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Abstract

In this paper we answer & question conoersed with the estimation of #, when Y, ~"
N0, o3) 0 = 1,2, are checrved and #, < 0. In this case &; contalas (nformation about
8; and we show how the redevance wesghts in the socalled selevasce weighted likelibood
might be selected so that V3 may be wsed together with ¥; for effective likelibood: baseed
inference about #,. Our smewer o this question uses (3o Akaike entropy saxisizalion
criterion to find the relevance weights empincally, Although the problom of estumating &,
under these conditions has a loag history, our estimator appears to be new, Unlike the MLE
it s comtisously differentiable. Unlike the Primas estimator for this peoldess, but like the
MLE. it has & simple Soem. The paper deseribes the derivation of our estimator, presests
somne of itx propertios and compass it with some cbvious competitors. Finally, a aumber
of open problems are presested.

Key words: Likelibood; maxiznum likelihood; weighted likelibood; estimation; admis.
sibility; minimaxity; normal means; restricted parameter spaces; relevance weighting.

AMS 1991 classificatsons: 62F30; G2F10, 62C15; 62C20,
STMA 1998 classifications. 04:170; 04:010; 04020, 040085

' Supportad by & grast fom the Natural Scieaces asd Fagiseering Ressarch Cosnid of Canada



1 Introduction

This article addresses broadly the peoblems of ssccessfully trading off béas foc peecision
in satistical estimation. That problemn arises when an investigator has data from a
poprulation other than that of hus or ber mferential interest. Do thewe ailiany data
coatain mformation of value for estimating parameters in the population of interest?
if %5, how can the bias in the auxiliary sample be traded off for precision i the
required parameter estinatoes.

The specific problem we consider s that of estimating the mean 9, of a univasiate
pormal population from whichk an olservation gy, has bevs drawn. We suppose an
independent observation p, bas also been drawn from asother normal population
with mean & when 8, < 8, Now the genecal questions we ask above can be stated
more specifically by asking how py can be used in conjunctica with 5, to create
an estimator that impeoves on the estimator y; based only on data froen the first
popalation.

Heuristics suggest an allirmative asswer. The event 3 < 3 combined with the
knowledge that &, < 6, suggests 0, = #,. That seggests & better estimator of &,
would be obtained by taking the BLUE that would be wsed if the population means
were equal.

We describe a new method for operationalizing these heuristics ia Section 2. How-
ever, before introducing that method, we should note that & pumber of asthors have
proposed methods different from the one we obtain with our new method for exploit-
ing g In the estimation of #;. Unbike the classical unbissed MLE w2 g, (bereaftor
demoted by ULE) the alternative estimatoes obtained by those authoes are biased like
ours. However, these estimators cas bave substastially ssaaller mean-squared.errors
(MSE's) than their classcal counterpart over portions of the parameter space deesned
to be of particular importance. At the sazoe time, thoir MSE's are eithor ssnaller or
mot appreciably lasger over the rest of the parazseter space than the MSE of the ULE.
Thus an effective blas-variance trade-off s indeed possible: information in the sample

froen the second population can help in estimating the mean of the Bes

In Section 3 we describe estisnatos developed by other authors to make that tradeoff.
However before doing 8o, we develop in Section 2 sew estisnatons using an extessoon
of Fisher's classical likelibood that Hu (1994) introduces and calls the “Relevance
Weghted Likelihood REWL.® 1t generalizes the local likelihood defined in the comtext
of poa-parametric regression by Tibshirani and Hastie (1957) that was extendad as a
loca! likelihood by Stasiswalis (1989) and as a quas-local-likelihood by Fan, Heckinaa
and Waad (1995).



ln contrast to the local likelihood. the REWL man be a global hikelihood and in one
of the applications developed by Ha and Zidek (1997, it is shown how the eelebeated
Jazses-Sticia ostimator can be found a8 4 maximum (relevance weighted ) Bhoslihood
estimator whea the relevance weights are estimated from the data.

The relevance weights allow bias to be traded for peecision in the likelibood setting,
as biss & traded for variance in the noo-parametric regression setting. The need for
such a theocy has becomne Increasingly lmportant as 1he scale of modern experiznental
schence has grown im its space-time scales thanks to demand (eg. environmental
science) combined with feasibility (eg. through information techoology). Oa these
scales, the rephicated experiment seems completely unsealistic as an experimental
paradigm, leading to the need for a theory that embraces baas without sacrificing the
goals of efficiency and precision enshrined  Fisber's foundational works.

The thooey described ia Section 2 enables the bias-precision trade-off to be made
without relyisg on the Bayesian approach (see Berger 1985). The latter permits
the bias-variance tradeoff to be made in a conceptually straightforward manser.
Reliance on empirscal Bayes methods sofltess the demands for realistic prior modeling

in complex problems. Efroa (1096) illustrates the empirical Bayes appeoach in such
problems and uses the term "redevasce” in a manner simalar to that of Hu (1994).

