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Thic report iz concermed with the analysis of xtochastic procesces of
the form R(x) « S(x) + W(x) vhace 5 iz & "smcoth™, N is molse, and all
quantities including x are real-valued. Our sethods, which can easily be
extended Lo a much more general class of stochastic processes, derive from the
assunption that the observed R-values and unobserved values of R (interpolants
or predictands, the assumed Inferemtial objectives of the snalysis), are
linearly related through Taylor serles expansioms of observed adout unobserved
values, The expansiocn ervors sod all other s priocrl unspecified quantities
have a Joint multivariate normal disteibution which expresses the prleor
uncertainty adtout their valwes., For tectmlical expedienmcy, doth saxisum
likelihood and cross-validatica are used to estimate the a prior unspecified
hyperparametars, The results include intecpolators, predictors aad derivative
estimates with creodiblilty Interval estimates sutomatically gemerated in each
case. An analysis of an acid rain, wet-depositicn tine series L2 included to

indlcate the efficacy of the pregosed method.

EEYWORDE. Noo-parametcic cegression; acid rain; Bayesias regression; tise

sevien; spatial interpolation; Kriging: forecasting: prediction.
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INTRODUCTION AND SUMMARY. This repoct is conterned with interpelation and
prodiction for stochastic processes. Although our analysis focuses on &
gpeclal case, the methods cam easily be extended to a very general class of
sultiple, sultivariste space-tise-regression models., The structure of the
vesponse vectors for the most genaral class, oz o functica of a vector
srpesent of space, tise and regressor varlable co-ordisates, is gives 5y Rix)
“ Mix) » B(x) ¢+ Mx). Mece N is en independent nolse procesns, S is a
“smooth”, a locally Taylor expandadie function, sand M 15 a »odel, possibly
with a priori unspecified paraseters. 1In this pager, to svoid odscuring the
basic idcas, a particular case is studied where B = 0 and all wectors are
feal, that is, one dimensional. MHowever an extenslon of our results Lo Lthe
peneral case i3 stoaightforward.

We assuse R has been observed abl & sequence of x-walues, ll' LLLIN "n'
and that the objective of inference is the estisaticn of some unobserved R
value. In other words, the goal is elther Interpolation or extragelation of

a = R{L) et & point, x » tm 4t wihich K haeg mot yot beon observed,

1
{Credibility) interval catimatlons of « are deesed Lo beo segessacy.

The koy components of our analysis are ficstly, the expancions to
Cinite order, 8(1‘) ca+s a(t‘ - t‘.‘) . e 4 c‘ viere [ -
““ml)’“' and ‘4 denotos the remalnder in the Tayloe expansica, fel, soe,
n. And seccedly, we ascume that all a priori unspecifiod quantities like o,
P, and the ."'t) have & joint distritution which we will take to be
sultivariate nor=al; all cur results thea follow gquite sisply. MNowewver, any
Jolat disteibution vihich reozed appregriate could, in principle, have been

used Instead of the nocsal.



In Sectlom 2 the theory underlying ewr approach is outlined. In Sectiom
3 we Lllustrate itz uge inm the analyeis of an acid rain wot deposition time
series. Our method is thea compared and contrasted in Sectiom 4 with other
approaches which have been proposed for the snalysis of nompearametcic serles.
Section $ imcludes a brief discussicn and our conclusions.

The idea for this work decrived [rom conversations im 1978 with Professor
N. Glick in which he described a running porceatile approach to ==cothing data
and generating reliadiiity bands. While his analysis was data-analytical in
character and concermed specifically with the assessment of obesity in
children, it 414 guggost the method doscrided hare az a way of explicating his

methods, We are Indebted to Dr, Click for his stimulating comments and active

encouragement in our work.

We are vory grateful to Wilson (Mom) Ma for hie

conziderable assistance with the sumecical work described in Sectica 3. The
final presentation benefitted greatly from the comments of Dr.'s Marcy Joeo and
A. Jons Petkau. This wock was partially supportod by the Enviccemsental
Protaction Agency through a co-gperative research agreemant with STAM's
Institute for Mathwesatics and Scclety (SIMS). 1t was also supported by Lhe
Hatlonal Sclence Foundation of the Naticeal Sclence Foundation of the United
States (Crant MNCS83-0180)) and the Matural Science and Engiseering Research

Council of Camada.
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2. LOCALLY SMOOTM TROCESSES

Aud _EREAMELE
The veport i3 concermed with stochastic processes which have smcoth

undeclying “carclecs”. M exanple would Yo B « R(L) « R{L,w), he measured
welght of an Individual w at tise t. & would vary detween successive
welghings decause of rounding errors, imprecision of the weighing scale snd
other factors, some of which would be undetermimed. But there iz a purely
conceptual, underlying carcier function C « ClL) « C{t,«) which represemts
«'s intrinsic woight and esbodies intermediaste to long term trends., iIm a
frequency-theory setting, C would represent the mean or expected wolight after
all extraneous fectors have been “averaged cul™ over repeated welighlisgs. The
ingact of such extrancous variation 1o emdodied In R « € =« N = N(L) = Nt W),
the "noise™ term, which here, and In geseral would e of little Intrclnele

intecest,

in the welghing example, ¥ would de alsost negligible as u pevcentage of

R. 1I=m contrast, for the application conzidered in Sectica 3, N would e
appreciable. There X, Lthe seasured wcidity or pH level of wet precipltation |
varies consideradly even during a glven precipitotion event. R is of interest
a2 sn indicator of the state of the environment, €, at the tise of the eveat,
Thus, in this applicatiom, the role of C would be analogous to the Intensity
function in a point process, while X would be measured only at the tises of

the eveats in that process.

