returns to its initial state when the load
is removed (i.e. it does not creep). When loaded beyond its elastic limits, a
product does not return to its initial state because of the plastic/permanent
deformations incurred (i.e. it creeps). The time-dependent deformation of a
product under constant loading is called creep. Creep and duration of load
effects of wood are of critical importance to timber engineering. To account
for the duration of load behavior, design codes use adjustment factors rec-
ommended for sawn lumber and engineered wood products. The adjustment
factors specified for wood products and connectors in the North American
wood design standards are based on early damage accumulation models with
parameters calibrated to experimental results for dimension lumber (Kara-
cabeyli and Soltis, 1991).

Evaluation of load duration and creep requires extensive experimental
testing, i.e., requires a large sample size subjected to long-term loading. In
the early duration of load research program, load periods ranged from one
to three years. More recent test programs involve shorter but still fairly
substantial load periods. For example, a minimum 90-day constant load
period in bending is required in the current standard ASTM D 6815 and a
six-month period is required in the European standard for panel products.

As noted in Zhai et al. (2012), models for the effect are usually formulated
in terms of the accumulation of damage. Accumulation of damage models
have been proposed on a combination of incomplete understanding of the
phenomena at the macroscopic level and experimental data (Yao, 1987). A
piece of lumber is postulated to accumulate damage as a function of a load
τ that may vary over time. The damage accumulated by time t is denoted
by α(t) with,α(0) = 0 and α(T ) = 1 by convention where T is the breaking
time of the wood specimen. The damage α is a non-decreasing function of
t. The amount of accumulated damage cannot be observed, but it may be
inferred based on the observed breaking times.

All damage accumulation models are based on the following differential
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equation:
dα(t)

dt
= f(α(t), τ(t), θ), (1)

where f is a known function, τ(t) is the known load at time t, and θ is a
vector of parameters, usually unknown. The short term strength τs is often
included as an argument of f in equation (1), in the form of σ(t) = τ(t)/τs.
However τs is defined in different ways. Gerhards and Link (1987) treat τs as
a wood specimen dependent random parameter with an assumed distribution
and do not define τs in terms of any breaking time or load pattern. Foschi
and Yao (1986) also treat τs as a wood specimen dependent parameter, but
define τs as the breaking load τ(Ts). in the ramp load test, when the loading
rate k is set so that the mean breaking time is expected to be around one
minute. Different definitions of τs lead to different damage accumulation
models.

In the literature, the parameter vector θ is often treated as a constant
vector, depending on the type of lumber but constant among wood specimens
of the same type. However, this implies that all specimens of the same type,
when subjected to the same load, have the same breaking time T , since, for
a fixed θ and load, at most one value of T can satisfy α(T ) = 1. Clearly
this is not realistic, as breaking times do vary from specimen–to–specimen.
A perhaps more realistic approach is to treat the parameters θ as random
effects, which vary from specimen–to–specimen. This approach was taken by
Foschi and Yao (1982, 1986), as well as Gerhards and Link (1987).

Authors have proposed various parameter estimation methods based on
breaking times obtained using experiments described in Section 2. However,
the estimation of model parameters has been done in an ad hoc way leaving
room for possible improvement. This paper explores inferential issues for
the US Model due to its relative simplicity and importance, leaving other
models to future work. In fact we consider the extension of that model ob-
tained by adding random effects, one set for each randomly selected lumber
specimen. Section 3 briefly describes that model for completeness, leaving a
more detailed consideration to Zhai (2012) and Zhai et al. (21012a). Sec-
tion 4 describes some parameter estimation methods for implementing it. A
simulation study follows in Section 5 to compare the estimation methods.
We then apply the methods to data obtained in the important experiments
carried out by Foshi and Barrett (1982). Our conclusions are in Section 7.
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2 Experimental methods

There are typically two types of duration of load tests: the ramp load test
and the constant load test. In the ramp load test with rate k, the applied
load is linear in t, that is τ(t) = kt. The breaking time and load are Ts and
τ(Ts) = kTs, respectively.

In the constant load test, the load first increases linearly at constant rate
k until a predetermined time T0, similar to the initial period of the ramp
load test, and then the load remains constant during the rest of time That is

τ(t) =

{
kt for 0 ≤ t ≤ T0,

kT0 for t > T0.

The pre-determined load level kT0 is denoted by τa, i.e., τa = kT0. The load
level τa is usually set at a certain percentile of the empirical distribution of
the short-term strength of the wood products tested during a ramp load test
with load equal to kt, the same value of k as in the constant load test. The
first part of the constant load test (i.e., τ(t) = kt when 0 ≤ t ≤ T0) is called
the ramp loading part of the constant load test and the second part of the
constant load test (i.e., τ(t) = τa when t > T0) is called the constant loading
part of the constant load test.

3 The US Model

The US Model, also called the exponential damage rate model (EDRM), which
was proposed by Gerhards (1979), is given by

dα(t)

dt
= exp {−a+ bσ(t)} , (2)

where a and b are model parameters. Here, b > 0. Some authors consider
the parameters fixed while others consider the parameters random. The
US Model has been discussed in Gerhard and Link (1987) as well as Foschi
and Yao (1986). Although these represent the US Model in the same form
in their papers, they actually discuss two different models based on their
different definitions of the short term strength τs. Gerhards and Link treat
the short term strength τs as a board dependent parameter and assume that
τs follows a log-normal distribution with median τm. They do not define τs
in terms of any breaking time or load pattern.
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Foschi and Yao treat the US Model in a different way. They also consider
the short term strength τs as a board dependent parameter, but they further
define τs as the breaking load τ(Ts) of the ramp load test when the loading
rate k is set so that the mean breaking time is expected to be around one
minute. In both approaches, the breaking time is random since the short
term strength τs is random. The Gerhards-Link and Foschi-Yao analyses
have both similarities and differences in the ways they handle their analysis
of the US Model which we now describe.

For the ramp load test, σ(t) = kt/τs, we can integrate (2) to get α(t):

α(t) =

∫ t

0

exp (−a+ bks/τs) ds =
τs
bk
{exp (−a+ bkt/τs)− exp(−a)}. (3)

Since α(Ts) = 1,

τs
bk
{exp (−a+ bkTs/τs)− exp(−a)} = 1. (4)

Gerhards and Link solve the above equation (4) for Ts in terms of a, b, k and
τs. In contrast, Foschi and Yao solve the equation for Ts subject to τs = kTs,
so Foschi and Yao solve solution for Ts does not contain τs as we will see in
the sequel.

For the constant load test, if Ts ≤ T0 or equivalently, if α(T0) ≥ 1, then the
board breaks during ramp loading phase while if Ts > T0, the breaking time
Tc will depend on both the damage accumulated during ramp and constant
loading phases. The former can be calculated from (3) as:

α0 = α(T0) =
τs
bk
{exp (−a+ bτa/τs)− exp(−a)}. (5)

In the constant loading part of the test, τ(t) = τa, so we can integrate (2)
from T0 to find the damage accumulated and then find the total damage
accumulated by time t > T0:

α(t) = α0+

∫ t

T0

exp(−a+bτa/τs)ds = α0+(t−T0) exp(−a+bτa/τs), for t > T0.

(6)
Setting α(Tc) in (6) equal to 1 and solving for Tc yields

Tc = T0 + (1− α0)/ exp(−a+ bτa/τs) (7)

if Tc > T0.
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Both Gerhards and Link as well as Foschi and Yao find Tc in this way.
Gerhards and Link solve for Tc as in (7) in terms of a, b, k, T0 and τs. Foschi
and Yao solve for τs in terms of a and b, and substitute the result into (7),
so Foschi and Yao’s solution of Tc does not contain τs. The solutions appear
below.