Our theory is proposed as a simpler altermative to the empirical Bayesian approach
for use n complex peoblems. The REWL offers such an appeoach and we will try to
demonstrate that in this artiche, At the same time we gain & theory that formally
Binks & diverse collection of statistical domains such ax weighted least squares, pon-
parametric regression, meta-analysis and shrinkage estimation. Starting with the
Bkelihood in these domaiss yields sew methods and suggests new prodlems as we will
attempt to show. At the same time, the REWL comes with an (as yet incomplete)
underlylng general theory lacluding exteassons of Wald's theory for the maximam
likelihood estimator (Hu 1997),

In Section 3 we address study the blasvariance trade-offl made by a number of biased
estimatoes peoposed as solutions to the problem central 10 thes paper. [ncheded & the
estimator we propose in Section 2. Numerical sssessinoads of their peopertios point
to a number of comjectures and questions listed in that wxtion for deeper analysis in
Section 4.

In Sectiom 4 we prove a number of the conjectures in Section 3 and at the same tisoe
answer & number of the questions posed there. However many of the conpectures
reinain usproven and questions usasswered.

These are listed in the concluding Section 5. There as well we summanze the results

3



of our imquiry and the possible value of the REWL-based methodology

2 Relevance Weighted Likelihood Estimation

In this soction we describe for completesess the redevanor weighted likelibood in the
general case and then apply it to the specific problems of interest in this paper. As
sume {¥}} are independently distributed rasdom variables or vectors, each having as
associsted population dstssbution with probability density and camulative distribu-
tiom (PDF aad CDF, respectively)] f, aad F,. Let Y = {¥],....Y,) be the vector or
matrix of these measurable attributes.

JFrom esch population ¢, n, > 0 lems are eandomly and independently samgpled,
yielding Y, = (Ya.....Ya ). ¥y representing the ¥, measured on the j-th item sam.
pled from the ith population y = 1, ... .n, 1 = 1,..., n (the null vector when
ny = 0). Assume the Y, j = L ... 5 are independent as well as identically dis
tributed, each having its associated populatioa distribetioa. Denote the realization
oY, byy,t=1,....n

Im this paper inferential interest concerns attributes of popalation 1. However in
general He and Zidek (1997) cosseder other possitulitios soch as simultaseous inference
about parameters of all the populations.

Starting from the Akalke eatropy maximization princigde (1973, 1977,1978, 1082, 1053,
1985), Hu and Zidek (1997) degive the REWL ia the soa-parametric and paramet-
tic cavs. To be precie they seppose (when the V' are discrete) that a peadictive
distribution say g of V¥; must be chosen to maximise [ g gl(y)dFi(y) where F, de-
maxissication must be done swhject to knowledge that F, resembles each of the other
Fy. 1 # 1, that is subject o [ kg gly)dF,(y) > ¢;, 1 # 1 for specified {¢; J # 1}.
A Lagrangian srgument then implies that g maximizes a linear combinatioa the
[logaly)dF,(y), j = 1. ..n. However since the {F;] are snknown they ace os-
timated by {F)) their empirical distribution functions. When only one observation
¥y s availabde from populstion j = 1,... .0, the emparseal distribution for that pop-
wlation becomes a potnt mass at that oleeryation,

In any event, with these beuristics the optumum g maximizes the nou-parametric
relevasce likelibood Fanction that viewed &8 & fanction of g

9= THTT ™™ (9) 21)

pmiimt
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Similar heuristios apply 1o the case of interest in this paper, re. the paramelin case,
where for the likelihood we have mstead

o Th e/ -
@ [TIEA ™o 80 (22)
mhilat
where & « (8,,....9,). In both cases A; > 0 and take A /n; « 0 when n; = 0 for all

|and )

The relevance weights { A, } enable the investigator 1o trade off biss for peecision in
estimatiag the Bkelihood for popalation | using the data from the remaining popu-
latioms. [deally the choice of these weights (equivalently the specification of the {«)
above) will be context dependent. However Hu and Zidek (1997) suggest & geaeral
method for their selection based on a suggestion of Stigler {1990). That method again
based on the use of the maximization of estropy appeoach with follow-up estimation
is the cae used ia this paper. Hather thas describe i in general we demonstrate i
below in specific proddems.

