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Abstract

In this paper we answer a question concerned with the estimation of (h when Y;; ""ind

N(()i, 17'f), i = 1,2, are observed and ()1 S ()2. In this case ()2 contains information about

(h and we show how the relevance weights in the so-called relevance weighted likelihood

might be selected so that Y2 may be used together with Yl for effective likelihood-based

inference about ()1. Our answer to this question uses the Akaike entropy maximization

criterion to find the relevance weights empirically. Although the problem of estimating ()l

under these conditions has a long history, our estimator appears to be new. Unlike the MLE

it is continously differentiable. Unlike the Pitman estimator for this problem, but like the

MLE, it has a simple form. The paper describes the derivation of our estimator, presents

some of its properties and compares it with some obvious competitors. Finally, a number

of open problems are presented.
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1 Introduction

This article addresses broadly the problem of successfully trading off bias for precision

in statistical estimation. That problem arises when an investigator has data from a

population other than that of his or her inferential interest. Do these auxiliary data

contain information of value for estimating parameters in the population of interest?

If so, how can the bias in the auxiliary sample be traded off for precision in the

required parameter estimators.

The specific problem we consider is that of estimating the mean ()l of a univariate

normal population from which an observation Yl has been drawn. We suppose an

independent observation Y2 has also been drawn from another normal population

with mean ()2 when ()l :::; ()2' Now the general questions we ask above can be stated

more specifically by asking how Y2 can be used in conjunction with Yl to create

an estimator that improves on the estimator Yl based only on data from the first

population.

Heuristics suggest an affirmative answer. The event Y2 < Yl combined with the

knowledge that ()l ~ ()2 suggests ()l ~ ()2. That suggests a better estimator of ()l

would be obtained by taking the BLUE that would be used if the population means

were equal.

We describe a new method for operationalizing these heuristics in Section 2. How-

ever, before introducing that method, we should note that a number of authors have

proposed methods different from the one we obtain with our new method for exploit-

ing Y2 in the estimation of ()l' Unlike the classical unbiased MLE viz Yl (hereafter

denoted by ULE) the alternative estimators obtained by those authors are biased like

ours. However, these estimators can have substantially smaller mean-squared-errors

(MSE's) than their classical counterpart over portions of the parameter space deemed

to be of particular importance. At the same time, their MSE's are either smaller or

not appreciably larger overthe rest of the parameter space than the MSE of the ULE.

Thus an effective bias-variance trade-off is indeed possible; information in the sample

from the second population can help in estimating the mean of the first.

In Section 3 we describe estimators developed by other authors to make that trade-off.

However before doing so, we develop in Section 2 new estimators using an extension

of Fisher's classical likelihood that Hu (1994) introduces and calls the "Relevance

Weighted Likelihood REWL." It generalizes the local likelihood defined in the context

of non-parametric regression by Tibshirani and Hastie (1987) that was extended as a

local likelihood by Staniswalis (1989) and as a quasi-local-likelihood by Fan, Heckman

and Wand (1995).
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In contrast to the local likelihood, the REWL can be a global likelihood and in one

of the applications developed by Hu and Zidek (1997), it is shown how the celebrated

James-Stein estimator can be found as a maximum (relevance weighted) likelihood

estimator when the relevance weights are estimated from the data.

The relevance weights allow bias to be traded for precision in the likelihood setting,

as bias is traded for variance in the non-parametric regression setting. The need for

such a theory has become increasingly important as the scale of modern experimental

science has grown in its space-time scales thanks to demand (eg. environmental

science) combined with feasibility (eg. through information technology). On these

scales, the replicated experiment seems completely unrealistic as an experimental

paradigm, leading to the need for a theory that embraces bias without sacrificing the

goals of efficiency and precision enshrined in Fisher's foundational works.

The theory described in Section 2 enables the bias-precision trade-off to be made

without relying on the Bayesian approach (see Berger 1985). The latter permits

the bias-variance trade-off to be made in a conceptually straightforward manner.

Reliance on empirical Bayes methods softens the demands for realistic prior modeling

in complex problems. Efron (1996) illustrates the empirical Bayes approach in such

problems and uses the term "relevance" in a manner similar to that of Hu (1994).

Our theory is proposed as a simpler alternative to the empirical Bayesian approach

for use in complex problems. The REWL offers such an approach and we will try to

demonstrate that in this article. At the same time we gain a theory that formally

links a diverse collection of statistical domains such as weighted least squares, non-

parametric regression, meta-analysis and shrinkage estimation. Starting with the

likelihood in these domains yields new methods and suggests new problems as we will

attempt to show. At the same time, the REWL comes with an (as yet incomplete)

underlying general theory including extensions of Wald's theory for the maximum

likelihood estimator (Hu 1997).

In Section 3 we address study the bias-variance trade-off made by a number of biased

estimators proposed as solutions to the problem central to this paper. Included is the

estimator we propose in Section 2. Numerical assessments of their properties point

to a number of conjectures and questions listed in that section for deeper analysis in

Section 4.

In Section 4 we prove a number of the conjectures in Section 3 and at the same time

answer a number of the questions posed there. However many of the conjectures

remain unproven and questions unanswered.

These are listed in the concluding Section 5. There as well we summarize the results
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of our inquiry and the possible value of the REWL-based methodology.