Gerhards and Link (1987) assume

τs = τm exp(wR)

where τm is the median short term strength, w is a (unitless) scale parameter
and R is a standard normal random effect.

Let B = b/τs = b/{τm exp(wR)}. Then from (4):

Ts =
ln {Bk exp(a) + 1}

Bk
, (8)

with Ts 6= τs/k. Substituting B for b/τs in (5), we can write α0 as

α0 =
1

Bk
{exp (−a+Bτa)− exp(−a)}. (9)

Substituting B for b/τs and substituting α0 from (9) in (7), we can write
Tc in the US Model as:

Tc =


ln {Bk exp(a) + 1}

Bk
, if

ln {Bk exp(a) + 1}
Bk

≤ T0,

T0 −
1

Bk
+ exp(−Bτa)

{
1

Bk
+ exp(a)

}
, if

ln {Bk exp(a) + 1}
Bk

> T0.

(10)

Foschi and Yao (1986) define the short term strength of a board as its
breaking strength in the ramp load test with the ramp loading rate k set
so that the mean breaking time is around one minute. In other words, they
solve for τs from τs = τ(Ts) = kTs.

For the ramp load test, replacing τs by kTs in (4), we get

Ts =
exp(a)b

exp(b)− 1
≡ Ab (11)
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where A ≡ exp(a)/{exp(b)− 1}. Since τs = kTs, (11) is equivalent to:

τs =
exp(a)bk

exp(b)− 1
= Abk. (12)

Substituting τs from (12) in (5) and (7), we obtain

Tc =

{
Ab, if Ab ≤ T0,

T0 + A {exp (b− T0/A)− 1} , if Ab > T0.

4 Estimation methods

This section presents several methods for estimating the parameters in the
US Model for ramp and constant load tests. In the former, the loading rate
k is set so that the mean breaking time is about one minute. In the constant
load test, the constant load is set to be the p-th (p < 0.5) percentile of the
breaking load in the ramp load test. We choose p = 0.2 as an illustration in
this section. Zhai et al. (2012) extend US Model as given by Foschi and Yao
(1986). Our version, the one considered in this report has

dα(t)

dt
= λ exp{−a+ bσ(t)}.

where λ = 1 hour−1, a and b are unitless model parameters and b > 0. We
first explore the maximum likelihood estimator (MLE). Other methods rely
on approximations to the solutions of the failure times Ts and Tc. We con-
sider both an approximate likelihood and a quantile method based on these
approximate solutions. Finally we develop hybrid method that combines the
approximate maximum likelihood and quantile methods.

With A = exp(a)/(exp(b) − 1), the breaking time Ts in the ramp load
test is given by:

λTs = Ab.

The breaking time Tc in the constant load test is given by:

λTc =


Ab, if Ab ≤ λT0,

λT0 + A [exp {b− λT0/A} − 1] , if Ab > λT0
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where T0 is the loading time in the ramp loading part of the constant load
test. For simplicity write Ts and Tc instead of λTs and λTc since λ = 1 hour−1.
The responses measured to yield the data are T̃s = (Ts,1, Ts,2, · · · , Ts,ns) from
the ramp load test, and T̃c = (Tc,1, Tc,2, · · · , Tc,nc) from the constant load
test.

We assume that a and b are two random variables following some dis-
tributions with means µa and µb, and variance σ2

a and σ2
b respectively. Let

θ = (µa, µb, σ
2
a, σ

2
b ) be the parameters to be estimated. We assume that a

and b are independent. Define X and Y by

X = Ab, (13)

Y = T0 + A [exp {b− T0/A} − 1]

= T0 +
X

b

{
exp

(
b− T0

b

X

)
− 1

}
. (14)

Then Ts can be written as
Ts = X, (15)

and Tc as

Tc =

{
X, if X ≤ T0,

Y, if X > T0.

(16)

4.1 The likelihood method

We consider data from three different experiments: a ramp load test; a con-
stant load test with T0 pre-determined independently of the constant load
test; a ramp load test followed by a constant load test with T0 depending on
the ramp load test. Let fTs and fTc be the density functions of Ts and Tc
respectively. These three experimental protocols then yield respectively the
likelihoods:

Ls(θ|T̃s) = P (T̃s|θ) =
ns∏
i=1

fTs(Ts,i|θ). (17)

Lc(θ|T̃c, T0) = P (T̃c|T0, θ) =
nc∏
i=1

fTc(Tc,i|T0, θ). (18)
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Lb(θ|T̃s, T̃c, T0) = P (T̃s, T̃c, T0|θ)
= P (T̃s|θ)P (T0|T̃s, θ)P (T̃c|T0, T̃s, θ)
= P (T̃s|θ)P (T̃c|T0, θ)

=
ns∏
i=1

fTs(Ts,i|θ)
nc∏
j=1

fTc(Tc,j|T0, θ). (19)

The MLEs are found by maximizing the likelihood functions Ls(θ|T̃s), Lc(θ|T̃c, T0)
and Lb(θ|T̃s, T̃c, T0). Because these functions are complicated, the quasi-
Newton method is applied to calculate the maximum likelihood estimates.

The likelihood functions

In this section, we derive the likelihood functions Ls(θ|T̃s), Lc(θ|T̃c, T0) and
Lb(θ|T̃s, T̃c, T0). To calculate the needed density functions of Ts and Tc, we
need those of X and Y denoted fX and fY respectively. The density function
of Ts is

fTs(t|θ) = fX(t|θ),

and the density function of Tc can be written as

fTc(t|θ) = fX(t|θ)I(t ≤ T0) + fY (t|θ)I(t > T0),

where I is the indicator function. To calculate the density function of X, we
define the variable transformation asX =

exp(a)b

exp(b)− 1
,

V1 = b.

.

Then, a an b can be solved by a = log
X{exp(V1)− 1}

V1
,

b = V1.

The Jacobian matrix Js of this variable transformation is given by

Js =

( ∂a
∂X

∂a
∂V1

∂b
∂X

∂b
∂V1

)
=

(
1
X

exp(V1)
exp(V1)−1

− 1
V1

0 1

)
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The joint density function of X and V1 is then

fX,V1(x, v) = fa,b

(
log

x{exp(v)− 1}
v

, v

)
|Js|

= fa

(
log

x{exp(v)− 1}
v

)
fb(v)

1

|x|
. (20)

The marginal density function of X can be found by integrating the expres-
sion in (20):

fX(x) =

∫
fX,V1(x, v)dv.

To calculate the density function of Y , we define the variable transformation
as 

Y = T0 +
exp(a)

exp(b)− 1

[
exp

{
b− T0

exp(b)− 1

exp(a)

}
− 1

]
V2 =

exp(a)

exp(b)− 1
.

Then a and b can be found by solving
a = log

{
(Y − T0 + V2) exp

(
T0
V2

)
− V2

}
b = log

(
Y − T0
V2

+ 1

)
+
T0
V2
.

The Jacobian matrix Jc of this variable transformation is given by

Jc =

( ∂a
∂Y

∂a
∂V2

∂b
∂Y

∂b
∂V2

)
=

(
exp(T0/V2)

(Y−T0+V2) exp(T0/V2)−V2

exp(T0/V2)−(T0/V2) exp(T0/V2)−1
(Y−T0+V2) exp(T0/V2)−V2

1
Y−T0+V2

−Y+T0

(Y−T0)V2+V 2
2
− T0

V 2
2

)

The joint density function of Y and V2 is

fY,V2(y, v) = fa,b

(
log

{
(y − T0 + v) exp

(
T0
v

)
− v
}
, log

(
y − T0
v

+ 1

)
+
T0
v

)
|Jc|

= fa

(
log

{
(y − T0 + v) exp

(
T0
v

)
− v
})

×fb
(

log

(
y − T0
v

+ 1

)
+
T0
v

)
|Jc| (21)
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Finally the density function of Y can be found from (21):

fY (y) =

∫
fY,V2(y, v)dv.