The two exasples described alove differ in other ways as well. 1In
oxperinents where welght was an lsgortant considoration, there would



usually be several randomly selected subjects, @ oaeeen and Lthe I(t.ot).
fel, *ero @, « = <L < wwuld be cegarded as conditicoally independent glves
the (Cit,w)). Usually C(t.ut) - C(t.uj). L7 §, wuld be ssoumed when sll
other explanatory variables had been accounted for. And R sight be tecorded

et just & single time point, & « t for subject i.

i
Oa the other hand, in the acid rain exesple, there is just a sisgle path,
Rit,w), and observations will be recorded at a sequence of time polints. In a
full treatsent of this problem R(t,w), would be a sultivariate series Rix,w),
viete R ig & vector of seasurements like the average pH level Suring the
precipitation event, the volume of preciplitation, the average concentration of
sulphate, and 30 on. Here X » (x‘. x’. e :&) might be the space-Ltise
co-ordinates {inclwding elevation) at which the mseasucresents are sade. Or x
=ight b a vector of Independent regressors like distance Lo the nearest sajor

eource of alcrborme contaminante.

Although cur conceptusl mcdel embraces a wide varlety of situations, the
methodology we propose in this report is wery general and may be adapted to
pormit inferences to be made In all of the situations we have envisaged. This
report focuses on the case of a zingle, real-valued secrleos, R « R{%) where ¢
is real, an element of an open subset of the real line; L represents “Lime™ in

Sectionm 3.

Interpolation and prediction with attendant moasures of reliablililty are

the objectives of cur snalysis. Measurements © « ll(t.‘). L «1, ***, n are

i
aspuned Lo be avaliladle., Inferemce iz Lo beo about ’o - cun").



In genoral, © « HeS viwro N ie a model for the carcler and 5 is a
“smooth™. The model would incorporate any known structure for C. It might
have juspa, for exasple, Lo incorporate discentinuouss changes at possibly
unknown t-points, M sight also isclude & trigonometsic series Lo account for
seascaality. Any sodel with only a finite nusber of unspecified paraseters
can readily be incorporated into a conceptually stralghtforward extensiom of
the rezults repoctod hete. MNowever, for alsplicity it will be sssused here
that K = O, and that any knows steucture Llike linear trend, for example, has

been cemoved.

.2, STRUCTURAL WOOELS FOR 3

£ 19 not assumed Lo have & parasetcic form, Instesd it i2 assumed Lo be
locally regular, that is expandadle in & Taylor serles about &t =« t.". A
local parssetrization of 5 is thereby achieved whace the paraseters are l‘ -
D‘S(tu"). D denoting the differentistion operator. A structural model for

the data iz theredy achieved. A prieri Lt i»

=X+ e (2.1).
“es T - - e T
Mare % « (R , RIT, R - R(ED, D - (B, 8,07, X, an 0 x (po1)
matrix, is gives by X = (1, X, *=r, X ). 1 is an n-vactor of 1's, x} . (it -

, e - , - .--s - t - LR
‘”.’ ,”l . l‘“ ‘.’" ’J'). ’ ‘. . '0 c 'N.. . ‘.‘o '.Q"

¥ owNE). . (n s ***s n ). and n, i3 the remsinder of the Taylor

. = LY 3
expansion of 8(t.), that is o = [t -t ] o®* 5(8,)/(pe1)t whare O, is
a point in the interval joining t‘ and t“". In fect this expansion would e
valid if 5 were deesed to Bave only p derivatives But "y would them be
represented otherwvise., For simplicity of exposition this foem will be

aspumed .



The degree of local regularity Ls roflected in the sixe of p; its cholce
is subjective, 1If 3 is Seeand Lo have ptl derivatives, it g dosirable to
include the maxisal nusber of torme, p in the expansion, (2.1), to reduce the

size of the ervor of approximation, "y

2:) STOOMASTIC MODELS FOR 5

Although R is odsesved B, (seo eguatica (2.1)) and ¢ are not. The
second key elesent In our approach is the assusption that all uncertalnty
about % (defore sespling), £ and ¢ i¢ seasureable and cepresentable in torms
of u (eultivaviaste) probabliliity disteridution. Mere it iz acoumed that the
co-ordinates of ¥ are independent, identicelly distriduted cendom variadles
which are indegendont of & and f. As well, it iz assused that (8'. O‘)’
has a foint disteibutics whece S = (8, +=o, 837, 8, = 8{t), L = 1, =os,
m. Lot Ver(w) = o'

Vinding a coherent, probadilistic expression of uncertainty about the
ungpecified olesents of equation (2.1) s not straightforward. It seems
reasonablie to regard the Taylor series remainders, T as independent with
soan zero. And clearly the varlances of the " ahould be an increasing

1), say ity ¢ 1. 1t p***5(0) 1s regarded as
a'a'n

function of the (It‘-tnﬂ

bounded, the matdematical form of " suggosts hix) « & as a ficret

approximation. However Lhils can only be regarded as e approxisation since Lt
is unbounded as x « It‘ - "nn' + = vhacoss Lhe uncettainty abeut "

vhich is expressed by nr(.‘). i9 secessorily Sounded. After all the pH
values of rainfall are in the neighdourhood of 5.¢.



It is aleo clear that o, will dopend ugon f Lo an extent which

i
diminishes as x increases. Comsgider the case where p = 0, L0, su‘) -
l(t.“) $ny. Since the prior disteibution fiwea the scale of l(t.") - ’o'
an extreomly ssall wvalue of I(t."). for example, would eatail ng? O if x

were small.

After vocentering B, if meceszzary, and the resmoval of known trends in S,
wo would have E(8) » 0; this will now be assused. The covariance of B, say
1. iz moce cosplex. Aszsuse Var(S(t)) = ¢? for all t. Conalder c"“"‘nu"
uun")). for example., 1If l. were, conditionally, am extrome value of §,
thils would indlicate that £ was at & mexisum or minisum and hence D‘ - 0; it
.° were not extrese nothing could be infervred about ﬂ‘ g0 its independence
feon I° would be ismediste. Hence D° and l!‘ are wncorcelated. But sisilar

reasoning adout ’o and B' suggests & poasibly stroag negative correlaticn.