2 Relevance Weighted Likelihood Estimation

In this section we describe for completeness the relevance weighted likelihood in the

general case and then apply it to the specific problems of interest in this paper. As-

sume {Yi} are independently distributed random variables or vectors, each having an

associated population distribution with probability density and cumulative distribu-

tion (PDF and CDF, respectively) Ji and Fi· Let Y = (Yi, ... , Yn) be the vector or

matrix of these measurable attributes.

l.From each population i, ti; 2': 0 items are randomly and independently sampled,

yielding Yi = (Yil, ... , YinJ, Yij representing the Yi measured on the j-th item sam-

pled from the i-th population j = 1, ... , tu, i = 1, ... , n (the null vector when

nj = 0). Assume the Yij, j = 1, ... , ti; are independent as well as identically dis-

tributed, each having its associated population distribution. Denote the realization

of Y, by Yi, i = 1, ... ,n.

In this paper inferential interest concerns attributes of population 1. However in

general Hu and Zidek (1997) consider other possibilities such as simultaneous inference

about parameters of all the populations.

Starting from the Akaike entropy maximization principle (1973, 1977,1978, 1982,1983,

1985), Hu and Zidek (1997) derive the REWL in the non-parametric and paramet-

ric cases. To be precise they suppose (when the Y are discrete) that a predictive

distribution say g of Y1 must be chosen to maximize flog g(y )dFl (y) where F, de-

notes the true "conceptual" population distribution for the first population. This

maximization must be done subject to knowledge that F, resembles each of the other

r; j f. 1, that is subject. to flogg(y)dFj(y) > Cj, j f. 1 for specified {Cj j f. I}.
A Lagrangian argument then implies that g maximizes a linear combination the

flogg(y)dFj(y), j = 1, ... ,no However since the {Pj} are unknown they are es-

timated by {Pj} their empirical distribution functions. When only one observation

Yj is available from population j = 1, ... ,n, the empirical distribution for that pop-

ulation becomes a point mass at that observation.

In any event, with these heuristics the optimum g maximizes the non-parametric

relevance likelihood function that viewed as a function of g is

n nj

g -+ IT IT g"ij/nj (Yjl)'
j=ll=l

(2.1)
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Similar heuristics apply to the case of interest in this paper, i. e. the parametric case,

where for the likelihood we have instead

n nj

B -+ IT IT f/'ij/nj (Yjl I Od
j=11=1

(2.2)

where B = (B1' ... ,Bn). In both cases Aij 2 0 and take Aij/nj = 0 when nj = 0 for all
i and j.

The relevance weights {Aij} enable the investigator to trade off bias for precision in

estimating the likelihood for population 1 using the data from the remaining popu-

lations. Ideally the choice of these weights (equivalently the specification of the {Cj}

above) will be context dependent. However Hu and Zidek (1997) suggest a general

method for their selection based on a suggestion of Stigler (1990). That method again

based on the use of the maximization of entropy approach with follow-up estimation

is the one used in this paper. Rather than describe it in general we demonstrate it

below in specific problems.

The MREWLE for Bi is found by maximizing (2.2). Hu (1997) shows that the theory

of Wald for the classical MLE extends to the MREWLE under a suitable adaptation

of Wald's assumptions.

We apply the non-parametric REWL to the case of two normal populations Yi '"
N(Bi' a'f) for which the {an are known i = 1,2. Now n1 = n2 = 1 for the two

populations involved and for simplicity we denote the relevance weights by Ail =
Ai, i = 1, 2 for those populations. The MREWLE for B1 or WLE for short is easily

shown to be

6WLE(Yi, Y2) = Yi + Wer

where W = Y2 - Y1 and er E [0, 1] obtains from the relevance weights and needs to be

specified. The relevance weight ratio defines er through

A2 a~ er
-=2--
Al a1 (1 - er)"

(2.3)

The maximization of entropy criterion above may be applied to find relevance weights.

That criterion leads to the minimization of the MSE in this case of normal population

distributions. Hence the optimal choice of er if ~ = ()2 - e1 were known would be

eroptimal = ar + at + .6.2 .
ar

However, since 6. is unknown it must be estimated. The appropriate estimator for
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the case considered in Section 3 where 6 ~ 0 would be

err

&(W) = -a-i -+-a"? + cwl (2.4)

where W+ = max{O, W} and C, the "attenuation" constant must be selected by the

investigator.

This approach yields a smooth estimator since a is "fitted" to the data only after the

MSE has been computed. In particular it is a differentiable function of W in contrast

to the truncated MLE of 81 which is not. Now the performance of the proposed

estimator needs to be explored and we do this both theoretically and numerically in

the next section.

However, Hu and Zidek (1997) emphasize that the specification of the relevance

weights should best be done in the context of the specific inferential context. This

suggestion may be followed in the restricted means problem above since a variety of

estimators that exploit Y2 in the estimation of e1 have already been proposed. More-

over each may be written in the form above for the MREWLE with an estimated a.

Thus each entails an implicit choice of the relevance weight ratio that can be exploited

through the equation above relating that ratio to a. In this paper we will explore

these various choices and compare the associated estimators in the next section.

