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Abstract. This paper presents two solutions within a Bayesian framework to the
problem of selecting a subset of populations of breaking strengths from a specified
finite set of them that will contain the one with the smallest or (equivalently from
a mathematical perspective) largest αth quantile. Independent random samples
from each are assumed. Estimates of these quantiles are then used to specify
conservative design values for engineering applications. As ASTM, Inc standards
require in some cases a nonparametric approach, we propose a semiparametric and
nonparametric alternatives in the ensuing sections. The paper wraps up with an
empirical comparison of the methods followed by conclusions.
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1 Introduction

This paper, which presents approaches to a subset selection problem within a Bayesian
framework, is a companion to Van Eeden and Zidek (2012). Both papers have their
genesis in a problem encountered by the second author in work done on proprietary
data under a nondisclosure agreement. While we are not able under that agreement
to give specific details about that problem, we use it to motivate a methodology for
subset selection presented in this paper. The general context is that of a manufactured
item with multiple sources of supply that is sold under a single label. The population
of all items P can be represented as P =

⋃K
k=1 Pk where K is the number of sources

of supply. Each item has a measurable index T of its reliability and the focus of the
paper is the conservative specification of a reliability coefficient (RC) for the label such
that the index Tj for a randomly selected item j, exceeds RC with high probability
say at least 95% for definiteness in this exposition. Since the item could come from
any one of the sources of supply and the items available for distribution at any one
time will not generally be a random mix of items from all subpopulations, the criterion
would lead ideally to identifying the population τ ∈ {1, . . . ,K} with the smallest fifth
percentile ηk,0.05 and then reducing that value by a safety factor to account for various
uncertainties. However, generally it will not be feasible to collect samples of sufficient
size from each of the subpopulations, to identify τ with certainty. A more practical
approach, the one taken in lumber production, selects a subset S ⊂ {1, . . . ,K} that
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2 BayesSubset

includes τ with high probability say exceeding P ∗.

Our problem thus involves manufactured lumber produced by different manufacturers
in different geographical regions at different times from different, but similar species,
depending on their availability. Subpopulation k ∈ {1, . . . ,K} refers to one of those
subdivisions of the population of manufactured lumber. For use in structural engineer-
ing, the RC of lumber must ensure survival under unforeseeable future loads due to such
things as snow, strong winds, and seismic activity. This requirement has been imple-
mented through a quality control classification process called “grading”. The grade G
assigned to a piece of lumber, which is stamped on its surface, is assigned in accordance
with prescribed grading rules based on characteristics of that specimen. Most lumber
used in the construction of houses for example is of grade G = #2 or better. Each such
grade corresponds to a cross section of the global supply of lumber, P, which we denote
by PG =

⋃K
k=1 PGk.

Each grade G has a specified design value (called its allowable property) meaning to
the consumer, that the breaking strength (hereafter strength) of a randomly selected
wood specimen will exceed that value with high probability. But wood is a highly
variable material. So the strength distributions for the {PiG, i = 1, · · · ,K} will not be
identical. But it is neither practical or desirable to attempt to establish separate design
values for each (k,G) pair. Instead the lumber industry has chosen to specify a single
conservatively selected design value for G across the global population.

How should that single value be found? An obvious method, the so called “in–grade”
approach, takes a multistage cluster sample of pieces of lumber from PG. Items in that
sample are destructively tested in a lab to obtain an estimate of the relevant population
percentile, which after a reduction based on engineering considerations gives the design
value for G.

The first method will not generally be feasible since it requires an administrative infras-
tructure to organize and manage the sampling program. Thus an alternative method
has been developed for lumber and this paper concerns that second method. There each
of the {PGk, k = 1, · · · ,K} is sampled and tested separately, although these samples
in combination cannot be considered as representative of PG. Yet commercial consid-
erations dictate that nevertheless, all lumber in these K subgroups be marketed as a
single grade group with a single design value. For historical reasons, this practice is
called “species grouping” and the K subgroups are called “species” although today,
they may refer to other factors such as region. Species grouping is sufficiently common
that prescriptive protocols for finding design values for species groups are published as
document ASTM D1990 (ASTM Standard D1990 (2007); hereafter D1990).

The ASTM protocols ensure a conservatively low value while providing stability under
change, such as when a particular subpopulation k is withdrawn or is no longer available.
The latter is achieved by D1990’s stipulation that the design value be calculated by
combining the samples from members of a conservatively selected subgroup of the K
groups called the “subgroup of controlling species” (hereafter CS). We interpret the
CS in our approach, as a subgroup that contains species τ ∈ {1, . . . ,K}, the one with
the smallest fifth percentile, at least with reasonable certainty. The estimated fifth
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percentile based on the CS (or rather in keeping with the ASTM protocol, one-sided
lower 5 percent tolerance limit (TL) with 75 percent confidence), divided by a safety
factor (as in the ASTM protocol), can then be adopted as the the design values for the
species group.

As noted above, we view the lumber application as a paradigm in reliability for supply
chains involving multiple sources of supply leading to a commercial product marketed
under a single label with a specified reliability coefficient. The same issues as those
confronted in our application, will arise due to the heterogeneity of subgroups created
by such factors as the source of raw material as well as differences in the workforce,
manufacturing technology, measurement technique, or inspection methodology. The
controlling species approach developed for manufactured lumber may provide a practical
way of setting a conservative, stable reliability coefficient for the combined population
of the manufactured items. With that we turn to statistical aspects of the problem.

The statistical methods prescribed by D1990 for finding the subset of controlling species,
which we will call the ASTM approach, avoid parametric models for the strength distri-
butions of the {PiG, i = 1, · · · ,K}. But these non–parametric methods, while avoiding
strong modelling assumption, are quite complex and their theoretical properties are very
difficult to assess. We focus here on the protocol that concerns the 5 percent TL.