Let e'(t.u) » B S(L)S(u) denote 8's suto-covariance fusction. Assume
¢"(t,u) = c(t-u). Then as is well-kmown e(-u) = e(u). Assuse ¢ is 2p - fold
differentiable. Obgerve that Del(-t) « limlde(-t)-cl{-Lt-h))/h : h + Os) »
~1im [(ef(toh) — c(L))/h : h =+ Os) » -Deft). It follows that De(d) « O and
by induction that all of odd ¢'s derivatives of 004 order are zero at t«0

M1 ozu-

since D' 20¢0) « Hm[ (0™ Ten) e 0™ Leten) - 207 Ye(0)3/m® 1 m 2 04) = O By

the Inductiom Nypothesis,

wote that (-1)70% <(0) 2 0 for all §. To see this first observe that

E D‘t(t)b’t(u) - (-1)’¢‘1'J)

(‘-U) o!-.’ . oo *ev, P
where, In genecal o“)(x) donotes the o th derivative of ¢ evaluated at x

(Priestly 1981, Sectica 3.6.4 presents this result when 1.0, §e1). Taking
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the limit in thie laszt result as u » € with iof gives Lthe cesult.

From the amalysis presented abowve, the following ctepresentations are
obtalned, vhere [ « Covip) » (Iu)l
5., = =130y (2.2)
j
r’ « {-1)7¢ “"mz
for 1, =« 0, vvv, p vhare l" e the j-th co-ovdinate of I' = Cov (S(L),

)

.t). a (prl) dimensional row vector for any ¢, Obgerve that for small values

of

It- ¢t ¥,

r (rej)
)'e (0)/r! = ; (;-;a.‘

nol" l"" e (-l)’ ; (t-t 1

Thus
C
M= ; (t-(““) Irlﬂ 2.3
where lr denotes the rih row of .

ow suppose (S(t), BT)T has a distridution with 8(t) = a B ¢+ ¢ where &
is & vector of constants, Cov ({, B) « 0, and E({) = 0, 1t follows
fsmediately that [ = Cov (2, BY) = a f so a = II° . Alse Var({) = ¢(0) -
I T, 1a susmacy we vill assese, in confliet with equation (2.1), that
RaX Boe (2.4

» Y B -
wvhero X "= L-th row is r(et)t o Fle)=Cov(S(t,},67) and ¢ = m & N ¥ is
the uncorcelated meise process in (2.1), .: . (e0) - F(L) !"rttt‘))‘i‘.

and z‘ - z‘(t.tm‘) has sesn O, variance 1 and 19 uncorrelated with the other

components of the righthand side of equation (2.4).



Both of equations (2.1) and (2.4) are exact under appropriaste
circumstances. At least locally thoy are agpruximately the same. To goe this
observe that equation (2.3) eatalls ru‘)}:" e ] o‘,(t‘ - tml)rlr! whate

3
. denotes the wector all of whode elements are 0 oxcepl Lthe r-th which is 1.
nel

Thus F(e T8« 1B et ) /et 50 that the 1-th row of X is
4

approxisately equal to that of X when t‘ is near t‘ AL the sase tise

ol”
- T [ 3 k (k) k k-t
r(t‘)l r (t.‘) o ; “l - t"‘) l’“_lﬂ -z x e (Q) /%! ’ (‘,) (-1 -

e » cl{0) - & wheze X » L "Mlm.m“ the remainder and involves

1"
terns of order atl least x"‘. To obtain the correct order would cequire

expanding I'(t ) to an order highor than p. This would reguire derivatives of

i
c of order highar than the assused 23. And Lhe definition of Ir would Save
Lo be formally extended Lo values of ¢ exceoding 9 using the ficat of
equaticons (2.2). 1If these extemsions are assuaed and only terws of order
:"” or lower order were teotalsed, we would bave the reminder , e, given by

2pez k

o w-f () § (:)!J-lic{‘it-e
kepel -0

2p+2 -1
k k -1 (k) k-r
et GEAD § (;-)"J 1, <™ ocn*
kepel el

. - P u'“:"x:n-c“””to)t-u"‘].

i this last expression ls positive since c(z"” (0 (_"»1 - 2’.‘ pe1’
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Thus under the added assumption that <¢(+) has derlvatives wp to the order of

Izp’z for some constant 4" the twe

aAp+s, Vlr(!:) = Varin,) = lzlt‘ -t
sodels would then sgree locally.

Is cur analysis we will adopt the structural model with Var{n,) = 47|t
- ta.‘l"'z. It iz the sispler of the two. They agroe at least locally, as
vas pointed out above and it is the local bedavior which Lls of prisary

i
nolge and ic essentially “windcowed out™ of infecrences aSout . Of course,

isportance. As lt‘ - tmll increases, n tecomes domimant, R, reduces to

the proposed model would be moce appealing in principle if Vor(.‘) were &

tounded functicn, h, of It‘ -t Mowever, im practice, this would appear

n-l"
10 make alnost no Aiffecwnce in esbimating ’o - cu“ﬂ). A varlery of W's,
bounded and unbounded, wete tried experisontally on the data in the

applicaticn prosented in Section J with little effect on the outcome. The

assuned underlying jolnt disteidution was sormal theoughoutl that ssalysis.

2.5 STATISTICAL INFERENCE. Conditionslly foe fixed B assuse that equatiem
(2.1) bolds with Covie) = o diag {lee X777, oos, :ocx:’“} . o', say

Where o = Vor(l‘) is the varlance of the noloe, ¢ = l'lo'. et 3!