3 The Bias-Variance Trade-off.

The bias-variance trade-off goes back at least as far as Stein's discovery that it could

be made in the simultaneous estimation of independent normal population means.

That celebrated discovery stimulated the study of biased estimation. The feasibility

of the trade-off was demonstrated in a wide variety of contexts. One such context was

that of the present paper wherein a number of biased estimators of ordered normal

means were proposed.

We now examine that trade-off and the way it has been made by those estimators.

Specifically we compare five estimators of 81 based on (Y1, Y2). They are: b"wLE(Yi., Y2)

the WLE as defined and discussed in Section 2; t5MLE(Y1, Y2) the MLE, i.e. the first

co-ordinate of the MLE for (81, (2) under the restriction 8 ::; 82; b"ULE(Y1, Y2) = 11

the unrestricted MLE of 81 based on Yi.; b"MIN(Yi, Y2) the minimum of Yi and Y2; and

op(Yl, Y2) the so-called Pitman estimator, i.e. the first co-ordinate of the generalized

Bayes estimator of (81, (2), that estimator being computed from the uniform prior on
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{(B1,B2) I B1 S; B2}. These estimators are given explicitly below:

6WLE(Y1, Y2) = Y1 + Wa(vV)
2
al .

where a(W) = a? + ai + CW~ , (3.1)

with T

. (y, O'~Yl + O'fY2) _ Y, 1 W }
mm 1, 2 2 - 1 + -- -

0'1+0'2 l+T

O'gjO'{ and W_ = min(O, W);

(3.2)
OMLE(Y1,Y2)

8ULE(Y1, Y2) = Yi; (3.3)

8M1N(Yi, Y:!) = min(Y1, Y2) = Y1+ W_; (3.4)

8p(Y1, Y:!) = Yi -

(
W )

i tP 2 2

at Ja1 + a2
2-2 ( ).a1 +0'2 <I> W .

Jar + a~

(3.5)

The "attenuation constant" C in the expression above for WLE can be adjusted to

reduce dependence on Y2. Unless otherwise noted, we will take C = 1 in the ensuing
discussion.

The Pitman estimator was proposed and studied by Cohen and Sackrowitz (1970).

Note, however, that our formula for 8P(Yl, Y2) is not the same as the one given by

Cohen and Sackrowitz. They claim, erroneously, that one can suppose, without loss

of generality, that one of the two variances equals 1, making their formula valid for

that special case only.

Remark 3.1 Note the differences in the way the above estimators depend on af and
a~. The estimators Yl and min(Yi, Y:!) are independent of these variances, the rel-

evance weighted and the Pitman estimator depend on both of them, while the MLE

depends on af and a~ only through their ratio.

We begin by examining in Figure 1 the MSE's of the estimators plotted as functions

of L1 = B2 - Bl.

For definiteness we have chosen 0'1 = 0'2 = 1 (and C = 1 in the WLE). 'liVeconsider

cases below where the population variances are unequal. For that reason we will in
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Figure 1: Graphs of the Mean Squared Errors: Selected Estimators.

general divide all the MSE's by O"i to enable us to compare MSE plots. Therefore

in all such plots the one for ULE has constant value 1 for all .0. whatever be al. As

the classical (uniform minimum variance unbiased) estimator of Bl, the ULE provides

a natural benchmark for assessing the performance of the alternatives considered in

this paper.

The MSE of another classical estimator, the MLE also appears in Figure 1. It appears

to be uniformly smaller than that of the ULE but the two are in close agreement

for large D.. That agreement encourages optimism about the quality of the ULE

since generally the MLE performs well. We express our optimism in the following

conjecture.

Conjecture 1: ULE and MLE are minimax estimators.

At the same time the MLE appears to dominate the ULE leading us to a second

conjecture.

Conjecture 2: The ULE is inadmissible and dominated by the MLE.

Furthermore we are led to a question:

Question 1: Is the MLE admissible?

Figure 1 shows the MSE for the WLE (as well as the MLE) to be much smaller than
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Figure 2: Graphs of Relevance Weight Ratios for Population 2 Versus 1 for Selected

Estimators.

that of the ULE for small ~-values. Moreover its MSE resembles the MLE's for such

values.

How do the MLE and the WLE achieve their seeming superiority over the ULE?

The immediate answer is that they exploit the information in Y2 and they do so in a
similar way. Figure 2 confirms this. That figure depicts for all estimators other than

the MIN, the implied or explicit relevance weight ratios as functions of W = Y2 -- Yi.

The ratios for the MLE and WLE are broadly similar. However the WLE - ratio

decreases to zero more slowly than that of the MLE. Thus it makes more liberal use

of that information than does MLE. (It does so at the cost of greater bias.)

.
As noted above we can reduce WLE's dependence on Y2 by increasing the value of

the attenuation constant. In Figure 3 we see the relevance weight ratio for the WLE

approaching that of the MLE when C is chosen to be 29. Moreover, Figure 4 shows

their associated MSE's to be very similar when the MLE is highly attenuated. In

particular that of the WLE remains substantially smaller than that of the ULE for

small ~ values.

To gain a better understanding of how that superior performance is achieved by the

WLE and the MLE relative to the other two estimators we turn to Figure 5 and see

the bias functions of the various estimators, Note the comparatively small absolute
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biases for both estimators when 6..is close to zero compared to those of PIT and MIN.