We can also calculate the density functions of the logarithm of the break-
ing times Ts and Tc and estimate the parameters in the logarithmic scale of
the breaking times. These turn out to be simpler than those on the original
scale for breaking times.

Optimization

We use the quasi-Newton method to optimize the likelihood functions. We
choose a starting point for θ as θ(0), and then update θ(0) to θ(1) by calculating
the gradient of the likelihood functions with respect to θ at the value θ(0).
This recursive optimization routine is performed until convergence. We use
nlm in R for optimization. For the choice of the starting point θ(0), we use
both the true values and random values in the simulation studies presented
in the next section. For real data analysis, we do not have a good starting
point θ(0) and use random starting points in the analysis of data from Foschi
and Barrett’s experiments in Section 6.

Although the maximum likelihood estimates seem promising, it does not
work well in practice because the integration limits are hard to determine.
To solve this problem, we propose some approximations to the solutions for
the breaking times in the US Model, in the next section.

4.2 Approximations

In this section, we discuss three approximations of the solutions for the break-
ing times in the US Model. The approximate solutions yield simple likeli-
hoods. They are also used for the quantile method described in the next
section.

We first approximate exp(b)−1 by exp(b) in the expressions of X and Y ,
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yielding

X =
exp(a)b

exp(b)− 1

1
≈ exp(a)b

exp(b)

= b exp(a− b),

Y = T0 +
exp(a)

exp(b)− 1

{
exp

(
b− T0

exp(b)− 1

exp(a)

)
− 1

}
1
≈ T0 +

exp(a)

exp(b)

{
exp

(
b− T0

exp(b)

exp(a)

)
− 1

}
,

which we approximate further as

Y
2
≈ T0 +

exp(a)

exp(b)
exp

{
b− T0

exp(b)

exp(a)

}
= T0 + exp{a− T0 exp(b− a)}.

We then approximate the logarithm of X and the logarithm of Y − T0 via
Taylor series. For X, we expand log(b) about µb = E(b), and for Y − T0, we
expand exp(a− b) about µb − µa = E(b)− E(a), yielding

log(X) ≈ a− b+ log(b)
3
≈ a− b+ log(µb) +

1

µb

(b− µb), (22)

log(Y − T0) ≈ a− T0 exp(b− a)
3
≈ a− T0 exp(µb − µa)(b− a− µb + µa + 1). (23)

The approximations of the solutions for Ts and Tc can be written in terms of
the approximations of X and Y .

For Ts, the first approximation yields

Ts
1
≈ Ts,approx1 ≡ b exp(a− b), (24)

and according to (22), the Taylor series expansion of Ts after the first ap-
proximation yields

log(Ts)
3
≈ log(Ts,approx3) ≡ a− b+ log(µb) +

1

µb

(b− µb). (25)
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For Tc, the first approximation yields

Tc
1
≈ Tc,approx1 ≡

{
b exp(a− b), if X ≤ λT0,

T0 + exp(a− b) [exp {b− T0 exp(b− a)} − 1] , if X > λT0.

(26)

The second approximation yields

Tc
2
≈ Tc,approx2 ≡

{
b exp(a− b), if X ≤ λT0,

T0 + exp{a− T0 exp(b− a)}, if X > λT0.

(27)

According to (22) and (23), the Taylor series expansions after the first two
approximations yield log(Tc,approx3) ≡ a− b+ log(µb) +

1

µb

(b− µb), if X ≤ λT0,

log(Tc,approx3 − T0) ≡ a− T0 exp(µb − µa)(b− a− µb + µa + 1), if X > λT0.

(28)

We study the accuracy of our approximations by comparing Ts simulated
from the original expressions (15) with Ts simulated from the approximations
(24) and (25), and by comparing Tc simulated from the original expressions
(16) with Tc simulated from the approximations (26), (27) and (28).

Approximation step 1

First approximate exp(b)−1 by exp(b) in the solutions for the breaking times
Ts and Tc. For large b, 1 is negligible compared to exp(b), so ee can write the
ratio of X and the approximate X as

X

Xapprox1

=
exp(b)

exp(b)− 1
,

which is approximately 1 when b is large. Note that b must be positive and
not unduly small to generate reasonable breaking times.

We conduct a simulation study to investigate the accuracy of the approx-
imation step 1 when µb = 50. The approximation error is negligible for both
Ts and Tc when σb = 0.4 or σb = 5.
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Approximation step 2

Step 2 approximates exp {b− T0 exp(b− a)}−1 by exp {b− T0 exp(b− a)} in
the solution of Tc after the first approximation. To keep the mean breaking
times in the ramp load test around one minute, µb should be bigger than
µa and the difference should be between 6 and 8. Since T0 is around 0.01,
then T0 exp(µb − µa) < 30. We can show that b − T0 exp(b − a) > 10 for
most pairs of the random variables (a, b). Thus 1 is negligible compared to
exp {b− T0 exp(b− a)}.

We have carried out simulation studies to investigate the accuracy of this
approximation. In all simulation studies of this section, we assume that a
and b are both Normal, µa = 42 and µb = 50, and p = 0.2 in the constant
load test. We set (σa, σb) = (0.4, 0.4), (1, 5), (5, 1) and (5, 5). We simulate
1000 Tc’s from the US Model with and without approximation steps 1 and 2,
and then compare the differences of the Tc and the approximate Tc. Figure 1
contains plots of the approximation error versus the logarithm of the breaking
time Tc. The logarithm of T0 is indicated as the vertical line.

From Figure 1, we notice that the approximation step 2 is very accurate
for most Tc’s except for some values in the lower middle. We recall that
approximation step 2 is only for the random variable Y , and Tc can be
written in terms of X and Y as in (16). For Tc ≤ T0, we have that Tc = X
and the approximation step 2 is not used, so the only error is caused by the
approximation step 1 and this error is small. For Tc > T0, if we have that
Tc−T0 is close to 0, the approximation step 2 is not very accurate. However,
the magnitude of the approximation error is still small. For Tc > T0 and Tc
much greater than T0, the approximation is very accurate.

From Figure 1, we see that, the smaller σa and σb, the more inaccurate is
the approximation when Tc > T0 but close to T0.

Thus the approximation step 2 is very accurate for most Tc’s except for
those in the starting stage of the constant loading part of the constant load
test. However the magnitude of the difference caused by the approximation
is still small.

Approximation step 3: linearization

This section discusses the linearization of the approximate random variables
Ts and Tc on the logarithmic scale after the first two approximation steps.
We can also linearize the random variable Ts and Tc without the first two

14
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Figure 1: Plots of the approximation error versus the logarithm of the break-
ing time Tc when a and b are both Normal, µa = 42 and µb = 50, and p = 0.2
in the constant load test. The vertical line is log(T0). The values for σa and
σb are shown in the title. Tc’s are the breaking times generated from the US
Model without approximations and Tc,approx2’s are the approximated break-
ing times generated from the US Model with the approximation steps 1 and
2. The approximation error is the difference of log(Tc,approx2) and log(Tc).
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steps, but the results are complex and not very useful.
The linearization of the logarithm of the approximated random variableX

after the approximation step 1 is given by the Taylor series about µb = E(b):

log(X) ≈ a− b+ log(b)

≈ a− b+ log(µb) +
1

µb

(b− µb). (29)

Using the Lagrange form of the remainder of the Taylor series, the approxi-
mation error caused by the Taylor series is equal to

(ξ − µb)
2

2µ2
b

,

where ξ is between b and µb. If we assume that b is Normal, by the empirical
rule, it can be shown that

P

{
(ξ − µb)

2

2µ2
b

>
9σ2

b

2µ2
b

}
≤ P

{
(ξ − µb)

2

2µ2
b

>
9σ2

b

2µ2
b

}
= P

{
(ξ − µb)

2 > 9σ2
b

}
≤ P (|b− µb| > 3σb)

< 0.01.