Tepresents wncartainty about the cize of D”‘SI(]»!)! in the remalndor term of
the Taylor expansion of S and W = disg (b, *ov, B ), b = Jeex;®"? for all

i. Assuse all a prioril unspecified quantities have a jointly noemal
distribution. The following results are standard (see Lindley and Smith 1972)
with “~* meaning distriduted as and “U|V" seaning the conditional disteribution

of U glven V:
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2if, 0 mw(ap®, xIx o 'n)
(2.%)

pIn, Y, o M-I 00w 'y,

vhete ¥ = (I ¢ ¢ i),

In principle this solves the Iinference problem. When the Nyperparaseters
in 8%, I, oF and W are specified, I may be estimated by its & posterior
expectation and a4 credibility ellipsoid is easlly constructed to give a 5%
credibllity sel for P. Altermately, point and credidility interval
estimators of B « S(t ). B, = 0S(t__ ), etc., may be comstructed from the
normal sacginel disteibutions of Lhese paraseters.

Ususlly, additionsl stages would need Lo be added Lo the process of
conatructing the prior since specifying the hyperparasclers at the (iral stage
would be difficult. Moreover, the resulting theory would e technically
complex.

A sommwhat &8 doc, much slspler, approach iz sdopted for the analyses of
Sectica 3. Observe that as §° ' + 0, ¥+ o' (X" x)"? 2o that x(Bjm) +
X" 0 X" R, the generalized least squares estimator of B with {a
posteriorl) covarlance matrix c'(xtn'ln". Thue, using & 4iffuse prior for
B leads to the classicel estimator whem o' and M are specified.

The sane astisator may be obtaimed by tresting D as & hyperparamseter in
the likelidood obtained from the conditional denslty of ® glven B, «°, and

H; evaluated at R = r, this is, ignoring irrelevant comstants,
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M2 o (-t i) ext T Hee-xmy)

o-nnl"
By standacd Lheory this is maxinized at

N S e T

2% o o e Y-, 12.6)

W ioh,

And & priori, conditionally, glven B aad N, ﬁ\- D, .2“
independently of 1o° which has & chi-squared distcitution with o-p-1 degroes
of freedom,

Only ¢ or eguivalently ‘2 resaing to bo chosen, 1f p « 1 or 2, may,
this may be done by introspoction. Alternately since the likelibood, with ¢2
=% and P « . reduces to

@™ w2, (2.7
an estimate ’e\-u be found by maxinizing, swmecically, the exprossion
dizplayed is (2.7). The stochastic indepeadence of B asd " is thea lost
and the resulting credibliity interval for ’o - 8“"‘) is then omly
approxisate.

In the application of Section 3, ¢ » 0 was obtained for both pel and 2 by
maxiniziog equation (2.7) But the reduced likelihood iz nearly flat in s large
neighbourbood of cod 20 this choice i2 not strongly supported. Intcospection
suggests & small valuwe for ‘2 and hemce ¢, but ced zeema unrealistic, The
possible dependence of the maxisum likelihood estimate of ¢ ca the cholce of
"nol pregentis a dilesma. A date -based alternative 1o maxisum likelihood for
finding ¢, which aveids this ileswe, was finally adopled for the application of

Section 3. This epprovach uses cross-validetican (Stone 1974); ‘ml. L‘ is

ehosen, successively, ey Lo deopped feom the sample and interpolated using '91
« B, (1) obtained as sbove by mexisum likeliheod, and thea ¢ = ¢ 1s found by

nusericelly mininizing | “l - ’t\‘)z. This approsch gave a mmall But positive



value of ¢ and was judged superior to the maxisum likelihood method, It is

noteworthy that ¢, found in this sunner, does not depend on o,

To estimite o' edaceve that for bt - = t., the 3 priori local strectural
model lol‘ -.toa‘ Led, vovs n vhere o, -su.‘) nndz‘hu-uao.
variance 1. Now ., may bo estimated without knowledge of o by the
generalized loast squares sethed described above aad Vlt(o!) - cl". viere,

given ¢ » ’e‘. ¢, i a kmown factor obtaloed from the gencralized leasl squares

i
[

procedure iteelf. Thus E(R, - o) = Vor(o\‘)' +o  wo'(1e ¢} when the
noise Is regarded as independent of the carvier. Conseguently an wnblased
estimated estimator of o s

. ) A2

a o-i(ll-o‘) Iuoe‘).
This is the estimator which (s used in the applicatlion given in the next

section.

A
The pregosed estimator P, of £ has the curlous progerty that for large

lltll

- "e -
’ir - x N u"‘ N oi' e ee0, 1, L p (2.7

where the A's are the least squares estimates obtalned by minimizing I (r‘
i

It

th - wee ) t'lp!)z. To soe thiz observe thl/ﬂ\h found by

mininizing

) - wee o BCt e )"Ipnzn;‘
2902 clt

z(l’i°' °“‘
vhere 4

. nd

-1 C(Q! - 't’.z d’. i, J#1, ++¢ n when

i mt) nel
It ,,| is targe. Thes ‘I‘ way be replaced by 1 In the weighted residusl sus
r
of squares which deternines ,D\ Now lot ‘ “W ) tjt:’:lu-r)! whore the
yot

A's are arditeacy, ¢ « 0, 1, ==+, p. Thea I Butt-t ) Cret »

I (\ Hn {( ) ti'{ L - L.n)r after m.rcmlu the orders of

3

summation aod this im turn ie just ) l’t‘lj' which proves the assertion.
)



3. NMNTLICATION. 1Ia this sectiom, the results of the last are tested on a
specific dats sot. These data are derived from the ADS data-base which g
saintained and updated by Batlelle's Pacific Nocthwest Ladoratories in
Richland, Washington. The data weare obtalmed from one of the nine stations
which constitute the MAPIS/PCN, monitoring network. This statiom, located at
Pecmsylvania State University, has latitude and lomgltude 40°47°18 and
1575647 cespectively. This network is found in Lhe Noerthesstern part of the
United States and has provided event-based chemical measurements of wet
depoaition eventa gince aboutl 1976, although the start-up wvaries from station
Lo station. For illustrative pucposes, our analyses are ¢onfined Lo twe
subcacos: (L) the fleld g values which were measured at a particular statiom
during td precipitation events of 1977, and (LL) the menthly average
pH-values over the 1976-82 pericd at the same ztatiom. The last is an
intrinsically sscother altermative Lo the forwar and will be referced Lo a2
the Monthly Average Data. Throughout this section time is measured in days

starting with Januacy 1, 1976 which is regarded as the origin.