So we see that both WLE and MLE gain their superiority over ULE by aggressively

exploiting the relevant information in 112 to reduce their variances while controlling

their biases for small 6...
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Figure 5: Graphs of Bias Functions for selected Estimators.

At the same time, Figure 1 shows that as ~ grows larger the MSE for the WLE

increases and eventually exceeds that of the ULE. Based on the earlier conjectures

we make the next conjecture.

Conjecture 3: The WLE is not a minimax estimator.

We have the same question for the WLE as we had above for the MLE:

Question 2: Is the WLE admissible?

Unlike the MLE, the WLE is (twice) differentiable. The well-known necessary con-

dition for admissibility (see Brown (1986, Theorem 4.23)) that estimators must be

regular functions of the data encourages the belief that the answer to Question 2

might be "Yes".

The remaining two estimators under consideration in this paper, PIT and MIN also

seem to successfully trade bias for variance. In fact Figure 1 suggests the next con-

jectures.
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Conjecture 4: PIT and MIN dominate ULE.

Conjecture 5: Both PIT and MIN are minimax when the population variances are

identical.

That figure shows that neither estimator performs especially well when 6 ill close to

zero. (They effect the bias-variance trade-off in rather subtle ways.) Nevertheless

they could be admissible suggesting the next question.

Question 3: Are MIN and PIT admissible when the population variances are equal?

Observe in Figure 1 that the ULE-MSE uniformly exceeds that of the Pitman esti-

mator. Moreover the comparative advantage of the Pitman estimator obtains not at

.6.= 0 but rather for .6. around 2. To interpret this observation note that the Pitman

prior does not put high weight on Bl = B2• In fact its uniform prior on the range

of (BI, (2) forces PIT to optimize by requiring a negative relevance weight ratio (see

Figure 2). It "pushes away" the information in Y2 when the WLE and MLE embrace

it (when .6.= 0) since under the prior this possibility would be remote. Instead PIT

saves the trade-off for values of more realistic .6.'s under the assumed prior. Never-

theless like the other alternatives to the ULE considered here other than WLE, PIT

proves to be negatively biased; it tends to underestimate Bl (see Figure 5).

MIN succeeds in making the bias-variance tradeoff (see Figure 1) but the mechanism

by which it does this proves elusive. Its weight ratio for the MIN cannot even be

plotted in Figure 2, being infinite when W < 0 since in that case the estimator

puts all the weight on Y2 and none on YI. On the other hand when W ;:::° that
ratio becomes zero. How does MIN so successfully exploit Y2? The answer seems

to be that since .6. ;:::0, Y2 ::; Yi. suggests YI is an overestimate of BI. We can then

profitably shrink it down to Y2. To test this explanation we consider its implication

when a2 < al when Y2 is a measurement of higher quality than Yi. (even if biased as an
estimator of BI). In this case Y2 would indicate quite reliably when YI overestimates

Ol.

Figure 6 validates this heuristic reasoning. The relative gain in MIN's performance

over that of ULE exceeds its gain when the population variances are unequal.

On the other hand the explanation also suggests that when Y2 is of low quality it will

not help much to show when Y1 overestimates Ol. Again the implication is validated,

this time by Figure 7. MIN now performs poorly against the other estimators as

measured by its MSE.

These numerical assessments thus tend to support our explanation of how MIN works

and when it would perform well. It also points to the desirability of making MIN

12
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depend on the population variances. This leads to our final question:

Question 4: Can a minimax estimator resembling MIN be found for estimating (Jl

when a2 > al?

4 Ordered Normal Means

In this section we answer some of the questions raised by the analysis of the last

section. Those answers are stated as theorems whose proofs can be found in the

Appendix. We begin by stating in the next theorem the mean-squared-errors of the

estimators considered in the last section. There b. = (J2- (Jl, a2 = a? + ai and
(J=((J1,(J2).

Theorem 4.1 For the MBEs we have:

1. The MBE of 6WLE is given by

C()(OWLE(Yi, Y2) - (Jr)2 =

ai + _2-C(}W&(W)(~ - W) +C(}&2(W)W2 =
1+T

(4.1)

2 2 2 C W2 (2I(W > 0) + (1 + T)-1) - 2(a? + aD
a1 + a a1 () (at + a~ + W~)2 ;

2. The MBE of OMLE is given by

t'o(OMLE(Y1, Y2) - (Jr)2=
,

1
ai+l1, _\?(2b.t'oWI(W< 0)-t'oW2I(W<0))= (4.2)

ai + (1: 7)2 {(b.
2
- (
2
) (1 - <I?(~)) - b.acp (~) } ;

3. The MBE of 6ULE is given by

C(}(bULE(Y1, Y2) - (1)2 = af; (4.3)
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4· The MSE oJ dMlN is given by

£0 (6MIN(Yl , Y2) - Ol)2 =

1
O"~ + --cIJWI(W < 0)(26. - W(l- r)) =

l+r
(4.4)

a~+ (L12 - a
2
~ ~ ~) (1 - ~ (~ )) - L1a~ (~ ) ;

5. The MBE o] the Pitman estimator is given by

(W)4 ~-

e,(c5p(Y1, Y2) - Ol)2 = a~ - a~ 6. COyo;.
a

(4.5)

In the next theorem some of the MSEs are compared. Like all comparisons between

MSEs in this paper, they are made on the restricted parameter space e = {O I
Ol :::; 02}. Thus, an estimator 15 is inadmissible for estimating Ol if there exists an

estimator 6* dominating it on e and 6 is minimax if it minimizes, among estimators

15*, SUPOE8 R( 15*,0), where R( 15*,0) is the MSE of 15* at the parameter point O.