The MREWLE for 8, is found by maximizing (2.2). Hu (1007) shows that the theory
of Wald for the classical MLE extends to the MREWLE under a suitable adaptation

of Wald's assumgpiions
We apply the non-parametric REWL to the case of two normal populations ¥, ~
N{8,, ) for which the {o7) are known 1 « 1,2 Now ny = ny = 1 for the two
populations involved aad foe simplicity we denote the relevance weights by A; =
A, { = 1,2 for those populations The MREWLE for 6, or WLE for short & easily
showsn to be

Swiep(Yy,Y3) = Y, 4 Wa
where W = }; - Y, and a € [0, 1] obeains from the redovance weights and seeds 10 be
specified. The relevance weight ratio defines a through

’\3 O
l?'ﬁu-a)' (23)

The maximization of entropy criterion above may be applied to find relevance weights.
That eriterion Jeads to the misimization of the MSE In this case of accmal poprlation
distributions, Hence the optimal choice of o if & = & — 8, wore known woald be

o]

feof 4+ 8%

Dogtomal =

Homewer, since & is unknown i sest be estimated. 1he appropelate estimatoe foe

5



the case cousidered m Section 3 where & > 0 would be

: o
a(W) ol voi+CWI
where W, = max{0, W} and C, the “attenuation” coastant must be solectod by the
investigator,
This approach yields a smooth estimator since a is “Sttnd” to the data only after the
MSE has been comnputed. [a particular it is a differentiable fusction of W in contrast
1o the truscated MLE of 9, which is not. Now the performance of the proposed

estimator neods to be exploced and we do this both theoretically and numerically i
the next section.

However, Hu and Zidek {1007) emaphasize that the specification of the relevance
weights should best be dome in the comtext of the specific inferential context. This
suggestion may be followed In the restricted means peoblemn above since a variety of
estimators that expdott Y; o the estimation of &, have already been peoposed. More-
over each may be written in the foem above for the MREWLE with an estissated o,
Thus each entalls an implicit choice of the relvance weight ratio that can be exploitad
through the equation above relating that ratio o a. In this paper wo will explore
these various chosces and compare the associated estimators in the pext section,

(24

3 The Bias-Variance Trade-off.

The bias-variance trade-off goes back as Jeast as far as Stean's disoovery that it could
be made in the stmultaneous estimation of independent nocmal population means.
That codebeated discovery stissslated the study of biased estimation. The feasibility
of the trade-off was demonstrated in & wide variety of contexts. Une such coatext was
that of the present paper wherein a number of biased estimators of ordered normal

means were proposed.

We now examine that tradeoff asd the way it has boen made by those estimatoes.
Specifically we compare Sve estimators of &, based on (Y7, ¥3). They are: & 2(Y, Y3)
the WLE as defined and discussed in Section 2, dyra(Y3, Y3) the MLE, ie the lirmt
co-ordinate of the MLE foe (9,.8;) under the restrictioa # < 8 &Y, 12) = 1)
the unrestrictnd MLE of 9; based o0 ¥; Sy (15, ¥3) the minimsam of V) aad Yi; and
8p(Y1.Y3) the so-called Pitman estimator, Le. the first coondinate of the generaliznd
Bayes estimator of (8,84, that estimatar beisg coeaputed from the unifors prior on



{(8,.9;) 10, € 8;}. These estimators are given explicitly below;
o]

o] +0oi+CW}'

o aly; +alY. " | SE—
Sapwl(Yy,Y3) = min (YI-JO'?*,;’ ) =Y+ l+.'“‘ } (3.2)

withr = o3fe] aad W. = min(0,W);

bweplY . Y3l = V) ¢ Wa(W)  where (W) = (51)

AT R RS IF (33)

Surad ¥, V) = min(Y, 13) = ¥y + W (3.4)
(753)

of _\Jel+ol as)

”W'”’“'Jd+d0( = )~
Joi +3f

The “sttenuation constant™ C in the expression above for WLE can be adjusted to
reduce depeadence on ;. Unless otherwise noted, we will take C = 1 in the enswing
discassion.

The Pitman estimator was progosed and studied by Coben and Sackrowitz (1970).
Note, however, that our formala for §5(Y;.Y3) is not the same as the one given by
Cohen and Sackrowste. They claim, erroneously, that cae can suppose, without koes
of goenerality, that oae of the two varianoes equals 1, making their formula walid for
that special case only.

Remark 3.1 Note the differences in the way the adore extimators depend on o] and
o]. The estimators ¥, end min(Y},Y3) are independent of these varignces, the rel-
evance weighted and the Pitman estimator depend on both of them, whale the MLE
depends om o] and 7 only through thewr ratio,

We begin by examising in Figure | the MSE's of the sstimators plotted ss functions
AL w0

For definiteness we have chosen oy = 0y = | (and € = 1 in the WLE). We coosisder
cases below where the popslation vasianoes are soequal For that resson we will
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Figure 1: Graphs of the Mean Squared Erroes: Selected Estimators.

general divide all the MSE's by o] to enable us to compare MSE plots. Therefore
in all sech plota the coe for ULE has comstant value | for all & whatever be oy, As
the classical (uniform misimum vasiance unbiased ) estimator of §;, the ULE peovides
a natural beachmark for assessing the performance of the alternatives considered In
1his paper.

The MSE of another classical estimator, the MLE also appears in Figure 1. It appears
to be uniformly smmaller than that of the ULE but the two are in close agreement
for large & That agreement encourages optimésm about the guality of the ULE
since generally the MLE performs well, We expeess our optimism im the following
conjecture.

Conjecture 1: ULE and MLE are minimax estimators.