The last inequality is from the empirical rule (or so-called three-σ rule).
We choose the value 9σ2

b/2µ
2
b to use the empirical rule. The above result

means when σb is small and µb is large, the approximation error caused by
linearization is negligible with a probability close to 1.

We can write the approximation error caused by the Taylor series expan-
sion of the logarithm of X as

log(X)− log(Xapprox) = log

(
b

µb

)
+

1

µb

(b− µb), (30)

which also shows that the linearization is more accurate when b is closer to
µb.

The linearization of the logarithm of the random variable Y − T0 after
the approximation steps 1 and 2 is given by the Taylor series expansion of

16



exp(b− a) about µb − µa:

log(Y − T0) ≈ a− T0 exp(b− a)

≈ a− T0 exp(µb − µa)(b− a− µb + µa + 1). (31)

Using the Lagrange form of the remainder of the Taylor series, the ap-
proximation error caused by the Taylor series expansion is equal to

1

2
T0 exp(µb − µa){ξ − (µb − µa)}2,

where ξ is between b − a and µb − µa. However, unlike the linearization of
X, the approximation error caused by the linearization of Y − T0 is only
negligible when b− a is very close to µb − µa.

We performed a simulation study to investigate the accuracy of the lin-
earization and the approximate breaking times Ts’s and Tc’s are calculated
after all three approximations. Figure 2 plots of the approximation error
versus the logarithm of the breaking time Ts. Figure 3 plots of the approxi-
mation error versus the logarithm of the breaking time Tc.

Figure 2 suggests the Taylor series expansion for Ts is reasonably accurate.
In all panels, the magnitude of the approximation errors is relatively small
compared to the magnitude of Ts for all panels. In the upper left panel of
Figure 2, the magnitude of the approximation errors is much smaller than in
the other panels, which means the Taylor series expansion is more accurate
when σb is small, as shown in (30). However, in the other three panels, the
magnitude of the approximation errors is still relatively small compared to
the magnitude of Ts’s for most values. In the upper right panel of Figure 2,
we see a pattern of the change of the approximations errors when Ts increases,
which does not appear in the other three panels.

From Figure 3, the Taylor series expansion for Tc is accurate for the values
which are close to the median of Tc (indicated by the vertical line). As we
can infer from (31), the Taylor series expansion of a random viable with the
exponential form is only accurate for the values very close to the fixed point
chosen for the Taylor’s expansion. From the upper left panel of Figure 3,
the approximation errors increases slowly when Tc departs from the median.
However, the approximation errors increases rapidly when Tc departs from
the median in the other three panels.

In conclusion, the linearization works acceptably well for Ts’s, but only
works well for those Tc’s close to the median of Tc.
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Figure 2: Plots of the approximation error versus the logarithm of the break-
ing time Ts when a and b are both Normal, µa = 42 and µb = 50. The values
for σa and σb are shown in the title. Ts’s are the breaking times generated
from the US Model without approximations and Ts,approx3’s are the approxi-
mated breaking times generated from the US Model with the approximation
steps 1, 2 and 3. The approximation error is the difference of log(Ts,approx3)
and log(Ts).
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Figure 3: Plots of the approximation error versus the logarithm of the break-
ing time Tc when a and b are both Normal, µa = 42 and µb = 50, and p = 0.2
in the constant load test. The values for σa and σb are shown in the title. Tc’s
are the breaking times generated from the US Model without approximations
and Tc,approx3’s are the approximated breaking times generated from the US
Model with the approximation steps 1, 2 and 3.The vertical line denotes the
logarithm of the median of the breaking times Tc’s. The approximation error
is the difference of log(Tc,approx3) and log(Tc).
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Approximate likelihood functions

The likelihood functions involving the original solutions Ts and Tc of the
US Model were seen above to be very complex which makes the integration
and optimization processes involved impractical. In contrast, the likelihood
functions for the approximate solutions for Ts and Tc are easier to calculate.
Those results show the approximations from steps 1 and 2 to be very accurate
for most values of Ts and Tc. So to calculate the approximate likelihood func-
tions, we use the approximate solution for Ts in (25) and the approximate
solution for Tc in (28) obtained following steps 1 and 2. Simulation stud-
ies to evaluate the performance of these approximate maximum likelihood
estimates are discussed in Section 5.

4.3 Quantile method

For the distribution of breaking times, this section presents the quantile
method for parameter estimation based on moment and quantile estimates.
It is based on our approximations to Ts and Tc. We discuss the quantile
method under the constraint that b is positive. In the revised US Model, b is
defined as positive, formally negating the assumption that b has the normal
distribution. However if the standard deviation σb is small relative to the
expected value of b, the probability of b is non-positive is negligible.

From (29) and (31), log(X) and log(Y − T0) can be written as linear
combinations of the random variables a and b, i.e.,

log(X) ≈ a− (1− 1/µb)b+ log(µb)− 1,

log(Y − T0) ≈ a+ c0a− c0b− c0(µa − µb + 1),

where c0 = T0 exp(µb − µa).
If a and b are independent, then

E{log(X)} = µa − µb + log(µb), var{log(X)} = σ2
a + (1− 1/µb)

2σ2
b ,

E{log(Y − T0)} = µa − c0, var{log(Y − T0)} = (1 + c0)
2σ2

a + c20σ
2
b .

We denote the means of log(X) and log(Y −T0) as µX and µY respectively,
and the variances of log(X) and log(Y − T0) as σ2

X and σ2
Y respectively. We

can estimate µa and µb from the estimates of µX and µY . The equations{
µX = µa − µb + log(µb),

µY = µa − T0 exp(µb − µa),
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(32)

yield
µX − µY + µb − log(µb)− T0µb exp(−µX) = 0. (33)

We can numerically solve for µb from (33) given the estimates of µX and µY ,
and then solve for µa from (32).

We can estimate σ2
a and σ2

b from the estimates of σ2
X and σ2

Y . The equa-
tions {

σ2
X = σ2

a + (1− 1/µb)
2σ2

b ,

σ2
Y = (1 + c0)

2σ2
a + c20σ

2
b ,

(34)

yield{
σ2
a = σ2

X − (1− 1/µb)
2[(1 + c0)

2σ2
X − σ2

Y ]/{(1 + c0)
2(1− 1/µb)

2 − c20},
σ2
b = {(1 + c0)

2σ2
X − σ2

Y }/{(1 + c0)
2(1− 1/µb)

2 − c20}.

(35)

We can solve for σ2
a and σ2

b in (35) given µa, µb, σ
2
X and σ2

Y .
To estimate µX , µY , unlike σX and σY , we do not need to require that a

and b be normally distributed The estimation errors of the quantile method
consist of the random error and the approximation error. The random error
can be reduced by increasing the sample size, and the effect of the approxi-
mation error can be reduced by choosing reasonable quantiles.