Theorem 4.2 Each oJ the estimators dMLE and c5p dominates c5uLE. The estimator

c5M1N dominates dULE when r :::; 1. The MSE's oJ dMIN (Jor r < 1) and c5MLE are

strictly smaller than a~[or all 6. 2 0 with their limits, as 6. ---+ 00, equal to a~. For

c5M1N with T = 1, the MSE equals ai Jor L1 = O. For c5p equality holds [or L1 = 0 as

well as Jar 6. ---+ 00.

The previous theorem proves the conjectures 2 and 4 (for MIN only when r ::;1).

The next theorem shows that the WLE, the MLE as well as MIN are inadmissible

and a class of dominators 'of the MLE is given. (Such dominators can be found in

Shao and Strawderman (1996)). Thus the next result answers Question 1, 2 and 3,

the latter for MIN.

Theorem 4.3 The estimators c5wLE, c5MLE and c5M1N are inadmissible. Further,

15MLE is dominated by

TY1+ Y2 _ 0" (12 - Yr)
l+r 2 l+r

where 15; is a dominator oJ the maximum likelihood estimator oJ a non-negative normal

mean based on a single observation.
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In the following theorem we state a result of Cohen and Sackrowitz (1970) concerning

the admissibility and minimaxity of PIT. In the Appendix we give a simpler proof of

the admissibility. A simpler proof of the rninirnaxity of PIT can be found in Kumar

and Sharma (1988, Theorem 2.3). That theorem thus proves Conjecture 4 for PIT

and it answers Question 3 affirmatively for that estimator.

Theorem 4.4 The Pitman estimator is admissible and minimax. The minimax value

for our problem equals eT?

The following theorem contains more minimaxity results and proves Conjecture 1 for

the MLE as well as Conjecture 4 for the MIN when T ~ 1.

Theorem 4.5 The estimators bMLE and bULE are minimax and so is bM1N when

T ~ 1. Further, bM I N is not minimax when T > 1.

5 Discussion

In this article we have tried to show how the intuitively natural idea of the relevance

weighted likelihood can be used in parametric estimation to trade bias for precision

and thereby reduce the MSE in fortuitous circumstances. The resulting estimators

use all the relevant information and not just the direct sample information from the

population of interest. By comparing those estimators with others that were obtained

earlier for the same purpose we find the weighted likelihood to be promising.

Although we demonstrate the value of our method in a specific normal means estima-

tion context the method itself has wide applicability. Methods of the type described

here seem likely to assume increasingly greater importance as the space-time scales of

modern experiments continue to expand thanks to need and technological feasibility.

Indeed the classical repeated sampling paradigm on which Fisher bases his theory of

the MLE will become increasingly untenable as that scale grows. Reliance on biased

but relevant sample data will become increasingly imperative.

To conclude we summarize the results of our investigation in Section 4 of the conjec-

tures and questions suggested by the numerical work in Section 3.

Question's 1 and 2. We answer negatively these questions on the admissibility of

the MLE and WLE respectively (in Theorem 4.3).
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Question 3. Theorem 4.3 gives a negative answer on the admissibility of MIN when

at = a2· However, Theorem 4.4 answers positively the same question for PIT.

Question 4. This question on the form of the MIN when the population variances

are unequal remains open.

Conjecture 1. Theorem 4.5 proves the claim in this conjecture that the ULE and

MLE are minimax.

Conjecture 2. Theorem 4.2 proves the claim here that the ULE is inadmissible

and dominated by the MLE.

Conjecture 3. The truth of the claim in the conjecture has not been established;

we do not now whether or not the WLE is minimax in spite of the very strong

numerical evidence against it.

Conjecture 4. Theorem 4.2 proves both parts of this conjecture at least that the

MIN dominates the ULE when T :S 1 and the PIT in any case.

Conjecture 5. Theorem 4.5 proves the statement in this conjecture for the MIN.

We show it to be minimax when oz :S al. At the same time, Theorem 4.4 shows

that PIT is minimax whatever be the er's.
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A Appendix

This Appendix contains the proofs of the results presented in Sections 4. In these

proofs the following four results (stated in the form of lemmas and a corollary) are

used.

The first lemma contains the well-known Stein identity.