Only locally constamt, Linear and quadratic (L.e, p £ 2) structural
models will b consideved in this illustrative agplication. In the lecally

Linear case, for exasple, with v! - ‘t -!.m1 the a prlorci model, l‘ “a s

"t + o(locv:)” Zi. ied, vrr, n, oMtaing, given o, B, o, and ¢, where

e = 8(t__.) is the interpolant or predictand, that ig, the objoct of primary

nel
infecential intecest, § = 8 (t_ ), and Z_ - ¥(0,1) isdependently of each
obther and of w, P, ¢, and o' . Under appropriately 4iffuse prior
distridutions, posterior estismates of « and ), may be found by maxisus
1ikelihood when ¢ and ¢ are fixed, The results are precisely those oblLalned

by genoralized least
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Pquares. Thus the calculations are essily pecrformed by usisg convenlicnal
statistical packages like SAS or by sisple to-write code (which in our case
vas 1730 the cost of the ficut approach). The computations for the lecally
constant snd locally quadratic cases are juel ar steaightforwacd as those for
the locally linear case; the A-th power of 't‘. in .l.' conditional wariance
(ghven & and D) L5 replaced in the former and latter cases, Tespoctively, by
2nd and 6th gower, according to the reasoning of Section 2. The ostimated
value of ¢ wasz found by cross-validation ueing 4 nuserical oplimization
subroutine to minizize the su= of the leave-ome-cut squared ecrors 43
described in Section 2.5, ‘0" was also found by the method descrided in that
section. The cotiseted vacrionce of a is easily found by means of standard
forswlas from Lthe theory of curviliinear vegression. Since a posteriori, a
has 2 mormal distridution with mean «, an agproximate 5% credidbiiity
interval for & is odtained by adding to and subtracting from @ twice the

ostimated standerd deviation of a.

Defore tutrming to an analyciec of the acid deyeeition 4ata, thece methode
ware applied to an actificlal, parabolile data set, The lecally quadratic
model gave & pecfect fit with estimated 0" and ¢ valuos of 0. Moreower, the
locally quadratic extragolant of these dats is the same parabols as that which
generated the dots. Thiz iz bocause the locally quadratic fit is alzo the
least squares quadcatic (it and, as pointed ocut in Section 2 in the saterial
following equatiom (2.7), the extrapolant of any of the proposed local fits is
the least squares polynosial it of the same ocder, extended deyond Lhe data.
In Flgure 1, the locally comstant and linear fits are displayed, The local
tits are again essentially perfect over the rasae of the fake data. However,

Liw wxtcapolants ace asysplotically cematant, im the locally linear case



~18-
because Lthe least squares line for theso data has slege 0.
FICURE 1 HERE

Obxecve in Figure 1 how such more abruptly thas the locally linmear fit,
the lecally comatant fit, which is not required to locally differentiabdle,

turns Loward ite cight hand asysptote, the sample average of r-values,

The swecessively greater smoothnesses of the locally constant, linear,and
quadratic-fits ave revealed im Figure 2 whare all three models are fitted to
the 1977 data. The twice Aifferentisbie quadratic cannot make e quick turns
ef the limear, for example, and it temds to round off the latter'szs cormers.
Such comgarisons are somevhat tentative, however, sinte the “ssoothing
parameoter™, ¢, is fitted indepondentiy for the throe curves and Lts =zize
dotermines to & conzideradle extent the sscothness of the cutwe. When c i
large, the comditional a priocl varlance of l‘ grows very rapidly as "l' -

It | imcreases, the it at any given ta is then highly locallzed and

1~ tan
only the l"- with |v1l close Lo zecu dotermine that fit., The result for »
large ¢ i very irvegular for a noley process like that portrayed in Figure

2. As a final note about Flgure 2, observe that Pecause of a degree of some
apparant sesscnality in the data they hawve a slightly parabolic character.
Thus the locally quadratic fit, unlike its linear countergart emerges from the
data at eitder oxtremity (zide) with & marked upward tread. Thisz emphazizes
the need Lo remove seasonal components, Lf any. by adding o model 10 the

smooth Lo avold the possibllity of nomsensical predicticas,
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FICURE 2 WESE

The sane caution iz mecessary in intesproting the credibility intecvals
portrayed im Flgure 3, It sust aleo bo emphasized that just as the results in
Flgure 2 are not curve estimates, the bands in Figere J are not sisultanecus
interval estimates. That e they cannot B¢ sald to enclose {S(t), a < bt <
b}, over the agpropriate Lise intecval (a.b), with prodability $5% even
approximately. Such bands would be sppreclably wider. Those im Flgure 3
maroly indicate the appropriate credidility interval for t(tm‘) at each

L These are nol Lolerance intecvals, that is, Lhey do not contain l(t”‘)

nel’
with probadbliilty 95%, Sueh Intervals are sasily odtalned approximately,
however, by adding (vespectively sublracting) 2o to the upper (respectively
lower) Llimit of 8's credibility intervals. Although it would seem to be of
1ittie Interost we &id exanine the lccally comstant case with monthly data and
found that S of 80 L.e. oX of R-values were motl covered ia the appropriate

tolerance intervale; in that case o w 0.1526.