At the same time the MLE appears to dominate the ULE loading us 10 a second
conjecture.

Conjecture 2: The ULFE is inadmisstble and domizsated by the MLE.
Furthermore we are Jed to a question:

Question 1: Is the MLE admissibie?
Figure 1 shows the MSE for the WLE (as well 2 the MLE) to he much smaller thas

s
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Figure 2. Graphs of Helevance Weight Ratios for Population 2 Vessas | for Selected
Estimators.

that of the ULE for small J-values. Maoreower its MSE resesobiles the MLEs for sach
values,

How do the MLE asd the WLE acdieve their soeming superiocity over the ULE?
The immediate answer is that they exploit the information in Y3 aad they do so in &
similar way Figure 2 confirms this. That figure depicts for all estimatoes other than
the MIN, the implied or explicit relevance weight ratics as fusctions of W w ¥, < Y.
The ratios for the MLE and WLE are broadly similas. However the WLE - ratio
decreases to zero more slowly than that of the MLE. Thus it makes moce liberal use
of that inforenation than does MLE. (Tt does 5o st the cost of greater baas )

As noted above we can reduce WLE's dependence on 13 by increasing the value of
the attenuation coastast. [n Figure 3 we soe the relevance weight ratio for the WLE
approacking that of the MLE when C is chosen o be 290 Moreover, Figure | shoms
their associated MSE’s to be very similsr when the MLE is highly atteanated. In
particular that of the WLE remains substantislly smalles thas that of the ULE for

small & valoes,

To gain s better undorstanding of bow that supesios performance is schivved by the
WLE and the MLE relative to the other two estimators we turn to Figure 5 and see
the bias fanctions of the various estimators, Note the comparatively unall absolute
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Figure 4: Graphs of the Mean Squared Errors for Selected Estimators Whea the WLE
is Highly Attenuated, Lo, C = 20,



blases for both estimators when A is chose o 2eto compazed to those of PIT and MIN.
So we see that both WLE and MLE gain thew superionty over ULE by aggressively
explotting the redevant information in Y5 to reduce their variances while controlling
their hinses foe small A

N N » 9 "
e

Figure 5 Graphs of Bias Fuactions for selected Estimators.

At the same time, Figure | shows that as A grows larger the MSE for the WLE
increases and evestually exconds that of the ULE. Basod on the earlier comjectures
we make the next conjecture.

Conjecture 3: The WLE is not & minimax estimator.
We bave the same question for the WLE ax we had abowe for the MLE:
Question 2: Is the WLE admissible?

Unlike the MLE, the WLE is (twice) differentiable. The well-known necmssary con-
dition for admissibility (see Brown (19806, Theorem 4.23)) that estimators mast be
roudar functions of the data vocourages the belief that the answer to Question 2

might be “Yes".

The remaining two estumators under consideration in this paper, PIT asd MIN also
soemn o secevssfully trade bins for varmasce. In fact Figure | suggests the next com
joctures,



Conjecture 4; PIT and MIN domisate ULE

Conjecture 5: Both PIT and MIN are misimax when the population variances are
identical

That fgure shows that peithes estimator perfogms eapecially well when S i close to
tero. (They effect the biasvariance tradeoff in rather sabtle ways ) Nevertheless
they could be admissible saggesting the next question.

Question 3: Are MIN and PIT admissibie when the population variances are equal?

Oteerve i Figure 1 that the ULE-MSE usniformly excoeds that of the Pitman esti-
mator. Moreover the comparative advaatage of the Pitman estimator obtains not at
A = 0 bt rather for & around 2. To isterpret this observation note that the Pitsas
prior does pot put high weight on 8, « &, Ia fact its usiform prior ca the range
of (9;,08;) forces PIT to optimize by requiriag a megative relevance weight ratlo (see
Flgure 2). It “pusbes awny” the information in Y7 when the WLE and MLE embrace
it (when & = 0) since under the peior this possibility would be remote. [nstead PIT
saves the tradeoff for values of more realistic A's under the assumed prior. Never-
theless like the other alternatives to the ULE coasidered here other thas WLE, PIT
proves to be negatively biased: it tends to underestimate 8, (see Figure 5).

MIN socceeds in making the blss-vasiance tzadeolf (see Figure 1) but the mechanism
by which it does this peoves elusive. [ts weight ratio for the MIN cassot even be
plotted in Figure 2, being infinite when W < 0 since in that case the estimatos
puts all the weight on V; aad none ca Y;. On the other hand when W > 0 that
ratio becoemes pero. How does MIN so sucoessfully exploit Y57 The answer seems
to be that since & > 0, Y5 < ¥, suggests Y] i an overestimate of 6, We can then
profitably shrink it down to ¥;. To test this explanation we consider its implication
when @, < 0, when Y3 is & measgrement of higher quality than V) (even if binsed as an
estimator of #;). In this case Y; would indicate quite reliably whes V) overestissates
...