Lemma A.I For a N(v, "(2) random variable Z and a function 9 which is almost

everywhere (with respect to Lebesgue measure) differentiable

£(Z - v)g(Z) = ,,(2£g'(Z). (A.I)

The following corollary gives expressions for the mean-squared-error of the estimator

Y1+ cp(W) of 01, These expressions follow immediately from Lemma A.I and the fact

that the distribution of Yi, conditional on W, is given by

N (0
1
+ ~ - W,~) = N (cr~Ol + cri (02 - W), a?a~ ). (A.2)
1+ 7 1+ 7 at + a§ at + ai

Corollary A.I The mean-squared-error of the estimator Y1+ cp(W) of Bl is given

by

£O(Y1 - ()1 + cp(W))2 = cri + 2£o(Y1 - ()r)cp(W) + EOcp2(W),
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where

£O(YI - 8d<p(W) Eo {<p(vV) (£(I(Yl - Od I W)}

1
-1 - £()(!~.- W)<p(W).
+7

Further, if cp(W) is differentiable almost everywhere,

(A.3)

&e(Yi - Ol)CP(W) = _0-
2 £O'P'(W). (A.4)

In our next lemma, a rotation technique used by Blumenthal and Cohen (1968a) (see

also Cohen and Sackrowitz (1970)) is applied.

Lemma A.2 Let

X _ 7Y1 + Y2
I-I +7

_ £ X - 7(h +(h
/11 - 0 1-

1+7

X
2
= -Y1 + Y2

1+7
(A.5)

/12 = COX2 = -rh + O2

1+7

Then Y1 +<p(W) is inadmissible for estimating (h based on (Yi, Y2) under the condition

(h ::; (h if 62(X2) = X2 - <p((1 + 7)X2) is inadmissible for estimating /12 based on X2

under the condition /12 2: O. Further, if 62 (X2) dominates 62(X2) for estimating /12

under the condition /12 2: 0 based on X2, then Xl - 62(X2) dominates Yi + <p(W) for
estimating (h under the condition (h :::; (h based on (Yi, Y2).

Proof. First note that, under ()l :::; (h, /11 is unrestricted while /12 2: O. Further

Y1 + <p(W) = Xl - (X2 - <p((1 + 7)X2)) = Xl - 62(X2).

The inadmissibility of 62(X2) for estimating /12 2: 0 based on X2 implies that there

exists an estimator 62(X2), which dominates 62(X2) on {/12 I /12 2: O}. But this is

easily shown to imply that

Xl - 6;(X
2
) = 7Yi + Y2 _ 6* (Y2 - Yi)

1+7 2 1+7

dominates

X - 6 (X ) = TYI + Y2 _ 6 (Y2 - Y1) = y; (W)
1 2 2 1+7 2 1+7 I+CP

as an estimator of ()l under the condition (}l ::; (}2. 0

The following result is used several times in our proofs.
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Lemma A.3

EoWI(W<O) = ~(l-tp(~)) -erq)(~),

[oW2I(W<0) = (~2+er2)(1-tp(~))-6erq)(-~).

Proof. We have

EoWI(W < 0) 1 fO
erv'2ii -00 w e- (W2~~)2 dw

1 f-A/a-
uv'21r -00 (~ + y er)e- f dy

= 6 (1 - (p ( ~ )) - uq) ( ~) .

Further,
1 j-A/a- !C

EoW2I(W < 0) = rn= (6 + y u)2e- 2 dy =
v21r -00

6
2
(p (- ~) - 2er6q) (- ~)

-er2 ( - ~ q) ( - ~) - (p ( - ~ )) =

(6
2 + er2) (1 - (p (~) ) - 6erq) (~) .

o

We are now ready to give the proofs of the results in Section 4.

PROOF OF THE FORMULA FOR THE PITMAN ESTIMATOR bp (see (3.5))

The Pitman estimator bp(Y1, Y2) is given by

11
bp(Y1, Y2) = Y1+ 12

where

27rerler2Ir =

fin (e Y;)
(
(01- Yt)2) ((B2 - 112)2) dB dB

1 - 1 exp 2 2 exp - 2 2 1 2
01 ::;02 o1 er2
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and

J la (
(et - Yt)2) (((}2 - Y2)2)

27fa1a212 = exp - 2 exp - 2 d01d02·
Bl~B2 2al 2a2

Note that 12 = P(Ol :::; O2) with 01 and (}2 independent and 01 f'.J N(Yi, an, O2 rv
N(}2, ai). So

12 = P (01 - YI -}02 - }2) s :) = q> (:) ,

where a2 = ai + ai·

(A.6)

Further, 11 can be represented through the expression

27rala2Ir =

2 joo (C02 - }2)2) jB2 d ((01 - Yi)2) dO dO _
-aI exp - 2 - exp - 2 1 2-

-00 2a2 -00 dOl 2aI

_ 2 fOO (_ (()2 - }2)2 _ C02 - Yd2) dO _
a1 exp 2 2 2 -

-00 2a2 2al

2 fOO (1 2 (xa2 + W)2)
-aI a2 exp --x - 2 dx,

-00 2 2aI

where
2 (xa2 + W)2 _ (J2 ( a2W)2 w2
x + 2 - 2 x+ 2 + 2'

aI aI a a

So,

11 =

-al (1 (W)2) foo ((J2 ( (J2W) 2)--exp -- - exp -- x+-- dx=
27r 2 a -00 2ar a2

(A.7)

-(JI~ (~) ~ = - ~~ (~).