That protocol involves a multiple testing procedure based on the chi–squared test and
lower TL. First the TL is computed for all K samples combined. For each species
sample k ∈ {1, . . . ,K} the number n̂k below that TL is found and then these numbers
are compared by the chi–squared test. Non–rejection (at the 0.01 level of significance)
puts all K species into the CS. Rejection leads to a sequential multiple testing procedure
beginning with a comparison of the two subpopulations with the two largest n̂ks by the
chi–squared test. The procedure continues in a stepwise fashion until rejection at which
point the CS is taken to consist of subpopulations considered up to but not included in
that test.

The ASTM procedures have recently been found to produce unexpected results, leading
to a search for an alternative. That search led to the method in Van Eeden and Zidek
(2012) (RS for short), the nonparametric empirical Bayes method referred to hereafter
as the Bayesian nonparametric procedure in Taylor et al. (2008) and the new procedure
in this paper called the Bayes semiparametric method.

The procedures presented in this paper are developed in a Bayesian framework that
allows more flexibility than the one in RS allows, albeit at the expense of greater
complexity. Most notably the new framework allows for the incorporation of expert
knowledge, about particularly the lower tails of the population distribution, the region
of critical concern. At the same time, the two principal methods described in this paper
do retain to a great extent, the nonparametric character of the ASTM prescription.

Work on the Bayesian semiparametric procedure presented in this paper, like those in
Van Eeden and Zidek (2012) and Taylor et al. (2008), began by reinterpreting the basic
problem as none of subset selection rather than multiple testing as in D1990. That
new paradigm and more generally the topic of ranking and selection has a long history
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within the domain of repeated sampling (Van Eeden and Zidek 2012). Much less has
been done in Bayesian analysis, a notable contribution being that of Berger and Deely
(1988). There the goal is the selection of the normally distributed population with the
largest mean, once the null hypothesis of the equality of their means has been rejected.
Fong and Berger (1993) provide a history. However, we know of no work on the problem
of subset selection within a nonparametric Bayes framework.

We now describe the contents of this paper. Section 2 presents a novel general approach
to subset selection within a Bayesian framework. Ways of optimizing the procedure
are proposed there, including how costs may be incorporated. To implement the gen-
eral methodology in reliability analysis, we develop it for the two parameter Weibull
population distribution.

Section 3 presents the Bayesian nonparametric approach in Taylor et al. (2008), which
builds on work in a different context (Johnson et al. 1999b) involving the strength
properties of lumber. The Weibull distribution with estimated parameters serves as
the baseline distribution for the Dirichlet process (DP) prior. This approach has the
advantage of simplicity and computational speed. However it has the disadvantage that
the prior makes the sampling distribution discrete — it takes its jumps at a countable
number of random points with probability one.

That disadvantage leads for the fully Bayesian semiparametric approach in Section 4
at the expense of greater technical complexity. This method uses a fairly standard
approach (Escobar and West 1995) that assumes a parametric sampling distribution,
which conditional on a random shape and scale parametric is Weibull. These parame-
ters, which are random effects that vary from specimen–to–specimen, are sampled from
a DP. The result is in effect is an infinite mixture of Weibull distributions that learns
the failure modes of which there may be more than one, reflected in a bumpy lower
left hand tail of the strength distribution. These modes correspond to clusters of the
random effects referred to above. Section 5 illustrates our proposed Bayesian nonpara-
metric and semiparametric procedures based on three real datasets of species, collected
in the Forest Products Stochastic Modelling Group. The program is funded by NSERC
and is a collaborative effort between UBC, SFU, and FPInnovations. We compare the
approaches in Section 6 through a simulation study involving data from a known distri-
bution, which is an adaptation of one constructed by fitting models to a real proprietary
dataset. These results provide evidence in favour of the methods proposed in this paper
over the ASTM approach. The Bayes nonparametric approach is found to have the ad-
vantage of simplicity, but the Bayes semiparametric approach tend overall to be better
at least with samples of reasonable size. Conclusions follow in Section 7.

2 Bayesian subset selection

Suppose we have K species and an independent sample {{tkj}mk
j=1}Kk=1 of measurements

from each k = 1, · · · ,K, and measurements across species are also independent. De-
note by t(k1) < · · · < t(kmk) the order statistics for the specie k and data={tkj ; k =
1, · · · ,K, j = 1, · · · ,mk} the combined sample from all the species. Furthermore let
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ηkα denote the αth-quantile for species k = 1, · · · ,K. Our interest focuses on the small-
est of these and we let τ denote the unknown label of the species which possesses it. In
other words, ητα < ηkα, k 6= τ where here and in the sequel we assume no ties.

Practical limitations on the sample sizes mean that we will not be able to identify τ
with an acceptably high level of certainty say with a posterior probability of at least
P ∗. Instead we seek the smallest subset S ⊂ {1, · · · ,K} for which P (τ ∈ S|data) ≥ P ∗.
To represent this optimization problem in a more explicit form, let πk

.
= P (τ = k|data)

for all k = 1, . . . ,K and π(k) be the kth largest π after ranking them from smallest to
largest. The optimal Bayesian choice of S would be the subset corresponding to the
smallest number d of species with P ∗ < π(K−d+1) + · · ·+ π(K). Notice that

P (τ = k|data) =

∫ ∞
0

Πi6=kP (u < ηiα | data)dP (ηkα ≤ u|data). (2.1)

Thus solving our problem reduces to characterizing P (ηiα ≤ u|data), 0 < u in a suitable
form for all i = 1, · · · ,K. In general implementation of that solution will depend on the
context in which it is to be applied. Guided by our interest in design values and hence
in material strength properties, we implement the result above for the Weibull family,
which is commonly used in reliability. Its members characterize extreme values (from
which design values may be calculated), while including the exponential and Gaussian
distributions (approximately in the latter case). In fact a companion to D1990 (ASTM
Standard D2915 2011) designates the Weibull along with the lognormal distribution for
use in a design context.

The integral in Equation 2.1 can in some cases be found by numerical integration and
this was done initially for the approach in Section 3. However, in practice the number
of species will usually be small and in that case, the needed probability can be found
by Monte Carlo (MC) sampling. Variations of that approach are used in the sections
that follow.