Figure 6 valsdates this beuristic reasoning. The relative gain in MIN's performance
over that of ULE excends its gain whes the population variances are unequal.

On the other band the explanation also suggests that when V5 is of low quality it will
not help svech to sbow when ¥ overestimates 8. Again the implicatioa is valsdated,
this time by Figure 7. MIN now performs pooely against the other estimatoes as
measured by its MSE.

These nusserical assessments thes tend to support our explanation of how MIN works
and when it would perform well. [t also poénts 1o the deswralulity of making MIN
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Figure 6: Graphs of Mean Squared Error Functions for Selocted Estimators When
FPopulation | (Varsazce = 3) s Overdsspersed Redative to 2 (Varlance = 1),

Figure 7: Graphs of Mean Squared Error Functions for Selocted Estimators When
Population 2 (Variance = 3) is Overdispersed Relative to 1 (Variance = 1),
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depend on the population variances This leads to our final questics:

Question 4: Can a minkmax estimator resembling MIN be found for estimating #,
when ; > o7

4 Ordered Normal Means

In this section we answer some of the questions raised by the analysis of the last
sction. Those answers are stated as thearems whose peools can be fousd is the
Appendix. We begin by stating in the next theorem the mean-sgsased-errors of the
estimators constdered in the last section. There A « & ~ 8, o® = of + of and

8 = (6,,8,).
Theorem 4.1 For the MSEs we have :

!, The MSE of dwig s given by
Eo (dweelY) Vo) = &) =

71+ o EWEW)(A = W) + SN = (£1)

W2 (21{W > 0) 4 (1 4+ 7)"") = 2(e] + 03)
(o] + of + W3)* '

cf+¢r’affo

2 The MSE of Syrg » given by
LoldsenlY. Ys) = &) =

of 4 ﬁT‘?T: (28EWHW <0) = EWIW <0)) = (42)

A+ {@-o(1-0(3)) - 200 (3)}:
3. The MSE of dypg i given by
Exlbues(¥s, 15) = 0 = o (43)



§ The MSE of by 13 qrven by
EolbanwVy, Ya) = 0,) =

ol + “L,g.m(w < 0)(24 - W(1 - 1)) = (4.4)

Ao (- 2) (1-0(3) -2 2)

5. The MSE of the Putman estimalor i given by

ot ¥ ul
Llop(Yi.Ys) - 8) =0 - ~L A&, . (4.3)

*(3)

In the next theorem some of the MSEs are compared. Like all comparisons between
MSEs in this paper, they are made on the restricted parameter space 8 « (@ |
6, < &) Thus an estimator § i insdmissible for estimating 6, if there exists an
estimator 4° dominating it oo © and § s misamax if it minimizes, among estimatons
8%, supy o R(5°,9), where R(5°,0) is the MSE of 6" at the parameter point 6,

Theorem 4.2 Eoch of the eatimators Sy p ond §p dommales 8ypp. The estamator
Ssesn domenates dyyp when v < L. The MSE's of dyew [for r < 1) and Syp 5 are
atrictly seller then o] for all & 2 0 with their fwits, a1 & <+ o, apual to o]. For
Ssay with v = |, the MSE equals o} for A = 0. For §p equality holds for A =0 as
well as for & < x,

The peevious theorem proves the conjectures 2 and 4 {for MIN caly when = < 1)
The next theorem shows that the WLE, the MLE as well as MIN are inadmissible
and] & s of dominators of the MLE is given  (Sech dominators can be found in
Shao and Strawderman {(1996)). Thes the next result answers Question 1. 2 and 3,
the latter for MIN.

Theorem 4.3 The estimators Swin, Sure and Sy sre medmizable  Further,
Sarrp 0 domenated by

kgt

where & is o domunator of the merimum hikelshood extimator of & non-negative normal
mean based on & smugle observation
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[n the following theorem we state a result of Coben and Sackrowitz (1970) convetning
the admissbality and minimaxity of PIT. In the Appendix we give a simpler proof of
the admissibility. A smpler peool of the sunimaxity of PIT can be found s Kumas
and Sharma (1955, Theorem 2.3). That theorem thus proves Comjectare 4 for PIT
and it answers Question 3 afrmatively foc that estimator.

Theorem 4.4 The Pimen extimater & edwinsdle and mamimaz. The mimamaz selue
Jor our prodlems equals o7

The followiag theorem contains more minimaxity results and proves Coajectare 1 for
the MLE as well as Conjocture 4 for the MIN when r < 1.

Theorem 4.5 The estimators Sy p and Sppp are minsmer and 30 & Sy when
r < 1. Further, 41 x tx not minimaz afen # > 1,

5 Discussion

I this azticle we have tried to show how the intuitively natural ides of the relevance
weighted likelihood can be used in parametric estimation to trade bias for precision
and therety reduce the MSE la fortustous carcumstances. The resulting estimators
use all the relevant information and not just the direct sample infoemation from the
population of interest. By comparing those estizsatoes with others that were obtained
cariier for the same purpose we find the weighted likelihood to be promising.