4.4 Estimates of the means

Let mX , mY , mTs and mTc be the medians of the distributions of X, Y , Ts
and Tc respectively. From the ramp load test, we observe Ts = X, so we can
simply estimate µX by the sample mean of the logarithm of the measured
Ts’s. We can also estimate µX by the median of the logarithm of the measured
Ts’s if log(Ts) is symmetrically distributed. From the constant load test, we
observe the {Tc}, which are equal to X or Y according as X ≤ T0 or X > T0
by (16) where T0 is set to be the p–percentile (p < 0.5) of the {Ts} from the
ramp load test. However, we cannot estimate µY by the sample mean of the
logarithm of the observed Tc − T0 since

E{log(Tc − T0)} 6= µY . (36)
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Instead, when log(Y − T0) is symmetrically distributed, we can estimate µY

by the logarithm of the median of the Tc − T0’s provided we can show that

mTc = mY = exp(µY ) + T0. (37)

Theorem 1. The median of Tc equals the median of Y when b is positive
and p < 0.5.

Proof. To show that mTc = mY , we calculate P (Tc ≥ mY ):

P (Tc ≥ mY ) = P (Tc ≥ mY , X ≤ T0) + P (Tc ≥ mY , X > T0)

= P (X ≥ mY , X ≤ T0) + P (Y ≥ mY , X > T0)

= P (mY ≤ X ≤ T0) + P (Y ≥ mY )P (X > T0|Y ≥ mY )

= P (mY ≤ X ≤ T0) + 0.5P (X > T0|Y ≥ mY ). (38)

Notice that T0 is the p–percentile (p < 0.5) of X, so the median of X,
which is the 50-th percentile of X, is larger than T0, i.e., T0 < mX . Notice
also that if X > T0, then

Y > X. (39)

because according to (14),

Y = T0 +
X

b

{
exp

(
b− bT0

X

)
− 1

}
> T0 +

X

b

{
1 + b− bT0

X
− 1

}
= T0 +X − T0
= X.

As a result, the median of X is smaller than the median of Y , i.e.,

T0 < mX < mY , (40)

which yields
P (mY ≤ X ≤ T0) = 0

in the first part of equation (38).
Next we observe that the definition of Y in (14) yields

X > T0 ⇔ Y > T0. (41)
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The reason is that, b > 0 and according to (14),

X > T0 ⇔ b > b
T0
X

⇔ exp

(
b− bT0

X

)
> 1

⇔ X

b

{
exp

(
b− bT0

X

)
− 1

}
> 0

⇔ T0 +
X

b

{
exp

(
b− bT0

X

)
− 1

}
> T0

⇔ Y > T0.

Therefore the second part of equation (38) can be calculated as

0.5P (X > T0|Y ≥ mY ) = 0.5P (Y > T0|Y ≥ mY ) = 0.5× 1 = 0.5, (42)

since mY > T0 as shown in (40).
To sum up, we have shown that under the constraint b > 0,

P (Tc ≥ mY ) = 0.5. (43)

As a corollary of Theorem 1, µY can be estimated by the logarithm of
the median of Tc minus T0 when log(Y − T0) is symmetrically distributed.

The above proof is not true when b is assumed to be normally distributed
since b can then be negative. However if the standard deviation σb is small,
the equation (43) can be approximated as

P (Tc ≥ mY ) ≈ 0.5. (44)

Under the assumption that b is normally distributed, we demonstrate
the plausibility of (44) by simulation plots. We first simulate 1000 X’s to
calculate T0. Then we simulate another 1000 pairs of (a, b)’s and calculate
the X’s, Y ’s and Tc’s for each pair. We paint all the simulated points grey,
and then paint those points which satisfy Tc > mY black. The plots are
shown in Figure 4.

From Figure 4, we notice that the proportion of the points which satisfy
Tc ≥ mY is around 0.5, although the border line is not of the same shape for
different values of the standard deviations. We also confirm this by counting
the number of points which satisfy that Tc ≥ mY , which is 500 for every plot.
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σa= 0.4 and σb= 0.4
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Figure 4: Plots for illustrating the quantile method when a and b are both
Normal, µa = 42 and µb = 50, and p = 0.2 in the constant load test. The
values for σa and σb are shown in the title. We paint all the simulated points
grey, and then paint those points which satisfy Tc > mY black. These plots
support our claim in equation (44).

Estimates of the variances

If a and b are both assumed to be normally distributed, then log(X) and
log(Y − T0) are both approximately Normal, i.e.,

log(X) ∼ N(µX , σ
2
X), (45)
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where µX = µa − µb + log(µb) and σ2
X = σ2

a + (1− 1/µb)
2σ2

b , and

log(Y − T0) ∼ N(µY , σ
2
Y ), (46)

where c0 = T0 exp(µb − µa), µY = µa − c0 and σ2
Y = (1 + c0)

2σ2
a + c20σ

2
b .

For the ramp load test, we can simply estimate σ2
X by the sample variance

of the logarithm of the Ts’s and σ2
X by the quantiles of the logarithm of the

{Ts}. Let t1,s and t2,s be the pth1,s quantile and the pth2,s quantile of the logarithm
of the {Ts}. Because log(Ts)’s distribution is approximately normal after the
linearization under the normal assumptions on a and b, the difference of
t2,s − t1,s is linked to σX , i.e.,

t2,s − t1,s = csσX

where cs is a constant depending on p1,s and p2,s. For example, if we choose
p1,s = 0.1587 and p2,s = 0.8413, then t2,s − t1,s ≈ 2σX according to the
empirical rule.

For the constant load test, we cannot estimate σ2
Y by the variance of

the logarithm of the {(Tc − T0)} since not all of the Tc’s are defined as Y ’s.
However, we can still use the quantile estimates. Let t1,c and t2,c be the p1,c
quantile and the p2,c quantile of the logarithmic of the Tc−T0’s. Let q1,Y and
q2,Y be the p1,c quantile and the p2,c quantile of the logarithm of Y − T0’s. If
we can show that t1,c = q1,Y and t2,c = q2,Y , then

t2,c − t1,c = q2,Y − q1,Y = ccσY (47)

where cc is a constant depending on p1,c and p2,c.
We can prove that t1,c = q1,Y and t2,c = q2,Y using the same method as

in the proof above for the median estimates under the conditions that b > 0,
p1,c > p and p2,c > p. Since the logarithmic transformation and the shift
transformation do not affect the quantiles, we only need to show that the
pth1,c (or pth2,c) quantile of Tc equals the pth1,c (or pth2,c) quantile of Y when b is
positive and p1,c > p (or p2,c > p).

Theorem 2. The p1,c-th (or p2,c-th) quantile of Tc equals the p1,c-th (or p2,c-
th) quantile of Y , when b is positive and p1,c > p (or p2,c > p).

The proof of the above Theorem 2 is similar to the proof of Theorem 1. We
need only change mY in the proof of Theorem 1 to q1,Y (or q2,Y ), and change
0.5 in the proof of Theorem 1 to p1,c (or p2,c) to get a proof of Theorem 2.
Note that in the above proof, we require p1,c > p and p2,c > p. Therefore,
we cannot choose p1,c too small. For example, if p = 0.2, we can choose
0.3 ≤ p1,c ≤ 0.5 and p2,c larger than 0.5.

25



Approximation errors

As noted above the linearization is not accurate for all Tc’s, and the farther
Tc is from the median, the less accurate is the linearization (see Figure 3).
Therefore, we should choose p1,c and p2,c close to 0.5 to reduce the approxi-
mation errors.