The result follows immediately from the above expressions for 11 and 12•

PROOF OF THEOREM 4.1

1. The two formulas for the MSE of 8w LE can be obtained by using Corollary A.I

with (A.3) and (A.4) respectively for t'o(Y1 - (1)<p(lV) = EaW &(W);
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2. The first expression for the MSE of bMLE is obtained from Corollary A.I using

(A.3) for Ee(Y1 - (1)CP(W) = (1+ T)-lEo(Y1 - Ol)W_. The second expression is

obtained from Lemma A.3;

3. The first expression for the MSE of bM1N follows from Corollary A.I using (A.3)

for [e(Yi - Odr.p(W) = [e(Yi - Ot)W-. The second expression is obtained from

Lemma A.3;

4. For the MSE of the Pitman estimator, note that

r.p(W) = _ at cp(W')
CTCT2 <I>(W') ,

so
at cp(W')

EO(Y1 - Bd cp(W) = -- EO(Y1 - (1) x../yrr.\'
CTCT2

where W' = W/a. Further, using Stein's identity (see Lemma A.l) and the fact

that

( ( )
2)d cp(x) cp(x) cp(x)

dx <I>(x ) = - x <I>(x ) + <I>(x ) ,
(A.8)

gives

cp(W') [{ cp(Y; - Y{) }]
Ee(Y1 - (h) ;T..!UT/\ = Eo Eo (Y1 - (1) <I>(Y~ _ Y{) I Y2 =

2 [ {d cp(Y; - Y{) }]
a1 Eo Eo dY

1
<I>(Y2 _ Y{) I Y2 =

at {' , cp(Y~ - Y{) (CP(Y; _ Y{)) 2}
-;; Eo (1'; - 1";.) <I>(Y~ _ Y{) + <I>(Y~ _ Y{) ,

where, for i = 1,2, Y:' = Yi/a. So,

MBE - a~ =

2Eo(Yi - Odcp(W) + Eocp2(W) =

-2 CTt [CTiE {w,cp(W') + (cp(W'))2}]
CT CT 0 <I>(W') <I>(W')

(A.9)

+CT{[0 (cp(W')) 2 _

a2 <I>(W') -
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(]t { (</>(W') ) 2 I </>(W') }
- a2 [,() <I> (W') + 2&oW <I>(W') .

Now use
e W' </>(W') = s (W - 6) </>(W') 6e 4>(W')
o <I> (W') () a <I>(W') + a ()<I> (W')

and apply the Stein identity to the right hand side. This gives, using (A.8),

e W' </>(W') = _[, W' </>(W') _ e (4)(W')) 2 + 6e 4>(W')
o <I> (W') o <I> (W') 0 <I> (W') a 0

or

2£ W' </>(W') = -s (</>(W')) 2 + 6e </>(W')
o <I> (W') 0 <I> (W') a 0 <I>(W') .

Then using (A.9) and (A.10) gives

MSE = 2 _ at A C </>(W')
a1 (]3 U 0() <I> (W')"

The above proof is a generalization of Al-Saleh's (1997) proof for the case where

al = a2· Another, similar, proof for the case where T = 1 can be obtained

from Kumar and Sharma (1993). They use a weighted (by the reciprocals of

the known variances) squared-error loss function for estimating ((h, (}2) when

(}1 ~ (}2 (In fact, they consider the more general problem of estimating a k-

dimensional parameter under a complete order restriction). From their formula

for the MSE of their Pitman estimator, ours (and thus Al-Saleh's) formula for

the MSE of bp can be obtained by using (A.6) and (A.7).

(A.10)

PROOF OF THEOREM 4.2

That bMLE dominates bULE follows from a result of Lee (1981). He shows that for

independent Yi rv N((}i, 1)~ i = 1, ... , k, with (}l ~ ... ~ (}k, the i-th component of

the order-restricted MLE dominates Yi, i = 1, ... ,k. For our particular case, where

k = 2, the result can more easily be proved by using the second line of (4.2) and the

following inequalities

6&OWJ(W < 0) < 0 for a116 ~ 0

&oW2J(W < 0) > 0 for all ~ ~ O.

(A.11)

(A.12)

l,From (4.5) it is immediately clear that Sp dominates fJULE.
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To see that OMIN dominates OULE when 1 S; 1, note that (see the second line of (4.4))

b.£oWJ(W < 0) ::;

(1 - I) EoW2I(W < 0)

(1 - I) EoW2J(W < 0) >

o for all .6. ~ 0

o for all b. ~ 0 when r = 1
o for all .6. 2: 0 when 1 < 1.

(A.13)

(A.14)

(A.15)

l.From the second line of (4.4) and the inequalities (A.13) and (A.15) it follows that

the MSE of tJMIN with 1 < 1 is strictly smaller than eT? for all .6. ~ O. For tJMLE,

the second line of (4.2) and the inequalities (A.11) and (A.12) imply that its MSE is

strictly smaller than eTr for all .6. 2 O. As for the limits, as .6. -+ 00, of the MSEs of

tJMIN and tJMLE, use the last line of (4.4) and of (4.2) and note that

1~b.
2
(1 - 4? (~ )) = °

and

lim .6.4>(.6.) = 0.
LI.-too a

That, for 1 = 1, the MSE of OMIN equals ar for .6.= 0 follows immediately from the

last line of (4.4).