Although we demoastrate the valoe of our method in a specific pormal meass estima-
tion context the method itself has wide applicability. Methods of the type described
here seem likely to assume increasagly greater importance as the space-time scales of
modern experiznents coatinue to expand thanks to need asd technological feastbility.
Indend the clasical ropeated sampling paradigm on which Fisher bases his theory of
the MLE will become increasingly untenable as that scale grows. Reliance on biased
but relevanmt sample data will become increasingly imperative,

To conclade we sammarize the results of our investigation in Section 4 of the conjec-
tures and questions suggestad by the numencal wock in Section 3

Question™s 1 and 2. We answer segatively these questivas ca the admissibality of
the MLE and WLE respectively (in Theorem 4.3).

16



Question 3. Theorom 4.3 Dives & segative answer oa the admissibility of MIN when
@ = o3 However, Theorem 4.4 answers positively the same question for PIT.

Question 4. This question on the form of the MIN when the population vanasces
are usequal remaing opes.

Conjecture 1. Thearem 4.5 proves the claim in this conjecture that the ULE and

MLE are mimimax.

Conjecture 2. Theorem 4 2 proves the claim here that the ULE s inadmissible
and dominated by the MLE

Conjecture 3. The trath of the claim in the conjecture has not been established:
wo do not sow whetber o not the WLE & minimax in spite of the wry strong
numerical evidence agalast it.

Conjecture 4. Theorem 4.2 proves both parts of this conjecture at least that the
MIN domisates the ULE whes r < 1 and the PIT in any case.

Conjecture 5, Theorem 4.5 proves the statement in this conjecture for the MIN.
We show it 1o be misimax whes o5 < 0. At the sasse tisne, Theotem 4.4 shows

that PIT is minamax whatever be the o's.
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A Appendix

This Appendix coatains the proofs of the results peesented in Sections 4. In these
proofs the following four results (stated ia the form of lemmas and a coeollary) are
used.

Lemma A.1 Feor ¢ N(v,¥) rendom verseble Z and & fanction g whick u almost
everywhere [with respect to Lebesgue measure) differentiable

£(Z - v)g(Z) = Y'E4(2). (A1)
The Sollowing corollary gives experssions for the mean-squared-error of the estimator

Yi+@olW) of 8, These expressions Sollow immediately from Lemma Al and the fact
that the distribution of V), ccaditional on W, is given by

v{ao 37 ) n (O )

Corollary A.1 The meun spuared-error of the eatissalor Y, + (W) of ) s given
ty

Eo(Yy =0 + W) = of +26(Y; - 8)2(W) 1 &7 (W),
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EsYy = 0)e(W) = E LW &Y -6) | W)}

' {A3)
- — oA« Wip(W),
Farther, f pIW) o differentscble almost everyshere,
LYy - )W) = =o® £7(W). (A4)

In our next lemma, 3 rotation technigee wesd by Blumenthal and Cohen (1968a) (scc
also Coben and Sackrowitz (1970)) & applied.

Lemma A2 Let
_rY;-O-Y; _-}’|+Yg
vl l4r X I4r

AS
Lk (A5)

L+r

m=56EX, = f?:-:, 1 =5HX; =
Then Y, +({W) 1 madmusssble for estimating §, based on (Y, ¥3) under the condition
0; S‘; llMx,) = x;-' l.?((l 47).‘:) EL] Mlﬁf ealimaaling 1, based on .\’,
under the condition py > 0, Further, f §5(X;) domanates §;(X3) for estimating yiy
under the condition py > 0 based om X, then X, ~ &(X;) dominates Y, + (W) for
estimating 8, under the condition 6; < 6, based on (Y], 13).

Preof. First note that, under 8, < 6;, u, is unrestrcted while oy > 0. Further
14 P(W) = Xy = (X = (14 7)X3)) = X, ~ &(X2).

The inadmisibility of §;(.X;) for estimatiog ; > 0 based on X implies that there
exists an estimator £3(X;) which dominates £(X;) oo {4y | sz 2 0}, But this s
easily shown to imply that

rhi+ 1) (Y;-Yg)

atitc i A Pt e

dominates

Yy + Y -1y :
Xy = & Xs) = D5 () <X 4 el
as an estimator of #, under the conditica $, <4, O
The following result is wond several times in our proofs.
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Lemma A3
EWIW <0) = A (n 2 ( ‘5—)) -09 (%) ;

EWHW <0) = (A’+a')(l-0(%))-uo(-§).

Proaf. We have
g 4 _ e~
EMWIW <0) = m];u S e

“Ale
= Wlﬁl-o (A+wle”':4v

« a(1-2(3)) -0 (3).