Choosing reasonable values for p1,s, p2,s, p1,c and p2,c seems quite chal-
lenging. In the simulation studies, we chose p1,s = 0.2, p2,s = 0.8, p1,c = 0.45
and p2,c = 0.55, and results are discussed in Section 5 with more details.

4.5 Combining the maximum likelihood and quantile
methods

As noted in above the quantile method works well for quantiles close to the
median of the random variables. Thus the estimates of µa and µb may be
accurate but the estimates of σa and σb may not due to large approximation
errors. As an alternative, we propose a two-step estimation method that
combines the quantile method and the maximum likelihood.

First, we estimate µa and µb from the quantile method using the estimates
of the median of Ts and Tc. Second, we estimate σa and σb by maximizing
the likelihood functions using the µ̂a and µ̂b from the first step. This method
is more computationally efficient than the likelihood method and it improves
the estimates of the standard deviations.

5 Simulation studies

This section simulates the breaking times Ts in the ramp load test and Tc
in the constant load test from the US Model, and then apply the parameter
estimation methods in the previous section estimate the model parameter
θ = (µa, µb, σa, σb). We summarize the results of our simulation study in the
final subsection.

5.1 General setup for simulation

We use the same basic plan for all simulation studies reported in this section.
We set θ = (42, 50, 0.4, 0.4) or θ = (42, 50, 5, 5) and use p = 0.2 in the
constant load test. We use ns = nc = 200 in the simulation studies for
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the three parameter estimation methods proposed in this report. For each
simulation run, we generate ns = 200 breaking times the Ts’s in the ramp
load test and another nc = 200 Tc’s in the constant load test from the US
Model. This part is the same for all simulation runs. Second, we estimate
the parameter θ using the three methods. This part is different for the
different parameter estimation methods as seen in the following sections for
each parameter estimation method. We repeat the above simulation process
nsim = 100 times.

5.2 Simulation studies for the approximate MLEs

The approximate likelihood functions are calculated after the approximation
steps 1 and 2 for the breaking time Ts in the ramp load test and the breaking
time Tc in the constant load test, as discussed in the previous section. To
estimate the parameters, we obtain the approximate maximum likelihood
estimates numerically from the log-likelihood functions, using the function
nlm in R. We set the starting point of θ in the optimization process to be
the true value of θ. For the optimization process, the maximum iteration
step is set to be 20 and the iteration limit is set to be 200. We record the
outputs of the optimization results, which indicates why the optimization
process terminates. The output of the optimization results is a number from
1 to 5. Codes 1 and 2 mean the optimization converges, Code 3 means the
optimization may not converge, and Codes 4 and 5 mean the optimization
does not converge.

Results

Figure 5 shows the bar plots of the outputs of the optimization results. Fig-
ure 5 shows that, in quite a few simulation runs, the output is not reliable,
since many runs lead to code 3 (may not converge). The codes 4 and 5 do
not appear in the 100 simulation runs. The approximate maximum likeli-
hood estimates do not work well in this simulation studies. We will explain
possible reasons in the next section. Similar results can be shown when
θ = (42, 50, 5, 5). The output of the codes for the approximate maximum
likelihood estimates works less well when σa and σb are large. There we see
even more convergence failures.
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Figure 5: Bar plots of the optimization codes for calculating the approx-
imate maximum likelihoodestimates in nsim = 100 simulation runs, when
θ = (µa, µb, σa, σb) = (42, 50, 0.4, 0.4), ns = nc = 200 and p = 0.2 in the
constant load test.

The likelihood functions

From the results in the previous section, we believe that the reason for the
bad performance of the R - program nlm may be that the likelihood functions
are flat, or even that the approximate maximum likelihood estimate may not
be unique. That led us to perform a simulation study to investigate this idea.
More precisely, we generate ns = 200 Ts’s and nc = 200 Tc’s from the US
Model when θ = (42, 50, 0.4, 0.4) and p = 0.2 in the constant load test. We
calculate the log–likelihood functions for the {Ts} in the ramp load test, for
the {Tc} in the constant load test, and for both the {Ts} and {Tc}, where
σa = 0.4 and σb = 0.4 are fixed, while µa varies from 40 to 45 and µb varies
from 47 to 52. The corresponding plots of the log-likelihood functions are
shown in Figure 6.

Figure 6 shows that the log-likelihoods do not have an obvious maximum
point when σa and σb are fixed. The log-likelihoods are roughly maximized
along the line µb − µa ≈ 8. As a result, we may not be able to estimate
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Figure 6: Perspective plots of the log-likelihoods when σa = 0.4 and σb = 0.4
are fixed, and µa varies from 40 to 45 and µb varies from 47 to 52.

µa and µb well, but may be able to estimate µb − µa. The figure does not
prove for the statement that θ can not be estimated using the approximate
maximum likelihood estimates from the U.S. model. However, it provides a
possible explanation for the bad performance of the approximate maximum
likelihood estimates in the previous section.
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In conclusion, the approximate maximum likelihood estimates are not
reliable for estimating the parameter θ.

5.3 Simulation studies for the quantile method

The simulation setups are the same as that discussed in above except that
we also consider the case ns = nc = 200, 000 for illustrative purposes. For
ns = nc = 200, the quantile method estimates µa and µb well, but it produces
negative estimates of σa and σb in most simulation runs (see (35)). Increasing
the sample size to ns = nc = 200, 000 diminishes but does not eliminate
the problem. The reason is still unclear at this moment. To illustrate the
asymptotic performance of the quantile method for estimating σa and σb, we
use ns = nc = 200, 000 although those numbers are not realistic in practice.

We estimate µa and µb using the estimates of the medians of Ts and Tc as
described above and σa and σb using the estimates of the quantiles of Ts and
Tc. We estimate µX and σ2

X by the sample mean and sample variance of the
Ts’s instead of using the median and the quantiles. The results are similar
from the two approaches. Here, we only show the simulation results using
the median and the quantiles of Ts. The quantiles used in this simulation
studies are: p1,s = 0.2, p2,s = 0.8, p1,c = 0.45 and p2,c = 0.55.

Results

The simulation results using the quantile method are summarized in Figure 7
and Figure 8. Figure 7 depicts the boxplots for µ̂a and µ̂b for both ns =
nc = 200 and ns = nc = 200, 000, as well as the boxplots for σ̂a and σ̂b
for ns = nc = 200, 000 only (when θ = (42, 50, 0.4, 0.4) and p = 0.2 in
the constant load test). We do not show the boxplots for σ̂a and σ̂b when
ns = nc = 200 since the quantile method produces positive estimates for
both σ2

a and σ2
b only in 3 simulation runs out of 100 runs in total.

Figure 8 depicts the boxplots for µ̂a, µ̂b, σ̂a and σ̂b when ns = nc = 200,
θ = (42, 50, 5, 5) and p = 0.2 in the constant load test. Figure 9 depicts the
box plots for µ̂a, µ̂b, σ̂a and σ̂b when ns = nc = 200, 000, θ = (42, 50, 5, 5)
and p = 0.2 in the constant load test.

From Figure 7, the quantile method estimates µa and µb well when ns =
nc = 200, and better when ns = nc = 200, 000. The variabilities of the
estimates are smaller when ns and nc are larger. This can be explained by
the fact that, when ns and nc are larger, the median estimates for Ts and Tc
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Figure 7: Box lots of the estimates using the quantile method, when θ =
(42, 50, 0.4, 0.4) and p = 0.2. The sample size ns and nc used in the simulation
runs are shown in plot titles. The grey line indicates the true value of the
parameter.
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are more accurate, so the estimates for µa and µb are more accurate. Similar
results can be shown if we use the mean estimate of Ts instead of the median
estimate of Ts.