Finally (using (4.5)), the MSE of op clearly equals ar when b. = O. That its MSE

converges to ar when b. -+ 00 can be seen from (4.5) by noting that

4>(~) 4>(z + ~)
.6.£(J (W) =.6.£ ( .6.) ,

4? - 4? Z+-
a a

where Z f'V N(O, 1). The result then follows from the fact that, for each fixed z,

f::l.4>(z+ f::l./a)/4?(z + .6./a) is bounded in z for .6. 2: 0 and converges to zero as

.6. -+ 00.

PROOF OF THEOREM 4.3

That OWLE is inadmissible can be shown by using Lemma A.2 with (see (3.1)) 4>(W) =
W&(W). Then

02(X2) = X2 - 4>((1+ I)X2) = X2 - X2 a2 (a2 + (1+ 1?(max(O, X2))2) -1 .

This estimator does not satisfy Brown's (1986, Theorem 4.23) necessary conditions

for admissibility for estimating /-L2 2: 0 based on X2.

For the proof of the inadmissibility of OMLE again use Lemma A.2, this time with

cp(W) = (1 + 1)-1 W_. Then 02(X2) = X2 - cp((l + I)X2) = max(O, X2). This 02(X2)
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is the maximum likelihood estimator for estimating P,2 ~ 0 based on X2 which is

well-known to be inadmissible for squared loss. The formula for the dominators of

6MLE follows directly from Lemma A.2.

For the proof of the inadmissibility of 6M1N, use Lemma A.2 with c5'2(X2) = X2I(X2 2::

0) - T X2I(X2 < 0). That this 62 is inadmmisible for estimating P,2 ~ 0 based on X2

follows from Theorem 4.23 of Brown (1986) and the fact that 62(X2) is not monotone

in X2.

PROOF OF THEOREM 4.4

As already noted above, Kumar and Sharma (1988, Theorem 2.3) give a proof of the

minimaxity of 6p. Their proof is very much simpler than the one given by Cohen and

Sackrowitz (1970). The Kumar-Sharma proof is based on an extension of a result of

Blumenthal and Cohen (1968b, Theorem 3.0).

For an alternate and simpler proof of the admissibility of bp, use the transformation

(A.5). Then (see the proof of Lemma A.2)

c5'p(Yi., 'Y2) = Xl - 62 (X2) ,

where

62(X2) = X2 + (J(X2) <I> (~) ,

(J(X2)

where (J2(X2) is the variance of X2. Further, (}l = P,l - P,2 and

~ ((J~2))

(}l ::; (}2 ~ P,l E (-00, (0), P,2 ~ o.

So, it is now sufficient to show that b(X) = Xl - 6(X2) is admissible for estimating

J-Ll - J-L2 based on X = (Xl, X2) when P,2 2:: O. We will show this by using BIyth's

(1951) method.

Suppose that there exists an estimator 6'(X) which dominates 6(X) on n = {/-L I
/-LI E (-00, (0), P,2 2': a}. Then, because the risk function R(6o, J-L) of every estimator

6o(X) is continuous in P, for J-L E D, there exists an e > 0 and a rectangle S =

(P,l,l, P,1,2) X (P,2,1, P,2,2) c D such that

R(r5, J-L) - R(6', J-L) > E on S. (A.16)

Now take a sequence of priors An) n = 1,2, ... for J-L E D where, for each n, P,l and

J-L2 are independent, P,l with the improper uniform prior on (-00,00) and J-L2 with
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density eJ.l.z/njn on J.L22: O. Then (A.16) implies that

( ) ( ') (1'1,1 1'1,2) ( 1)
r., 0 - r« 0 > E(J.Ll,2- J.Ll,l) e-T - e--n = 0 ;;:, (A.17)

where the rn's are Bayes risks with respect to An.

Now let, for i = 1,2, on,i(Xd be the Bayes estimator of J.Libased on Xi with respect

to the (marginal) prior of J-li' Then, by the prior independence of J.Ll and J.L2and

the conditional independence of Xl and X2 given J.LI and J.L2,the Bayes estimator of

J-ll - J-l2 for the prior An based on X, is given by

On(X) = On,1(X1) - On,2(X2),

where (see Katz (1961))

(

X2 - .!.)
on,,(X,) = X 1 <I> <>(X,)

2 - ;;, + 0'(X2)--:--- /

e (~~;J)
Further (see Katz, (1961))

1
rn(c5) - rn(c5n) = Tn,2(02) - rn,2(On,2) = 0(;;,), (A.18)

where rn,2 is the Bayes risk of an estimator based on X2 with respect to the (marginal)

prior of J-l2.

But (A.17) and (A. IS) imply that, for sufficiently large n,

_rn-"-(o-,-:-)_-_r_n(~O-,:-/)> 1
rn (8) - rn (on)

which contradicts the fact that, for each n, 8n(X) is the Bayes estimator of J.L2with

respect to An based on X 2·

Remark A.I Katz's minimaxity and admissibility proofs are incorrect for the general

case of the exponential family he considers (see van Eeden (1995)), but the above

quoted results of his for the normal mean are correct.

PROOF OF THEOREM 4.5
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The minimaxity results follow immediately from Theorem 4.2 and the fact that, by

Theorem 4.4, the minimax value for our problem is equal to the mean square error

err of OULE = Yr. That 6M1N is not minimax when T > 1 can be seen from the second

line of (4.4) by noting that the MSE of OMIN is larger than eri when ~ = O.
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