Optimizing the procedure

It may not be possible in some applications to specify directly the P ∗ required for the
procedure described above. In that case, the objective function for optimizing the choice
of the subset S in Van Eeden and Zidek (2012) is a compromise between the probability
of correctly selecting the population τ with the smallest αth quantile, and the need
to minimize the size |S| of the subset. From the perspective of multicriteria decision
analysis the objective would become

γ P (τ ∈ S|data)− (1− γ) |S|/K (2.2)

for some γ ∈ [0, 1], depending on which of the two objectives were seen to be more
important. In the absence of any clear ordering of the two, γ = 0.5 would be a seemingly
natural choice. Then the optimal S would be

Sopt = argmax
S
{γ P (τ ∈ S|data)− (1− γ) |S|/K}.
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The result: the subset of populations corresponding to the {π(K−dopt+1), · · · , π(K)}
where the integer dopt is

dopt = argmax
d
{γ (π(K−d+1) + · · ·+ π(K))− (1− γ) d/K}.

An alternative, based on a suggestion of Dr Larry Phillips communicated to the second
author in a different context, would be the S given by the “bang for the buck” criterion
where now dopt is

dopt = argmax
d

π(K−d+1) + · · ·+ π(K)

d
.

While not a normative criterion like the previous one, this has a natural appeal. As
d = |S| increases, at some point, the gains in the probability of correct selection will
tend to be outweighed by the increasing size of the S required to attain them.

For brevity, we will not in our empirical assessments carried out in this paper illustrate
use of the criteria, leaving that instead to the comparative assessments to be made in a
future paper that compares all the methods including the one in D1990 that spawned
the work reported here.

Finally, we may optimize the sample sizes as in Van Eeden and Zidek (2012). This can
be done in the usual way for Bayesian experimental design, through by pre-posterior
analysis. The objective functions would be one of those above evaluated at their asso-
ciated optimal subset selection rules, conditional on the samples. But now the expec-
tations over the optimized objective function would need to be taken with respect to
the marginal distributions of the samples and that, minimized over the {ns} subject to
cost constraints. These costs would well differ from population–to–population, and may
represent the monetary equivalent of the difficulty of obtaining the samples. However,
major computational issues now arise in characterizatizing the optimal sample sizes and
this also remains for future work.

3 A nonparametric empirical Bayes procedure

In this section, we implement Equation 2.1 using a nonparametric Bayesian approach.
Unlike parametric Bayesian approaches, which restrict the functional form of the sam-
pling distribution’s cumulative distribution function (CDF), the nonparametric Bayesian
approach allows it to have a flexible form by placing the prior distribution directly on
the CDF, hence side-stepping the need to specify a class of parametric models. Fer-
guson (1973) describes a mathematical structure for doing this by using the Dirichlet
process (DP) prior, an infinite dimensional generalization of the Dirichlet distribution.
A probability measure H is said to be a realization of the DP with precision parameter
v and base measure H0, denoted as H ∼ DP (v,H0), if any finite partition A1, · · · , Ar
of the sample space of H has the property that:

(H(A1), · · · , H(Ar)) ∼ Dir(vH0(A1), · · · , vH0(Ar)),

where Dir(a1, · · · , ar) represents the Dirichlet distribution with parameters a1, · · · , ar.
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Our nonparametric Bayesian approach is based on Johnson et al. (1999a): Denote
Tk be the nonnegative strength measurement of the kth species then assume that the
probability measure of Tk is from the DP with base measureG0k and precision parameter
v. Since we are interested in events of the form {Tk ≤ t}, the definition of DP can be
written in terms of the CDF of Tk. More precisely, let Gk be the CDF of Tk, G0k be
the base CDF, and 0 < t1 < t2 < · · · < tr <∞. Then Gk ∼ DP (v,G0k) if for any finite
partition of the form [0, t1], (t1, t2], · · · , (tr−1, tr], (tr,∞) has the joint distribution

(Gk(t1), Gk(t2)−Gk(t1), · · · , Gk(tr)−Gk(tr−1), 1−Gk(tr))

∼ Dir(vG0k(t1), vG0k(t2)− vG0k(t1), · · · , vG0k(tr)− vG0k(tr−1), v − vG0k(tr)).
(3.3)

The distribution of αth quantile ηα of T can be derived from (3.3) in terms of a beta
distribution. More explicitly for the partition [0, t], (t,∞), (3.3) becomes

P (ηkα < t) =1− P (Gk(t) ≤ α)

=1−Beta(α; vG0k(t), v − vG0k(t)),

where Beta(·; a, b) is a CDF of the beta distribution with mean a/(a + b). The sec-
ond equality follows because of (3.3) and the fact that the Dirichlet distribution is a
multivariate generalization of the beta distribution.

The DP has the attractive feature that its posterior distribution is also DP. Under our
model, the posterior distribution of the αth quantile ηkα of kth species is:

P (ηkα ≤ t|data) = 1−Beta(α; νmk
(t), v +mk − νmk

(t)), (3.4)

where νmk
(t) = vG0k(t) + mkF̂k(t), and F̂k(t) is the empirical distribution function.

The posterior distributions of the {ηkα} now have a discrete component, and the CDF
has jumps at each of the (ordered) sample points tkj , j = 1, · · · ,mk. Thus if in the
integrand of Equation (2.1), we let

Hs(t) = Πk 6=sP (t < ηkα|data)

we can represent that integral explicitly as∫ ∞
0

Hs(t)dP (ηsα ≤ t|data) =

nk+1∑
r=1

[

∫ xkr

xk(r−1)

Hs(t)fs(r−k)(t)dt+ ps(r−1)Hs(xk(r−1))].

In principle this representation could be used to evaluate the integral.