From Figure 7, the quantile method estimates σa and σb well when ns =
nc = 200, 000. The quantile method gives positive estimates for both σ2

a and
σ2
b successfully in 54 simulations runs out of 100 runs, and the box plots show

that the estimates are reasonably accurate.
From Figure 8 and Figure 9, the estimates of µa and µb are biased using

the quantile method when σa = σb = 5. The standard errors of the estimates
are smaller when ns and nc are larger, but the estimates of µa and µb are
biased in both figures. This can be explained by the fact that, when σa
and σb are large, the approximations 1, 2 and 3 discussed in Section 4.4
are not accurate anymore, as shown in Figure 2 and Figure 3. As a result,
although the estimates of the medians of Ts and Tc are accurate when ns and
nc are large, the equations that link µa and µb to the median of log(Ts) and
log(Tc − T0) do not hold anymore. As a consequence, the estimates for µa

and µb are not accurate.
From Figure 8, the estimates of σa and σb are still acceptable although

the estimates of µa and µb are not very accurate from the quantile method.
From Figure 9, the estimates of σa and σb are biased from the quantile

method. The quantile method gives positive estimates for both σa and σb in
57 simulations runs out of 100 runs. This can also be explained by the fact
that, when σa and σb are large, the approximation steps 1, 2 and 3 used for
the quantile method are not accurate.

In conclusion, the quantile method estimates µa and µb well when σa and
σb are small. The quantile method estimates σa and σb well when σa and σb
are small and the sample sizes are extremely large (e.g., 200,000), or when
σa and σb are large and the sample sizes are small. Note that a sample of
size 200,000 is unreasonable in practice. Here we only use it for our critical
analysis of the methods.

5.4 Simulation Studies for the combined method

We first estimate µa and µb using the medians of Ts and Tc, and then estimate
σa and σb by approximate maximum likelihood assuming the true means are
µ̂a and µ̂b. We can also use the sample mean of Ts instead of the median
of Ts. The results are similar for the two approaches. Here, we only show
the simulation outputs resulting from use of the median of Ts. To calculate
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the approximate maximum likelihood estimates of σa and σb, we use the
approximate likelihood functions after the approximation steps 1 and 2 for
both Ts’s and Tc’s given µ̂a and µ̂b from the quantile estimates. We choose
the starting point (σa, σb) for the optimization process to be the true value,
and random values uniformly generated from an area contains the true value
for each simulation run. The area is 0 < a < 1 and 0 < b < 1 for (σa, σb) =
(0.4, 0.4), and 0 < a < 10 and 0 < b < 10 for (σa, σb) = (5, 5).

Results

The simulation results are summarized in Figure 10 to Figure 12. Figure 10

Fixed Starting Point Random Starting Point

1 : Converge
2 : Converge
3 : May not Converge
4 : Does not Coverge
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20

40
60

80
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Figure 10: Bar plots of the output of the optimization results in calculating
the approximate maximum likelihood estimates for σa and σb in the com-
bined method when θ = (µa, µb, σa, σb) = (42, 50, 0.4, 0.4) and p = 0.2 in
the constant load test. Fixed starting point means the starting point in
the optimization step of the combined method is set to be the true value
(σa, σb) = (0.4, 0.4). Random starting point means the starting point in the
optimization step of the combined method is set to be different random num-
bers uniformly generated from the square 0 < σa < 1 and 0 < σb < 1 for
different simulation runs.

contains the bar plots of the outputs of the optimization results for max-
imizing the approximate likelihood using the combined method when θ =
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(42, 50, 0.4, 0.4) and p = 0.2 in the constant load test. Comparing Figure 10
to Figure 5, we notice that the optimization process converges in the com-
bined method for most simulation runs, better than the optimization process
in the approximate maximum likelihood method. This means that we are
able to estimate σa and σb for most simulation runs given µ̂a and µ̂b from the
quantile estimates.

Figure 11 contains the plots for the estimates of σa and σb from the
combined method when θ = (42, 50, 0.4, 0.4). In Figure 11, the starting
point for the optimization process in the second step is chosen to be the true
value (σa, σb) = (0.4, 0, 4), as well as random starting numbers generated
uniformly from the square 0 < σa < 1 and 0 < σb < 1. The box plots for µ̂a

and µ̂b are shown in Figure 7.
Figure 12 contains the plots for the estimates of σa and σb from the

combined method when θ = (42, 50, 5, 5). In Figure 12, the starting point
for the optimization process in the second step is chosen to be the true value
(σa, σb) = (5, 5), as well as random starting numbers generated uniformly
from the square 0 < σa < 10 and 0 < σb < 10. The box plots for µ̂a and µ̂b

have been shown in Figure 8.
From Figure 11, the combined method estimates σa and σb well in both

the fixed starting point condition and the random starting point condition.
The estimates are less variable when the starting point is chosen to be the
true value. From the two middle panels of Figure 11, the combined method
still works acceptably well when the starting points are random numbers.
However, from the two lower panels of Figure 11, the estimates of σa and
σb are not the same as those when the starting points are chosen to be
the true value for some simulation runs. The starting points influence the
estimates for some simulation runs, but do not influence the centre of the
overall distributions of the estimates much.

From Figure 12, the combined method estimates σa and σb acceptably
well in both the fixed starting point condition and the random starting point
condition, although the estimate of σb is slightly biased. Combined with
Figure 8, Figure 12 shows that, although the combined method does not
estimate µa and µb well in the first step, it still estimates σa and σb acceptably
well using the estimates of µa and µb from the first step. From the two lower
panels of Figure 12, the combined method is not sensitive to the choice of
the starting point in the optimization when σa = σb = 5.

In conclusion, the combined method estimates the parameters θ well when
σa and σb are small. The combined method estimate the parameter σa and
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Figure 11: Plots of the estimates for σa and σb when θ = (42, 50, 0.4, 0.4) and
p = 0.2 in the constant load test. Fixed starting point means the starting
point in the optimization step of the combined method is set to be the true
value (σa, σb) = (0.4, 0.4). Random starting point means the starting point
in the optimization step of the combined method is set to be different random
numbers in the square 0 < σa < 1 and 0 < σb < 1 for different simulation
runs. The grey line indicates the true value of the parameter.
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Figure 12: Plots of the estimates for σa and σb when θ = (42, 50, 5, 5) and
p = 0.2 in the constant load test. Fixed starting point means the starting
point in the optimization step of the combined method is set to be the true
value (σa, σb) = (5, 5). Random starting point means the starting point in
the optimization step of the combined method is set to be different random
numbers in the square 0 < σa < 10 and 0 < σb < 10 for different simulation
runs. The grey line indicates the true value of the parameter.
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σb well even if µ̂a and µ̂b from the first step of the combined method are not
very accurate. The combined method is not very sensitive to the choice of
the starting point for optimization in the second step.

5.5 Summary of the simulation results

Table 1 summarizes main simulation results in this section. The lessons
learned are stated in Section 7.

Methods mean(µ̂a)− µa mean(µ̂b)− µb mean(σ̂a)− σa mean(σ̂b)− σb Success Rates
(σa, σb) (s.e.) (s.e.) (s.e.) (s.e.)