Further,
EWHIW <0) = 7’; / :“'(A +yofeViy=
°'°('§)"Z“(’%).,
-*(-3¢(-3)-*(-3)) =
e (1-9(2) -aos(3)
o

We are now ready to give the proos of the results in Section 4.
PROOF OF THE FORMULA FOR THE PITMAN ESTIMATOR §p (we (353))
The Pitman estimator §p(Y}, ¥3) is given by

YY) =Y+ 0
Is
whesre

ooyl =

[ .o Yiex (———,—"‘ ;‘Y‘Y)up(-ﬁ"f;,—;ﬁ’-) 45, 4%,

N



= 2r0y03ly = _&-ny e -vy o
10,0303 /Lsh a2 )W( T) 10y

Note that [; = P8, < 8;) with 8, and 8; independest asd 8, ~ N(Y, o), 6; ~

N(Ys, o). So
1,-p( —h oo N g ) -o(%). (A6)
where 02 = of + 0.
Further, J; can be repeesented through the expression
ooyl =

AL () [ (517
_,,/-up( (% - Y3)? Lﬂ-)"'

- w/_:ap(-%x’ - —M—(”’ s w)’) ds,

e (20 4 W) o? Wy, e
3’#%— = ”)

quira

o4 (G2

()2 -2o(8)

el o e \o
The result follows immedistely from the abow expemsioss foe J; and [,
PROOF OF THEOREM 4.1

1. The two Sormulas for the MSE of i & €an be obtained by using Cogollary A1
with {A.3) and (A.4) respectively for £y(Y, - 6, )po(W) = EWalW);
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2. The fest expression for the MSE of 8,04 8 obtained from Corollary Al using
{A.3) Sor Eg(Y] = 0 )W) = {1+ 7)7"El Y = 8,)W . The second expression is
oltaised frous Lemans A X

3. The first expression for the MSE of 8y, 5 follows from Corollasy A.1 usiag (A.3)
for Sy(Y; = 8 0(W) « &l Y = 0,)W.. The second expression & obtaioed from
Lemmma A3;

4. Fur the MSE of the Pltman estimator, mote that
ol W)
A== o s
Y, - §) (W) = -o—"; &l - 'l).(w.)
where W" = W/a. Further, using Stein's identity (see Lemma A1) and the fact

(@)

“w) P )
eutri - e = 6 e i -0 §LE= D 1} =

d O(Y' -
“[“{m ;- )) “’}] "

o} ” éﬂ" ) «Y; -
dafor-n =R (5H0) )

wheee, for i = 1.2, ¥ = ¥, /0. So,
."33-0‘.‘ -

glves

265(Yi = B)(W) + £ (W) =

a9t W) | «w") :
; [ {" 2+ (579) }] i
)
"(om"))



o oWy’ L
';%{"(«—m) g~ WT}

s W) W—a\ 6] A, W)
W W) = “@==) o) T T W)

and apply the Stein sdentity to the right band side. Thas gives, using (A S),
w nye ’
PR it SPYTEL Li BPS (ﬁﬂ) + B, 8

HW) (W) HKW) o THW)
o o(W”) W)Y A e(w)
i =6 (fm) +Sedm @

Then using (A.9) and (A.10) gives

S(W")
oy

The abirve proof is & geseralization of Al-Saleh’s (1997) proof for the case wheee
oy = 3. Another, similar, proof for the case where r = | can be obtained
fron Kumar and Sharma (1993). They use a weighted (by the recipeocals of
the known variances) squared-error Joss function for estimating (6, 8;) when
6, < 8 (In fact, they consider the more general peoblem of estimatiag a k-
dimensional parameter under a complete ocder restriction), From their formula
for the MSE of their Putman estimator, ours (and thus Al-Saleh's) formals for
the MSE of 8, can be obtalned by using (A.6) and (A.7).

4
MSE = o? - g,la £

PROOF OF THEOREM 42

That Sy a dominatex & » follows from a result of Lee {(1981). He shows that for
independent ¥, ~ N6, 1), 1= 1,... .k with 6, < .., <&, the i-th component of
the order-restricted MLE dominates ¥, ¢ = 1, .., k. For our particular case, where
k = 2, the result can more casily be proved by using the second line of (4.2) and the
following inequalities

ALWIW <0) S0forall A >0 (A1)

EWIW <) >0fralld 20 (A.12)
LJFrom (4.5) it is immediately clear that §p dominates 4y g.



To soe that 4y v doeninates & p when 7 < 1, note that (see the second line of (4.4))

ALWIW <0) 5 Ofocalld 20 (A.13)
M=) EWIW <) = OforallA > 0whenr =1 (A.14)
(M=) EWUW <0) > OforallA > O0when v < 1. (A.15)

:From the second lise of (4.4) and the Inequalities (A.13) and (A.15) it follows that
the &EE“‘n,y“h‘f( 1 'auuittlynmllnthuafl’walldzo For dyer.
the second line of (4.2) and the inequalities (A.11) and (A.12) imply that its MSE is
strictly ssaaller than o] for all & 2 0. As for the limits, a8 3 —+ o0, of the MSEs of
e aod Sy, use the last Bne of (4.4) and of {4.2) and note that

J2(1-9(3)) =0

A
Jim 86 () =0
That, for v = 1, the MSE of dyrx oquals of for A « 0 follows immediately from the
last line of (4.4).