However the integration in Equation (2.1) is done below by sampling independent copies

η
(j)
sα , j = 1, · · · , L by first generating samples from the uniform distribution on (0,1) or

more succinctly U(0, 1), inverting Equation (3.4), the posterior distribution of ηsα, and
then approximating the integral by

P (τ = s|data) '
∑L
j=1 Πk 6=sP (η

(j)
sα < ηkα|data)

L
(3.5)

for an L sufficiently large as to attain approximate convergence.
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Implementation

To implement the theory above we must specify the precision parameter v. The form
of the posterior distribution of ηkα in (3.4) suggests that v/(v +m) = p be interpreted
as the weight on the prior belief of G0k relative to the empirical distribution function.
Therefore we experimentally increase v = vp/(1 − p), p = 0.1, 0.2, · · · to the point at
which the results become sensitive to the the {G0k}. Preliminary data analysis points
to the use of a two parameter Weibull CDF for it fits the data the best. More precisely,
let Weibull(·; a, b) denote the CDF of the standard Weibull distribution with mean
bΓ(1 + 1/a) and let

G0k(t) = Weibull(t; β̂k, λ̂k), t > 0,

λ̂k and β̂k being, respectively, the maximum likelihood estimates of the Weibull’s scale
and shape parameter. Thus with this definition,

νmk
(t) = vWeibull(t; β̂k, λ̂k) +mkF̂k(t).

Overall the method described in this section builds–in a posterior base that provides
smoothly increasing posterior cumulative probabilities between the empirical jumps at
sample points.

4 A Bayesian semiparametric approach

The main drawback of the nonparametric approach is the somewhat unrealistic assump-
tion of the discrete (singular) distribution on the αth quantiles. This section seeks a
compromise between a parametric and a purely nonparametric approach. That goal is
accomplished through the use of a by now standard hierarchical DP mixture approach,
within the field of nonparametric Bayesian analysis. This field has grown rapidly follow-
ing the seminal paper of Ferguson (1973, 1974) and is an active area of current research
(Broderick et al. 2011).

To characterize P (ηkα ≤ u|data) in Equation (2.1), we first model the distribution of
each species Tk separately using the Weibull DP mixture. DP mixture was originally
introduced by Antoniak (1974) as a flexible alternative to nonmixture distribution. For
notational simplicity, we use T to denote Tk in this Section. Denoting the marginal
CDF of T by F and joint CDF for the shape β and scale λ parameters of the Weibull
as G, the Weibull DP mixture model is explicitly written as

F (t) =

∫ ∫
Weibull(t|β, λ)G(dβ, dλ), (4.6)

where G ∼ DP (v,G0). This representation differs from the nonparametric method of
Section 3, in that the base CDF G0 here is our prior choice of the joint CDF of β
and λ rather than the sampling distribution itself. Sethuraman (1994) showed that a
realization G from the DP has the form

G(β, λ) =

∞∑
h=1

πhI(β∗h ≤ β, λ∗h ≤ λ), (β∗h, λ
∗
h)

i.i.d.∼ G0. (4.7)
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Here π1 = V1 while the πh = Vh
∏
l<h(1− Vh), h = 2, 3, · · · are probability weights that

are formed from a stick-breaking process with Vh
i.i.d.∼ Beta(·; 1, v), for h = 1, 2, · · · and

I(A) being 1 or 0 according to whether or not A is true. The representation (4.7) is
often called the stick-breaking representation of DP. The stick-breaking representation
shows that this model essentially assumes that the Tk for each species is sampled from
a mixture of infinitely many Weibull distributions

F (t) =

∞∑
h=1

πhWeibull(t;βh, λh), (β∗h, λ
∗
h)

i.i.d.∼ G0. (4.8)

Given a single realization of F from its posterior distribution, say F |data, we could
invert it to return the posterior αth quantile of interest. As we want to approximate the
posterior distribution of ηkα, we must obtain multiple copies of F |data. For this purpose,
we apply the density estimation scheme introduced by Ishwaran and Zarepour (2000) in
the context of DP mixture of normal distributions. We will design our MCMC algorithm
to return B copies of the posterior CDF of the Weibull parameters, G(b) (b = 1, · · · , B),
using the stick breaking representation of DP (4.7). For each approximated posterior
sample G(b), we approximate the posterior of (4.8). We note that sampled posterior
CDFs could return the interval estimates of the posterior density of T as a by–product
of the semiparametric approach by evaluating each G(b) for a grid of values over the
values that T may take.

Various authors have proposed methods of fitting Dirichlet process mixed models, which
yields approximate inference for densities of the random mixtures (see for example,
Kottas and Gelfand (2002) and Escobar and West (1995)). However, the method of
Ishwaran and Zarepour (2000) described above has an advantage of its simplicity. We
turn now to a detailed description of the hierarchy of the Weibull DP mixture.

The Weibull DP mixture model

The semiparametric model above assumes the measurable determinant of reliability T
is from an infinite mixture of Weibull distributions, where the shape β and scale λ
parameters of each Weibull distribution is from the base distribution G0. We now take
the joint CDF G0 to be

G0(β, λ) = Unif(β; 0.01, φ)Unif(λ; 0.01, γ). (4.9)

where Unif(·; a, b) is the CDF of the uniform distribution with mean (b+ a)/2 (a < b).
We allow the parameters φ and γ to be random by adding additional layers to the
hierarchy: φ ∼ Pareto(φ; aφ, lφ), and γ ∼ Pareto(γ; aγ , lγ), where Pareto(·; a, b) is the
CDF of the Pareto distribution with mean ab/(b− 1) (if a > 1). As lφ (or lγ) restricts
the support of φ (or γ) to be greater than lφ (or lγ), the hyperparameter lφ (or lγ) can
be interpreted as lowest upper bounds for β (or λ). If one has an idea of the largest
values of the β (or λ), the mixture components of the distribution of T , they should be
selected as lφ (or lγ). We choose lφ = lγ = 10. Our sensitivity analysis found that the
resulting 95 % credible interval of η0.05 is robust to the selection of lφ and lγ (Section 5).
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The hyperparameter aφ (or aγ) is negatively associated with the variance of φ (or γ) if
aφ (or aγ) > 2, and their variance become infinity if aφ (or aγ) ≤ 2. With little specific
information available to us, we have conservatively chosen aγ = aφ = 2, although users
would have the option of increasing this value.