Approx MLE - - - - 0.51
(0.4, 0.4)
Quantile 0.736 0.740 -0.125 0.058 0.03
(0.4, 0.4) (0.652) (0.670) (0.028) (0.028) (1 for µ̂a and µ̂b)
Quantile -1.065 -1.101 0.539 -0.913 0.54

(5, 5) (0.078) (0.116) (0.131) (0.192) (1 for µ̂a and µ̂b)
Combined 0.736 0.740 0.014 0.016 0.85
(0.4, 0.4) (0.652) (0.670) (0.010) (0.006) (fixed start)

0.736 0.740 0.256 0.450 0.89
(0.652) (0.670) (0.012) (0.006) (random start)

Combined -1.065 -1.101 -0.192 0.492 0.95
(5, 5) (0.078) (0.116) (0.059) (0.048) (fixed start)

-1.065 -1.101 -0.245 0.476 0.93
(0.078) (0.116) (0.076) (0.053) (random start)

Table 1: Summary of the simulation results in Section 5 when ns = nc =
200. In all simulation runs, (µa, µb) = (42, 50) and in the constant load test
p = 0.2. The values of (σa, σb) are shown in the table. The success rates
denote the proportion of the converged simulation runs for the approximate
maximum likelihood estimates and the combined method, and the rates of
the simulation runs which produce positive estimates for both σ2

a and σ2
b for

the quantile method.

6 Experiment and data analysis

This section demonstrates use of our parameter estimation methods on the
pioneering experiments of Foschi and Barrett (1982), who investigated the
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duration of load effects and analyze the breaking times Tc’s from their con-
stant load tests, where the load level is set to be the 20-th percentile of
the short term strength. The data were analyzed by a modification of the
combined method we proposed in Section 4.5.

6.1 Foschi and Barrett’s Experiments

In the 1980s, Foschi and Barrett (1982) conducted an experiment to assess
the duration of load effects on western hemlock lumber of size 2 inches by 6
inches, and grade No. 2 and better. They conducted a ramp load test with
a sample size of 150, and then conducted two constant load tests: one with
the load level set to be the 20-th percentile and the other with load level
set to be the 5-th percentile of the short-term strength. The initial sample
size for each constant load test was 500. However, some wood specimens
were discontinued after three months for unreported reasons. So the final
sample sizes in the one year experiment are 400 wood specimens for the
20-th percentile constant load group and 300 wood specimens for the 5-th
percentile constant load group. More details about Foschi and Barrett’s
experiments can be found in Foschi and Barrett (1982).

In the constant load test of the Foschi – Barrett experiment when p = 0.2,
207 wood specimens out of 400 broke within one year. Foschi and Barrett
did not report how many of them broke during the ramp loading part of the
constant load tests nor did they specify the value of T0. However, they wrote
that 20% of the wood specimens in this test failed during the ramp loading
part, as expected. Since the 79-th, 80-th, 81-st and 82-nd order statistics of
the breaking times Tc’s are the same in this dataset, we assume that 82 wood
specimens broke during the ramp loading part of the constant load test in
our analysis, and assume the 82–nd order statistic of the breaking times Tc’s
to be T0.

6.2 Data analysis

This section presents the results of an analysis of the breaking times Tc’s from
the Foschi – Barrett experiments when the load level is set as the 20th per-
centile of the short term strength. We did not use the approximate maximum
likelihood estimates to estimate parameters for this dataset since the approx-
imate maximum likelihood estimates may well be unreliable according to the
results of our simulation studies. Nor could we apply the quantile methods
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and the combined method proposed in Section 4 directly to this dataset since
we do not have the ramp load test results from their experiments. Thus we
improvised and used a revised method that combines the approximate max-
imum likelihood and quantile methods for the breaking times Tc’s only. The
only difference between the revised combined method here and the combined
method in Section 4.5 is the novel way we used to estimate µX .

Recall that the breaking time Tc can be written as

Tc =

{
X, if X ≤ T0,

Y, if X > T0,

(48)

where

X =
exp(a)b

exp(b)− 1
, (49)

and

Y = T0 +
exp(a)

exp(b)− 1

[
exp

{
b− T0

exp(b)− 1

exp(a)

}
− 1

]
. (50)

In the first step of the combined method in Section 4.5, we estimate µa

and µb from µX and µY , as in (32). We estimate µX by the median of
log(Ts), and estimate µY by the median of log(Tc−T0). In the second step of
the combined method, we estimate σa and σb by the approximate maximum
likelihood using µ̂a and µ̂b from the first step.

For this dataset, to estimate µY , we can still use the median of log(Tc−T0)
as discussed in Section 4.5. To estimate µX , we cannot use the median of
log(Ts) since we do not have those Ts’s. However by definition, those Tc’s,
which are less than T0, equal X. Thus we fit the first 82 order statistics of
the logarithm of the breaking times Tc’s to a truncated normal distribution
using the function survreg in R, and estimate µX by the mean of that normal
distribution.

After we estimated µa and µb from µ̂X and µ̂Y , we estimated σa and σb
by maximizing the approximate likelihood function for Tc’s as discussed in
Section 4.5, using µ̂a and µ̂b from the first step. These steps are all the same
as the combined method in Section 4.5 .

For the optimization process in the second step discussed in Section 4.5,
we choose the starting points for σa and σb randomly from the uniform dis-
tribution in (0, 1). We repeated the optimization process 100 times with
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different starting points. The results of the optimization show that 89 runs
out of 100 runs converge. We estimated σa and σb by the medians of the 89
estimates of σa and σb in these 100 runs. The boxplots of the 89 estimates
of σa and σb are shown in Figure 13.
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Figure 13: Box plots of the 89 estimates of σa and σb.

The resulting estimates are µ̂a = 41.6997, µ̂b = 49.6804, σ̂a = 0.4057 and
σ̂b = 0.3105. These estimates of µa and µb are close to Gerhards and Link’s
estimates of a and b (â = 43.17 and b̂ = 49.75) when a and b are considered
as fixed in their approach.

7 Conclusions

This report has presented three methods for estimating the parameters of the
US Model for describing the duration of load effect on the strength of wood
specimens. We have shown how they may be implemented using certain
judicious approximations of the time to failure in standard duration of load
tests and standard R codes. The goal of the research reported here was an
alternative based on methods in contemporary statistical science to others
that had been proposed over the years.

The complexity of the models rules out analytical assessment and hence
an extensive simulation study was carried out of the methods. Our findings
on the three methods evaluated in this paper are summarized below.

Approximate maximum likelihood. The approximate maximum likelihood
estimates described in the report are not reliable since the optimization
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process in this method only converges in 51 runs out of 100 runs when
the likelihood function for both Ts’s and Tc’s are used. We do not
report the estimates of the parameters because the estimates do not
make sense when only half of the results from the simulation runs are
reliable.

Quantile method. The quantile method estimates µa and µb well but fails to
estimate σa and σb in most simulation runs. It produces reasonable es-
timates for µa and µb in all simulation runs, but only produces positive
estimates for σ2

a and σ2
b in 3 runs out of 100 runs when σa = σb = 0.4,

and only produces positive estimates for σ2
a and σ2

b in 54 runs out of
100 runs when σa = σb = 5.

Combined method. The combined method works well in estimating µa,
µb, σa and σb. In Table 1, the fixed start means the starting points
are chosen to be the true values of the parameters, and the random
start means the starting points are chosen to be random numbers. The
mean of the estimates in the successful runs are shown in Table 1. The
medians of the estimates in the successful runs, which are shown in
the box plots in the previous sections, are generally closer to the true
values than the means of the estimates for most simulation studies.

The report also demonstrates use of our inferential procedures on data
collected in a pioneering experiment reported by Foschi and Barrett (1982).
Reassuringly, the results obtained closely resembled others that had been
reported earlier in the literature.

The importance of the work reported in this papers lies in the application
to innovative manufactured wood products that are now coming on stream
for structural engineering applications. We believe the work has laid a statis-
tical foundation for incorporating the results of testing in establishing design
values for those products.
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