FIGURE 3 HERE

With these csutionary twmacks in miod let we turm, to Figure 3 for am
evaluation of the results. The credidility band for the locally quadratic
sodel Lures oul Lo be maccower Lhan that of the lecally linear model. T™his s
intuitively appealing;: the ssoothing constant ¢ is a oritical detoerminant of
the width of these bdands and represents ossentially the size of the remalnder

torm in the Taylor expassions. 1t iz intuitive that this sheuld be ssaller in
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the quadratic case zince there, the second order term has been “lifted” owt of
the ervor for the linear case and so reduced It. The cross validatery
eslinates of ¢ agres with this cholce In the examples, but there is no
guarantee that & similer cesult would obtalim In every case. Notice that the
credibility intervals for the two cazes represented in Figure 3, are
consideradbly different culside the cange of the data; the quadratic band is

such narcower,

Yigure 4 reveals that the locally linear bands are somewhat anomalous
outelde the range of the dats. They diverge more rapidly than either thosze of
the locally constent oc locally quadratic case. The agparent anomaly is a
product of the ad ho: method used for fitting <; the cross valldatory cholce

in the locally linear case 19 100 large rolative Lo the other two cases.

FIGUEE 4 NERE

The residuals for the locally linear fit for doth data sets are

repropented in Pigure S. The essusption of a constant error variance, o'.

seomz reasonable in the case of the 1977 data. Mowwver, the residuals for the
monthly avecage data make this hypothesis secom sote tenuous in that case.

Overell the fits seom reasonably good.

FIGURE 5 MENX

In Figute 6 are coatrasted the results of Linear and locally limear
fitting whem the =iddle of Lhe data are doleted. Notice in particular that
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e width of the confidemce Band for the linear (it reaches a minizm whare
Lthe data are nlssing. This s, tectmically, because the time mesn, t, i
located in the gap. However, this Is somewhat paradoxical since there would
seen Lo be considerable uncertainty in thic reglon bocauce of the lack of
data. The explanation lles in the usequivocsl cholce of tha linear model over
the whole raoge of the data. In comtrast, the width of the credibility

interval for the locally linear (it increases in the gap as would be expected.

VIGURE & NERE

In Figure J we Lllustrate Lhe curve of estimates of LS(L ) for varyisg
valwes of L over the 1977, The four peaks indicate the times of steepost
ascent of the pM smcoth and Lhe Leoughs, the Lises of atecpest descent.

Crediblliity Intervals could well have been plottod dere; but we doclined to do

9 A% N0 now issues arise.

FICURE 7 HERE

Finally in Figure 8 are displayed & tuaber of locally linear fits with
varyisg rathor tham fitted values of ¢, This Lllustrates the great range of
possidble smoothers wiich can be achleved under the lecally lisear assuspiion
slone. The cholce ¢ « 0 gives the lesst squares line, while for large ¢. the
it tends Lo follew very closely the isdividual data points.

FIGURE 8 MENE
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4. BELATED WORX. There ls a vast literature on the subject of this paper and
we will not attespt amything 1ike & complete survey. Our review will clte

Just the moat relevent, recent work Lo help put our results into perspective.

Our results intersect with those of Cleovelasd (1979) vdo presents a
genecalized least squares, locally polymomial, twe disensicnal scatterplot
smoother. Por eseh L o« XL R L e, ’»T, are choses to minimize
I owdty) (e =% =2 &) = ooe A t?)" as & function of the A*s. Thus

b 3
A w (L) « |1 + ¢ (t’- t‘)mzi'l. the smoothed value of rt. r\‘ say, obtalned

S |
by Cloveland will equal the eatismate proposed in this paper for 3(!1).
Cleveland doos mot, however, suggest this welight function because hig
snalyses, unlike ours, ir notl driven by an underlyisg model and ite Tayloe
expansion. Mis weight functlons, w (L) = [(] - lt, . tll').l'. for example,
derive instead feom exploratory data analytic and rodustness considerations.
In fact, Clewwland's smooth iz cd®tained iftecatively By a succession of
ninisizations whore at cach step, the welght functlion chasges sccording to the
character of the reslduals (rem the previous step. His flinal sscother is
found by connecting the s by line segownts whervasz wo fit an ostisate of

S(Q“n) at ocach point, ¢t Our work differs from Cleveland's in other

nel’
ways. Our theory Lz Bayesian and, is thie pager, espivical Bayealan; in
goneral our emootier would not be & generaslized Bayes procedure, We, wmilke,
Cloveland, are concernod with extragolation cutszide the data set and with
reliability bounds on our extrapolated and interpolated values. And moat
importantly, cur theory has an conceptually easy extenszion to the space-time

context.
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Ve ghave wilh Fearn (1973) a suitivariate normal based Bayesian approach
to the anslysis of individual sample peaths, in his case, grewth curves. Dut
our paths diverge when he adopis a glodval linear model for the carcier. For
individual i, the observadle vector .l hac a comditional a priorl
disteibution, X | B, o', ~ MXB., o'1), L =1, voe, m And B, W,

C =~ Wy, € for all 1. Mn ad-hoo procedure is used Lo estimate the e and C.