Kottas (2006), who proposed the Weibull DP mixture model in the context of survival
analysis, reparametrized the scale parameter of the Weibull distribution as λ∗ = λβ so
that λ∗ has an inverse gamma as a conjugate prior. He then took G0 to be the product of
the CDFs for the uniform and inverse gamma distributions respectively, on β and λ∗. An
additional layer in the hierarchy was added for the scale parameter of the inverse gamma
distribution as it has a gamma conjugate prior. Although this hierarchical model gains
a computational advantage from the use of a conjugate prior, we elected not to select
this hierarchical model for the following reasons. (1) As the MOR can range between
0 to 20 (1000 psi), the sampler tends to return fairly large values of λ∗, which can lead
to computational instability. (2) We found specifying the hyperparameters in Kottas
(2006) challenging in our application and the resulting density estimates of T , sensitive
to those specifications. The need for interpretability of the hyperparameters guided our
search for a hierarchical model and we hope we have been somewhat successful. Our
empirical studies indicate that results obtained by applying our model are fairly robust
against misspecification of those hyperparameters.

We also allow the precision parameter v to be random with Unif(v; 0.01, 5) as a prior
distribution. Although a conjugate gamma prior is available, we have chosen instead a
uniform distribution. This is because we found that the shape of the estimated density of
T was rather sensible to the selection of the hyperparameters of the gamma distribution.

Dropping the species subscript k for notational simplicity the full hierarchical model of
our Weibull DP mixture is, in summary,

Tj |βj , λj
ind∼ Weibull(·;βj , λj), j = 1, · · · ,m

βj , λj |G
i.i.d.∼ G, j = 1, · · · ,m

G|v, φ, γ ∼ DP (v,G0) where G0 is defined in (4.9)

v ∼ Unif(0.01, 5)

φ ∼ Pareto(·; aφ, lφ)

γ ∼ Pareto(·; aγ , lγ).

A posterior computation

For posterior inference, Kottas (2006) used a collapsed Gibbs sampler based on the Polya
urn representation of DP (Blackwell and MacQueen (1973)), which avoids updating the
infinitely many parameters characterizing the CDF of T . However, this sampler does
not return a posterior sample of the joint distribution G. This is because it marginalizes
out G and samples directly from the posterior distribution of (βj , λj). As we need a
posterior sample of Gs, we will instead use a blocked Gibbs sampler (Ishwaran and
James (2001)), which approximates G at every iteration. The algorithm is based on the
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stick-breaking representation of DP (4.7) and it relies on approximating G through a
truncation of the stick-breaking representation in (4.7) at some large value M . Since the
probability weight πh decreases as the index h increases, it is reasonable to truncate the
infinite sum after the first M terms, by letting VM = 1. The pragmatic choice of M and
hence approximation of DP that is close enough, would be one that assigns an amount
of probability to the final mass point πM = 1−

∑M−1
h=1 πh that is less than some small

number ε. As the stick breaking representation leads to E(πM |v) = (v/(v + 1))M−1,
setting it equal to ε returns the choice of

M = 1 +
log ε

log (v/(1 + v))
. (4.10)

Since we assume that v is random with an uniform prior, we choose the M that satisfies
(4.10) with the largest possible value of v and ε = 0.01, which leads to M = 26.

For computational purposes, we introduce latent variables Sj , j = 1, · · · ,m, such that
Sj = h when (βj , λj) = (β∗h, λ

∗
h). Then P (Sj = h) = πh and the joint probability

function of the target distribution is expressed as

P ({β∗h}Mh=1, {λ∗h}Mh=1, {Sj}mj=1, {Vh}Mh=1, φ, γ, v|data)

∝ P (φ)P (γ)P (v)

M∏
h=1

{
P (Vh|D)P (λ∗h|γ)P (β∗h;φ)

}
×

m∏
j=1

{
P (Sj ; {Vh}Mh=1)P (tj ;β

∗
sj , λ

∗
sj )

}
. (4.11)

Figure 1 shows the directed acyclical graph (DAG) of our hierarchical model. The Ap-
pendix gives a detailed description of our MCMC sampling algorithm. In the algorithm,
each iteration of MCMC sampling generates an approximation of G which is a function
of {β∗h}Mh=1,{λ∗h}Mh=1, and {Vh}Mh=1. Given these posterior samples, we obtain B samples
of posterior predictive distribution of T

F (b)(t|data) ≈
M∑
h=1

π
(b)
h Weibull(t|β(b)

h , λ
(b)
h ), b = 1, · · · , B

Once the MCMC has run on the datasets for each species separately, we obtain the

posterior samples of (4.7) for each k, {{F (b)
k }Bb=1}Kk=1, and hence {{η(b)k,α}Bb=1}Kk=1. As

the {Tkj} are independent across species, Equation (2.1) can be estimated as

P (τ = k|data) '
∑B
b1,··· ,bK=1

∏
i 6=k I(η

(bk)
k,α < η

(bi)
i,α )

BK
.

5 An illustrative application

This section demonstrates use of the nonparametric and semiparametric methods devel-
oped in previous sections on three real datasets of size 282, 98 and 174,collected by the
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Figure 1: The directed acyclical graph of the semiparametric Weibull DP mixture model.
Unbroken arrows represent stochastic relationships, while broken arrows represent de-
terministic relationships.

Forest Products the Forest Products Stochastic Modelling Group where the measured
strength is the modulus of rupture (MOR) for lumber from a single species. In the
laboratory, the MOR of a randomly selected lumber specimen is measured by gradually
increasing the stress on the board and recording the stress level at which the board
breaks. For convenience, we refer to the three datasets as S1, S2 and S3. For the
semiparametric method, the MCMC sample size is set to 10,000 after discarding the
first 5,000 as burn-in and thinning at every 5th iteration. For the the nonparamet-
ric method, MC approximation of (3.5) was done with a sample of size 2000 (= L).
To assess sensitivity to the prior information, the parameter v of the nonparametric
model was set to v = 0.111m, and m was chosen so that 10%, and 50 % of weights are
put on the prior, respectively. We implemented our semiparametric and nonparametric
methods in an R package DPw, which is publicly available at the CRAN repository:
http://cran.r-project.org. For computational efficiency, the MCMC of semipara-
metric model is coded in C language.