Fisally (using (4.5)), the MSE of §p clearly oquals of when A = 0. That its MSE
converges to of when A — o0 can be seen from (4.5) by noting that

& 0(-‘-’-' 30!209!
* - . N
’(7) "('“:)

where Z ~ N(0,1). The result then follows from the fact that, for each fixed .

Adlz + Afo) ¥z + AJo) Is bounded In 2 for & > 0 and comverges to zero as
A - .

PROOF OF THEOREM 43
That dw oy s inadmissible cas be shown by wsing Lemma A 2 with (see (3.1)) o(W) =
WalWw). Then

8(Xz) = Xy = 6((1 + 7)) = Xz = Xy o? (0 + (1 + 7 (max(0, X3))*) .
This estimazor does not satisly Brown's (1986, Theorem 4.23) necessary conditions
for admissibility for estimating sy > 0 based on X5,

For the peoof of the inadmesability of Syss again use Lemema A 2, this time with
WiW) = (14 )" W_. Then 8:(X3) = Xy = ({1 + 7)X3) = max(0, X3). This &(.X;)

and
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is the maximum likelihood estimator for estimating g > 0 based om X; which »
well-knows 10 be nadmissible for squared ke Ihe formula for the dominators of
daece Tollows directly from Lesnma A2

For the peoof of the insdmissibality of Sy, v, use Lemesa A2 with §;(X;) = X /(X; >
0) = r Xol(X; < 0). That thas &; 15 inadmmisttle for estimating py > 0 based ca Xy
Sallows from Theoeem 4.23 of Brown (1986) and the fact that 5;1.X;) is not monotone
n X,

PROOF OF THEOREM 4.4

As already noted above, Kumar and Sharma (1953, Theocemn 2.3) give a prood of the
minimaxity of §p. Their proof is very much simpler than the one given by Cohen azd
Sackrowitz (1970). The Kumar-Shasma proof is based on an extension of a result of
Blamenthal asd Coben (19650, Theorem 3.0),

For an alternate and simpler proof of the admissibality of §p, use the trassformation
(AS5) Then (see the proof of Lemma A 2)

§p(Y,V2) = X, - &1X,),
where

51X;) = X3 +0(X;)

where 0%(.X;) is the variance of X;. Further, & = g ~ o3 and
6y <0 &=y € (-,),m 20

So, it is now sufficent to show that §(X) = X, — 8(X;) is admissible for estimating
sy = pg based oo X = (X, X;) when p; > 00 We will show this by wsing Blyth's
(1961) method.

Suppose that thero exists an estimator #(X) which dominates §(X) om 17 « {u |
py € (=20,20), gsy > 0). Then, because the risk function R(4,, ) of every estimator
8,(X) Is contimoons in u for w € 11, there existx an ¢ > 0 and & rectanglo 5 =
(fps, dps) % (pas, pas) © S such that

Ri&p) = R, p) > onS. (A.16)

Now take a sequence of peioes Ay, = = 1, 2,.., for u « 12 where, fox cach n, ¢ and
#y Are lndepondent, u, with the impaoper uniform peior on (=00, 20) and py with

0



density ¢**™ /m on p; > 0. Then {A.16) implses that

.~
-—

l’.(" - f.(“) > l(p..’ - p;.', (t-:&‘l 3 ) - O('!')o (Al?)

where the r's aze Bayes risks with respect to A,

Now let, for 1 = 1,2, 4,,(X,) be the Bayes estimator of 4 based on X, with respect
1o the (marginal) peior of u,. Then, by the price independence of i, and 2 and
the conditional independence of X; and X given p; and g, the Bayes extimator of
gy = pig for the prior A, based o X, is given by

dulX) = 801 (X)) = &0 XG)
wheze (se Katz (1961))

Further (see Katz, (1961))

ral6) = ralba) = rastls) = raatbus) = of 1), (A18)
wheee r, 5 is the Bayes risk of an estimator based on X; with respect to the (marginal)
prior of gy
But (A.17) and (A.18) imply thaz, for sufciently large n,

ralf) - fu!’)
7a{8) = ru(ds)

which contradicts the fact that, for each m, &,(.X) is the Bayes estimator of gy with
pespect to A, hased o X;.

>1

Remark A.l Kotz's minimazity and admisnbulaly proofs are tacorrect for the genemd
case of the ezponential famaly he constders (see van Eeden [1995)), Sut the above
guoted results of hus for the novmel mean are cormeet.

PROOF OF THEOREM 4.5



The minimaxity results follow immediately from Theoresa 4.2 and the fact that, by
Theotezn 4.4, the minlmax value for oer problem is equal to the mean square error
0?0‘&"3- ¥i.o That 4, 18 not minksax when = > 1 can be soen from the second
line of (4.4) by moting that the MSE of S,y is larger than of when & =0,