Bocazte we do not poatulate & global, parameteic sodel, our sppreach Lo
modeling offers far greater flexibiilty than Fearmn's while retainisg all the
advanteges of the Bayeslan approsch. Sisller gains in flexibility are
achlieved over Hul and Bergec (152)) who alseo assume wnderiying mormality ins
their agproach which azssumos R(L, u‘) “a b‘ L, for ¢t in the (shoct)
follow-up interval for individual iel, v+, n. Their analyeic iz not as
local az ours and their resuits are quite different in charscter from thoze
presented heve. They do coasider Lthe probles of eatisating the unspecified
covariance matrix,

0'Hagan (1978) conterns hissell wilth local regressiom curve [itling and
deaign. Mis moat goneral model has B « Rix) ~ Ninix), J(x)). The
corrvelatica of Nix) ad l(:-) iz through the cocrelaticm of nix) and q(x.)
which are assused to have jointly, & normal dizstritution, az sre any finite
sot of a's, The pesterior mean of nix) is readily foeund and is the
posterior mean of R(x), which is thus readlly interpolated or predicted as
sppropriate. O'Magan (ibid) regarde J(+) as gpocifiod but the cace vhere it
s not g briefly discussed. His work Ls similar in spirit to that presented
herae. 1t differs in ag such as he does not expliolt ag we do, the matural,
local strwctural 2o0del which rugularity ontalls and which foccor 5(t) and

st ) iste o linesr rvelationship (with errer). We view our sethodology as

]
n+l
an ineluctable conpeguence of our regularity assusptiom and
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therefore mecessarily favoe 1L ower O'Hagans'. We favor our approach too
becauce our structural model guides the guantificaticn of prier opiniom oy
prescribing the framemork on which it muet Bo atblsched. 1t would therefore be
sinpler Lo apply in practice.

The considorabie litorature on splice smoothing techniques is weil
surveyed by Silversan (1985) v glves an extensive bibliograghy. The
polynomial smoothing spline of ovrder 28-1 Is found By minimlzing, with respect
to 5, a positive multiple of F(r, - 5(t, 0" + % 7 (0%5(t))"as ; this
integral is over [0,1] in Vakba (1983) where iL is asoumed that l(t‘) - s(t‘)
* o and that ¢, are zero mean notmal disturbssces of comstant varlance for
all L. The result is a plecowivoo polynonial of order In-1 in each interval
(t‘. "tﬂ’ with zmooth joinz at the interval Boundaries for all L, Wahda
(1983) poimts out and exploits & Bayesian interpretation of the smoothing
spline, that 15 a Bayes estimate with respect Lo & certain zero moan Gausclaen
prior, And ghe ie adble to develop Intervals for the '“l) vihich soem to have
the confidence progerty, according Lo & simulation study she describes in her
paper (with A estimated by cross validation), It should be esphasized that
these are not sisultaneous confidence Bands, 1.e. the percentage of the Nt‘)
which would 1ie in their istervals would avorsge around $3%. It iz not the
case that all of the Stt‘) would sisultancousily be covered around 935% of the
time, 1t is wot clear Af sisultenecus confidence Intervals wouid be
sthilevable with Wahba'e theory, Presumably intervals (credibility or
confidaence) for '“nﬂ" un interpolant or predictand, could be cbtained But,
even though thin in & problem of conzideradble practical significance, it ia

not addressed by Wahba,
The spicit of splilne-smoothing lies In freguency theory so It is not



altogether sesningful to Ley Lo compare aed contrest such work with ours.
lHowever, & few comments would seem in order. The Bayeslanity of spline
snoothers {3 an artifact, a product, in particular, of the objective function
which iz minlaized in thelr comstruction. It would seem that the dcrin‘
prior iz exsentislly unique 20 that the spplicability of these smoothers as
poruinely Bayesiasn procedures would coem to Be soverely limited. Beyond thle,
the prior, a distridution for the infinite disensiomal “pareseter™, 5(+), ia

an overspecification in the sense that whea Infecence Is abowt S(t ), for

n+l
exsaple, only & distribution with a finite dirpensional support set is
toguired. A major conceptusl dizadvantage of zplise smoothers pointed cut by
Silverman is that they are defined only ieplicitly as the solution Lo a
mininizatlon prodlen except for large sasplos vhea an appreximate expllcit
exprossion may Be derived. In contrast, our msethed does yleld an explicit

estimato of ’“u* along with explicit credibiiity intervals for thias

l)
estizmate. And although cur extensices of our present work are incemplete, it
does seem Lo promise easy analogwes of the present work In the case of
veotor-valued cosponse functions of a vector argument. 1In contrast the theory
of splice-ssoothers seens Lo present considerable tecdnical Aifflculty a=d
while Lthe work of Wabba (1953) has been extended, these extensions ave

hard-won and guite limited to date.

There has deen a considerable interest in seagarametrie regressica and
the celobrated paper of Stone (191)), among others, discusses the consistency
of the seabers of clesses of such procedures. There is little intersectiom
with our work which is mote concermed with generating seo-parssetric

regression function estimators than on repeated sampliog propertiecs of the



reoults. Stome (1977) does comslder in passing o locally linear octimator and
the same cstimatoc sppears sore informally is Chasbers, Cleveland, Kleiner and
Tukey (1903, p.9¢). The locally linear ectimators im both of the just cited
works differs from that which emerges here im the locally linear speclal case;
out estimator Ls not, in fect, Llinear In the regressor, L.

A notable, recent contridutiom to the llterature of sacothing s the
paper of Brelman end Friedman (1983). Thelr very general approsch yields an
isplicit characterization of transformations of Lhe rogressand and cegressor,
vhich maxinizes the correlation between the trassformed variables, Thelr
paper is in & noopacrasetclic froquency setting and has little intersection with
curs. In particular thwy do net conelider the groblem of developing
roliablility basds or the prediction prodles. Katheo theic work ie concocned
with finding & suitable algorithe for detemmining the roguired optimal

teansformaticas,
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S. DISCUSSION. This report presents s very genoral agproach Lo the analysis
of stoehastic processes, R « C ¢ Nwhore € « X + 5, M iz a parssetric model
{poceidly zor0), 5 is » wmooth function which is et least contimueus and
possibly differentiadle to nome ordor and ¥ iz uncorrelated noise. The sethed
is flexible and casy Lo isplesentl. In its genecality it subsumes space-Lime
series and the vegression problem. It allows for the analysis of tise series
with caly a single chservation per sample path and in general gives explicit
answers which are suceh different In fom to those derived by classical methads,

The rvesponse K, would in genecal be & matrold vhose rows (as few as one,
rossibly) would corcespond Lo Independent replicates and colwens to possidbly
cortwlated, por subject cvesponses, On each row would be stacked the response
vectors, one for ecach cosbination of quantitative levels st which the
redponses were measured. These levels could imelude such Lthings as space-tise
co-ordinates and indepesdent {(contisucus) veriables like, say tesperature.