The left hand panels of Figure 4 show the estimated density of MOR given by the
semiparametric method for each dataset. The histograms of sampled MORs are super-
imposed. Although all three datasets contain MORs, the shape of the estimated density
from the semiparametric method look quite different; those for S1 and S2 indicate the
possibility of two modes whereas that for S3 is unimodal and resembles a Laplace distri-
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Figure 2: The left hand panels show the estimated density of MOR from the semi-
parametric method. The histograms of sampled MORs are superimposed. The right
hand panels show the estimated posterior CDF of the fifth percentile, η0.05 from the
semi and non parametric methods (Top), and the empirical 95 % credible intervals of
η0.05 (Bottom). The blue horizontal line represents the sample 5th percentile.
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Figure 3: The sensitivity plots show the change in 2.5th percentile (dotted line), mean
(solid line) and the 97.5th percentile (dotted line) of the estimated distribution of η0.05
with different values of lγ and lφ.

bution. This lends support for nonparametric and semiparametric approaches like those
taken in D1990. The right hand panels show the estimated posterior CDF of the fifth
percentile, η0.05 from the semi and non parametric methods (Top), and the empirical 95
% credible intervals of η0.05 (Bottom). The credible intervals from the nonparametric
model with small v (= 0.111m) tends to be larger than the other methods, and the
interval tends to lie around the sample’s fifth percentile. As well the estimated CDF
of the semiparametric method tends resemble more closely, the nonparametric method
with v = m. These observations are reasonable as v is the weight put on the prior for
the Weibull distribution’s parameters, relative to the empirical distribution.

S2 exhibits the largest discrepancies in the estimated CDF of η0.05 among the competing
methods. This may be because of the small sample size (98). When the sample size
is small, the estimated CDF from the nonparametric method with small v show clear
jumps at every observed tjs, which could be unrealistic as a distribution of η0.05.

Lastly, we performed the sensitivity analysis of the estimated distribution of ηα with
respect to the change in lγ and lφ using S2, which has the smallest sample size. Figure 3
shows that the change in 2.5th percentile (dotted line), mean (solid line) and the 97.5th
percentile (dotted line) of the estimated distribution of η0.05 with different values of
lγ and lφ (= 5, 7.5, · · · 50) while fixing the other value to 10. We observe that all
the estimated quantities are unaffected by the change in the value of lγ and lφ in the
reasonable range. From this experiment, we conclude that the estimated distribution
of ηα is robust to the specifications of the parameter lγ and lφ.

6 Performance assessment

This section presents the results of simulation studies designed to compare the perfor-
mance of the three subset selection methods: the current ASTM industrial standard
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described in Introduction; the nonparametric method (Section 3); the proposed semi-
parametric method (Section 4).

Our proprietary datasets for a single grade consist of less than ten species, and the
gaps in percent between successively larger fifth percentiles of the samples of the first
seven species are: 7, 3, 8, 1, 17, 3. We will design our simulation model based on this
information, the three datasets of MOR analyzed in Section 5 and available information
of the sampling distribution of MOR from literature. We generate the quality measures
Tk (k = 1, · · · , 7) under three settings;

• Setting 1: The samples of species 1 - 7 are generated from:

– 1) Weibull(·; 3.85, 7.32) with η0.05 = 3.38;

– 2) Lnorm(·; 1.85, 0.31) with η0.05 = 3.82;

– 3) Weibull(·; 5.19, 7.27) with η0.05 = 4.10;

– 4) 0.67Lnorm(·; 1.98, 0.17)+0.33Lnorm(·; 1.74, 0.23) with η0.05 = 4.47;

– 5) 0.79Weibull(·; 5.43, 7.64)+0.21Weibull(·; 12.01, 6.19) with η0.05 = 4.53;

– 6) 0.74Weibull(·; 5.49, 7.60)+0.26Weibull(·; 15.81, 5.98) with η0.05 = 4.61;

– 7) 0.98Lnorm(·; 1.90, 0.19) +0.02Lnorm(·; 1.25, 0.10) with η0.05 = 4.69,

where Lnorm(·; a, b) represents the log-normal CDF with mean ea+b
2/2. The

simulation models for species 1 and 2 use MLEs based on S1 with corresponding
kernel, models for species 3, 6 and 7 use MLEs based on S2 and the models for
species 4 and 5 use MLEs based on S3. These distributions are selected based
on the work of Liu (2010) which analyzed datasets S1 and S2 in the context of
quantile estimation and fitted various parametric models using the ML method.
Based on his estimated distributions, and additional analysis of S3, we selected the
estimated distributions as simulation models so that the percentage gaps between
the estimated quantiles reflect the ones in our proprietary data.

• Setting 2: The species are from the Weibull distribution with shape = 4.726 and
scale parameters varying 10.803, 11.56, 11.906, 12.858, 12.988, 15.194, 15.651 so
that the percentage gaps between the estimated quantiles reflect the ones in our
proprietary data. These values are selected to be close to the MLEs of the MOR
datasets reported in Johnson et al. (1999a).

• Setting 3: The species are from the standard two–parameter Weibull distribution
with shape = 4.726 and scale parameters of 10.803 for two species and 11.906 for
the rest. This is the scenario when there are two species that have the smallest
fifth percentile.

For each setting samples of size 100 as well as 360 (= mk for all k) are generated 300
times. Then the ASTM procedure, the semiparametric and the nonparametric models
are fit to each set of data to estimate the probability that the kth species is the weakest
for each k = 1, · · · , 7. To assess sensitivity of the prior specifications, the parameter
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Subset size % capture the weakest % Set stays the same
m 100 360 100 360 100 360

ASTM 5.92 2.85 100 100 12 74

P ∗=95
NP1 3.13 1.71 100 100 67 98
NP2 2.41 1.93 98 97 86 100
SP 2.91 1.50 100 100 82 100

P ∗=99
NP1 4.79 2.35 100 100 29 76
NP2 3.91 2.46 100 100 34 83
SP 4.61 1.88 100 100 50 99

P ∗=99.5
NP1 5.35 2.99 100 100 18 57
NP2 4.55 3.22 100 100 25 61
SP 5.39 2.07 100 100 27 99

Table 1: Setting 1

v of the nonparametric model is set to v = 0.111mk, and mk. All the rest of the
hyperparameter values of the non– and semiparametric models are selected as in the
previous section.

One desideratum for a method of specifying design values through the species grouping
approach pertains to the withdrawal of a species that is not in the subset of controlling
species (CS). Ideally this should not change the design value that was originally com-
puted solely on the basis of the CS in order to ensure continuity in published standards.
However a poor method could mean that when it was reapplied to the remaining, K -1
species, the CS could change along with the design value. In fact, counterintuitively,
it could actually increase. Thus stability in the CS itself would be desirable and that
performance property is one of the ones we now explore along with the size of the CS
and the success rate in capturing the species with the smallest fifth percentile in the CS.
For our analysis, we remove the sample from the species with the highest true fifth per-
centile, reapply the subset selection procedures and examine the result. For the setting
3, where five species have the same strongest true fifth percentile, the seventh species is
removed as the strongest species.

6.1 Result

Tables 1,2 and 3 show the average subset size, proportion of times that weakest species
are captured and the porportion of times the subset selected using seven species is the
same as the subset selected using six species without the strongest one over the 300
simulations. In setting 3, where two species are the weakest, we counted the times when
both of the two species are contained in CS. NP1 and NP2 represent the nonparametric
Bayesian procedure with v = 0.111m and m respectively. For both of the sample sizes
considered, all the competing subset selection procedures include τ almost all the time
in their CSs when τ is unique among the 7 species. The main findings follow:

• Comparision of nonparametric & semiparametric methods
The subset size of Bayesian procedures increases with P ∗, the required posterior
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Subset size % capture the weakest % Set stays the same
m 100 360 100 360 100 360

ASTM 6.46 4.21 100 100 11 64

P ∗=95
NP1 3.83 2.53 99 100 69 87
NP2 3.10 2.04 99 100 84 96
SP 3.90 2.14 99 100 75 100

P ∗=99
NP1 5.37 3.72 100 100 34 57
NP2 4.51 2.96 100 100 49 67
SP 5.42 2.86 99 100 44 100

P ∗=99.5
NP1 5.78 4.32 100 100 22 35
NP2 5.03 3.54 100 100 30 49
SP 5.94 3.16 100 100 32 99

Table 2: Setting 2

Subset size % capture the weakests % Set stays the same
m 100 360 100 360 100 360

ASTM 6.95 6.64 100 100 1 5

P ∗=95
NP1 4.84 3.83 82 89 26 47
NP2 4.38 2.97 83 92 34 73
SP 4.91 3.02 90 95 28 73

P ∗=99
NP1 6.15 5.51 93 99 10 17
NP2 5.84 4.48 95 98 11 29
SP 6.30 4.49 98 99 12 43

P ∗=99.5
NP1 6.41 5.93 95 99 6 9
NP2 6.17 5.06 97 100 6 18
SP 6.66 5.06 99 100 5 35

Table 3: Setting 3
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probability of subset of controlling species contains the one with smallest per-
centile. Ideally the size of the subset of controlled species (CS) should be small.
When the sample sizes are small, the nonparametric method with v = m (denoted
as NP2) yields the smallest CS in all settings. However, as sample size increases
to 360, the semiparametric procedure returns as small or smaller CS than non-
parametric procedures. The Bayesian approaches considered in this paper, yield
for each subpopulation index k ∈ {1, . . . , 7} a posterior probability that k is the
one with the smallest fifth percentile. That probability should be highest when
k = τ , the index of the species corresponding to that smallest value. With sample
sizes of 360, a current standard size in lumber testing experiments, the semipara-
metric method proves slightly superior when τ is unique among the 7 species (i.e.,
Settings 1 and 2) (See Figure 4 in Appendix 2).

Removal of the strongest species affects the choice of CS more when P ∗ is large,
in agreement with intuition as a large P ∗ entails a larger CS, which in turn is
more likely to capture τ . When the sample size is large (360) and there is a
unique weakest species (Settings 1 and 2), the semiparametric method returns
very stable CS for all values of P ∗ and all settings, under strongest species removal
scenario whereas the nonparametric procedure returns relatively unstable CS for
large P ∗. This could be because when the sample size is large, the semiparametric
method tends to return the smallest CS among other methods, which is less likely
to capture the strongest species. Although the η0.05 estimates generated by the
semiparametric model are biased when the species are not from the mixture of
Weibull distributions (as discussed in Appendix 2), this property does not affect
the stability of the CS and the semi-parametric model returns the most stable
subset in Settings 1 and 2.

• Comparison of the ASTM and Bayesian methods
When sample size is small, the ASTM procedure tend to return a larger CS than
any of the Bayesian methods for any of the P ∗s we considered. As a consequence,
the CS from ASTM tends to be more unstable under the subset withdrawal senario
than Bayesian procedures. When sample size is large, we observe that the semi-
parametric procedure always outperforms the ASTM procedure in terms of stabil-
ity of CS. In particular, in the presence of two species with small fifth percentiles
and five with higher ones (Setting 3), the ASTM tends to return a conservative
CS, meaning that it selects all the species in the subset even when the sample size
is large (m = 360). This ASTM’s tendency to select conservatively large CSs, may
lead to the greater instability we observe in our empirical findings under species
removal scenarios in our simulation studies, which are broadly in line with those
in Taylor et al. (2008)

7 Concluding remarks

Our empirical assessments based on the simulation studies, suggest both Bayesian meth-
ods for subset selection presented in this paper have promise as methods for selecting
subsets of controlling species (CSs), in that the CSs tend to be more stable than the
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current standard procedure of ASTM under withdrawal of a species. These studies
also show that the nonparametric empirical Bayes procedure works reasonably well as a
competitor to the fully Bayesian semiparametric method. The former has the advantage
of simplicity and low computational cost. On the other hand, care must be in tuning
the precision parameter v (the weight placed on the base distribution in the Dirichlet
process prior) in applying the method. That is because, not surprisingly and as the
simulation studies show, that approach’s performance degrades when the true distri-
bution does not coincide with the base distribution assumption and a relatively large
value of v is assigned. This may limit its value in the formulation of species grouping
protocols, where exact algorithms need to be given. The simulation study also found its
competitor, the semiparametric approach returns the most stable subsets for reasonably
large sample size even though the estimated fifth percentile η0.05 is biased when the true
distribution is non-Weibull.