The model M incorpeorates all avallable gprior knowledge about C's
functional foem., £o M could well contain terms for Lrend and scascnality.
And ¥ should incorporate all of C's discontinuous components. For example,
clt) « 0O or 0 sccording as t & teort>t, with 0 to be fitted, would
incotrporate the offect of an interventiom at tize to. Such an intecvention
might bo the closure of a sselter or altematively the start-up of a new power
gemerating fecliity; in elither of these cases, R might well e the pN of wet

aclidlic doposition, In sny case, M would be analyzed in a conventional fashion

and in Lhis paper we suppose M = 0.



S 13 the fecus of thio paper. The resposses, K, age assusmed Lo have deon
measured at distinct lewels t « t‘. aee, tn. of u wingle, continuous
oxplanatory factor. Aad inference iz taken Lo be about lu.”‘). at a point, ¢t

where, possibly, no odgecvations have beon taken., The celationship

" e
botween S(t!). iel, ..., n and SCt..‘) iz dictated By Taylor's theores; S(t‘)

= S(L )¢ ccc ¢ pemainder. This relationahip is an inevitable conzeguence

n+l
of the assumed regularity, it is exact, and it provides the vital link for
inference detwoon the l(t‘). i, oo, m, and S(tnﬂ). A prierl uncertainty
about the remainder and adout all other such umspociflied (tems s guantified
in torms of prodabilities. The rvsalader is not indepondent of the other
tares in the expansion. However, we show is Sectiom 2, that this assusption

is approximately valld for t.‘ near tml’ ad this is all that matters because

the more remote observed R-values are windowed out, The Taylor dased
strugtural model reduces esormousily the seed for Introspection in a priorl

disteibution elicitation.

The use of Bayesian methods has Lhe advaatage that prier knowledge about
a priocl unspeciflied parameters can be accomedatod in the analysis to a far
greater degreoe than mserely through the choice of N. On the other band by
adopling appregelate diffuse perlor probability distelbution, essentially
eapirically Bayos procedures like those which form the core of results In this
paper, are edMained. Espivical Bayes sethods are enjoying a geed desl of
current popularity Secause of thelir capadility to tramsfer iInformation between
subjects (“Socrrowing from strongth™) and often, thareby, lsproving Lhe overall

quality of the asalyais.
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Qur approsch has the advantapge Lhat estimates of S(L_ ) are odtalned im

nel
an explicit form. They are linear fusclions of the l(t‘) and a combisation of
ratiomal functioms of L4y Yor extreme values of LT ’“u»l’ is, in the
case consldered hete whete Lhe prlovs are vague, predicted by the least
squates polynomial fitted Lo the date; its ocder is that of the highest term
of the Taylor expansion, MNewever, In a proper Bayesian asalysis of this

prodien more comtrolled predictions would be odtalined.

In any case, credibliiity intervals for “‘nn) are caslly comguted in
explicit form from its & posteciori distritetion., And in the case considered
Mere, this intecval should have, approxisately, the cenfidence propecty.

Simultanccus bands are desicable in principle for (8“““). evep S _J); K

nek
al.

Cur approach readily ylelde quantiles for 5(t__ . ) along with its mean
nel

value, And it can be applled 1o make Infecences for Aifferences like B(t»‘)

- ‘“mz"

1t should bo esphasized that although S-curves and credidlility bends are
pletured in the Figures these are intended to be spplied on a polnt-by-point
based and not sisuitaneously. Sisultanecus credidbility bands would e a lot

wider.

It ghould also be esgpdasized that the distributions in this paper have a
finlte dimensional wupport generated by the quantities emecging at the tises t

- l‘. oo, "an and Lhese disteibutions are thought of as just approxisate



exprossions of wacertalinty. We have not conszidered the technlically
challonging problem of studying the class of stochastic processes, [S(v): ©
£ 1 & =), for vhieh our logal strestural or stochastic linear models hold.

An underatanding of these processes would e helpful in insuring codarence in
eliciteated prior probebilities.
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FIGURE 1,

locally Cenatant (beokesn Lline) and Linear (solid
kine) rics to Artificial (parabolic) Data.
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FIGURE 2. A Comparisos of the Locally Constant (dotted iine), Linear
(roken 1ime] and Quadratic (solid lire] Fits te 1977 pH Data.
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FIGURE ).

A Comparison of the Credibility istorvals for
1ocally Linecar (beokon lirce} and Quadratic [(solid
line) Fits for the 1977 (top) and Meathly Averago

(bottom) pll Data.
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rIGURE 4. Locally Constant, Lincar, and Quadratic Pits
for 1977 and the Moathly Average pll Data,

1977 Data monthly Averages
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PIGURE S. Secidual Plots from the locally Linear rits to
the 1977 (top) and the Mcathly Avessage (bottem)
pH Data,
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ricume 6.

Comparleon of the Credibility band for the
locally Linear rit asd the Confiderte Band
for Linear Begressivn: Central Data Peints
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FIRST DERIVATIVE

FIGUKE 7. Estisated FPlrst Derivative Punction for the
Locally Linear Smooth and the 197 pi Data,
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FITHX 8. A Cooparisce for 1977 Deta of locally Linear Pits for

Varicus Values of the Swmoothing Constant ¢ = 0,00001, the
Sacothest (Straight line) Fit, Through ¢ = 0,1,10,100,1746.9
To ¢ = 10000, the Xcughost Fit,
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