ASTM D1990 accepts the sample size of a single specie larger than 100, however our
simulation study showed that 100 could be too small to develop a stable CS based on the
current ASTM procedure. Our proposed semiparametric procedure can return a stable
CS with such a small sample size, if one allows relatively small acceptable probability
P ∗ (e.g. 95 %). For our non-parametric procedure to return a stable CS with a small
sample size, strong prior belief (i.e. large v) as well as large P ∗ are necessary.

Overall the semiparametric approach enjoys a number of advantages over the nonpara-
metric empirical Bayes approach in addition to those mentioned above. First it is
fully Bayesian, which assures coherence in any inferential findings derived from its use.
Second, it provides a simple technical mechanism (the prior) for expert opinion to be
introduced into the problem of species grouping. Work will be needed on how best to
elicit that opinion. Second, unlike the nonparametric empirical Bayes procedure, tun-
ing a precision parameter is unnecessary as our model’s hierarchical structure means it
incorporates the learning of the precision parameter. Third, the approach of necessity
produces a sampler for the unknown population’s posterior strength distribution. This
is a major byproduct of the work which is being used in work now underway to char-
acterize lot properties, i.e. metrics calculated for sets of pieces of lumber of fixed size,
say 10 pieces. For example, the minimum strength of such a lot. Note that the method
returns a a posterior piecewise credibility interval around the estimates of the density
of T , which can be useful for analyzing the behaviour of T . Overall these results would
offer a new approach to grading lumber based on lot properties rather than the strength
properties of individual pieces.

While the approaches being developed, like those in this paper offer new ways of group-
ing species, it should be emphasized that they build on the idea of controlling species
in a protocol in ASTM D1990 that has generally proven quite successful over time.
So the new methods we have introduced are designed as refinements of that approach
rather than as replacements. Moreover they would need to be compared to Van Eeden
and Zidek (2012), an exercise that was initiated in Taylor et al. (2008) for just the
ASTM and nonparametric Bayes procedure. Preliminary findings suggest those refine-
ments may offer greater stability in the published design values under the addition and
withdrawal of species than the current method while those in this paper.



20 BayesSubset

Acknowledgement. Constance van Eeden reviewed and commented on this manuscript,
as well as suggested a number of references. We are indebted to Conroy Lum from FPIn-
novations for introducing the second author to the topic addressed in this report and for
many helpful discussions during the course of the work. Thanks also to David Dunson
from Duke University for acquainted the second author with the value of hierarchical
mixture model approach used in this report as well as to Alexander Bouchard-Côte for
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Appendix

1 Details of the MCMC procedure

This appendix presents the algorithm used to implement the method in Section 4 and
sample from the the posterior distribution (4.11). Repeat the following MCMC with
seven steps B times to obtain posterior sample of size B.

• Update Sj from a closed form multinomial conditional posterior with probability
P (Sj = h|{Vh}M−1h=1 , λ

∗
h, β
∗
h) ∝ Vh

∏
l<h(1−Vl)Weibull(tj ;β

∗
h, λ
∗
h) for j = 1, · · · ,m

• Update (Vh|{Sk}mk=1, v) ∼ Beta(Vh; 1 +
∑m
j=1 I(Sj = h), v +

∑m
j=1 I(Sj > h)) for

h = 1, · · · ,M − 1.

• Update (λ∗h|γ, β∗h, {tj}j;Sj=h) via Metropolis Hasting (MH) algorithm with a nor-
mal proposal distribution for h = 1, · · · ,M .

• Update (β∗h|φ, λ∗h, {tj}j;Sj=h) via MH algorithm with a normal proposal distribu-
tion for h = 1, · · · ,M .

• Update (φ|{β∗h}Mh=1) ∼ Pareto(φ; aφ +M,max{lφ, β∗1 , · · · , β∗M}).

• Update (γ|{λ∗h}Mh=1) ∼ Pareto(φ; aγ +M,max{lγ , λ∗1, · · · , λ∗M}).

• Update (v|{Vh}M−1h=1 ) via MH algorithm with a normal proposal distribution.

2 More details of the simulation studies

Figure 4 shows the boxplots of the estimates of the posterior probabilities that the
species k to be the weakest from the Bayesian procedures (k = 1, · · · , 7). The boxplots
of the weakest species and the second weakest species are highly variable in all the
simulation settings. However, as the sample size increases to the current industrial
standard of 360, the boxplots of the true weakest species shift upward and the boxplots of
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the specie with the second weakest species shift downward; the methods more confidently
select the target specie as the one with the smallest 5th quantiles. When sample size is
large (360), the weakest species’ boxplot from semiparametric method lie slightly higher
than the others in all settings.

For the semiparametric method, Figure 5 shows boxplots of the estimates of fifth quan-
tiles over 100 simulations. For Weibull mixture species (Species 5 and 6 in Setting
1), the quantiles are slightly under estimated by semiparametric method. It shows
that when the true distributions are log-normal (Species 2, 4, and 7 in Setting 1), the
estimates are negatively biased; the interquartile range does not cover the true 5th quan-
tiles. For single Weibull species, the semiparametric method returns unbiased estiamtes.
However, the selected subsets captures the weakest species more often/as often as the
nonparametric model in Setting 1.
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]

(a) Setting 1

(b) Setting 2

(c) Setting 3

Figure 4: The extimated posterior probabilities that spcecie k has the smallest 5th
quantile.
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(a) Setting 1

(b) Setting 2

(c) Setting 3

Figure 5: The estimated η0.05 from the semi-parametric model. The horizontal lines
represent the true η0.05.


