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Abstract

Next generation sequencing (NGBS) of bulk tumour tissue can identify constituent cell populations in cancers
and measure their abundance. This requires computational deconvolution of allelic counts from somatic
mutations, which may be incapable of fully resolving underlying population structure. Single cell sequencing
(SCS), is a more direct method, although its replacement of NGBS is impeded by technical noise and sampling
limitations. We propose ddClone, which analytically integrates NGBS and SCS data, leveraging their
complementary attributes through joint statistical inference. We show on real and simulated datasets ddClone
produces more accurate results than can be achieved by either method alone.
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Introduction
Human cancers develop through branched evolution-
ary processes [1] resulting in genetically diverse clonal
cell populations. Every cancer cell likely harbours a
distinct genome through accrual of individual muta-
tions, however evolutionary relationships between cells
can be hierarchically encoded with phylogenetic trees.
The major clades represent cell populations with a ma-
jority shared genotype. Mutations impacting pheno-
typic variation between clonal populations are thought
to drive the clonal population dynamics of a can-
cer over temporal and microenvironmental dimensions.
Clonal dynamics in turn impact clinical trajectories,
underpinning disease complications such as treatment
resistance and metastasis.

Quantitative characterization of the number of
clones, their genotypes and their abundance is of cen-
tral importance in the study of the evolutionary dy-
namics of cancer. Ideally, the identified clones would
correspond with the branches of an underlying gen-
erative process modelled by a phylogenetic tree. In
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practice, because of limitations of current sequencing
technologies, we are not able to directly observe clones
of interest. Instead, indirect experimental methods are
used: bulk targeted deep sequencing [2] and single cell
sequencing [3]. In both bulk and single-cell, we focus
the discussion on nucleotide variants markers (SNVs),
which we assume have been identified in a preliminary
analysis [4, 5, 6, 7]. In both experimental platforms,
technical challenges remain which prevent accurate in-
ference of the desired quantities. We posited that joint
statistical modelling of bulk and single cell sequencing
data could improve inference of clonal composition and
abundance.

We begin the discussion with an overview of methods
for bulk sequencing. Bulk methods can only provide a
direct measure of sampled allele prevalences (the frac-
tion of reads that harbour a mutation at a specific
genomic locus) over DNA fragments sampled from a
large, mixed pool of alleles extracted from the total-
ity of cells present in the input tissues. Consequently,
allele prevalence is a compound measure impacted by
the unknown quantity of non-malignant cells and the
unknown composition of the constituent malignant
clones. Leveraging many mutations measured from the
same allelic pool, computational methods have been
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developed to estimate subclonal structure from allele
prevalences. The PyClone model [2] takes into ac-
count several confounding factors, including: statisti-
cal variation coming from the sampling of the reads;
non-malignant cell fraction; mis-called bases and other
technical artifacts; and most importantly, how copy
number alterations resulting from segmental aneuploi-
dies locally and/or globally deviate from diploidy. Py-
Clone and other methods such as PhyloSub [8], Clo-
mial [9], AncesTree [10], and SciClone [11] generally
assume mutations with shared prevalence (either cel-
lular prevalence or allele prevalence) are more likely
to be co-occurring within the same cell, thus defin-
ing components of a clonal genotype. This assumption
may be violated to varying degrees; mutations may
be present at similar allele prevalence but distributed
across clones [12].

A potential solution to this problem lies in sin-
gle cell sequencing. Single cell sequencing (SCS) via
whole genome shotgun or multiplex targeted design
by PCR amplification theoretically yields direct ascer-
tainment of genotypes whereby the data itself will en-
code whether sets of mutations are co-occurring in in-
dividual cells. While the measurements of SCS are con-
ceptually simpler, they come with a much higher level
of technical noise [13, 14, 15, 16]. Since the amount
of measured DNA from each cell is minimal, missing
one or both of the alleles (allelic drop-out (ADO) [15])
is common, resulting in sparse representation of un-
derlying genotypes. While missing both alleles is rela-
tively easy to detect, missing only one can seriously
skew interpretation of heterozygous loci [17]. More-
over, by construction, SCS methods sample a dra-
matically smaller number of cells compared to bulk
sequencing. As a consequence, when estimating cel-
lular prevalences the sampling error will tend to be
markedly higher (Figure 4 and also Additional file
1). A number of computational methods have been
developed to work with SCS data that account for
(some of) these limitations. SCG [16], uses a hierar-
chical Bayesian model to cluster single cells into clones
and infer constituting genotypes and their prevalences
and models various technical errors, including dou-
blets. Using mutual SNVs patterns in the single cells,
OncoNEM [20] and BitPhylogeny [?] infer the evolu-
tionary relationships between constituent clones while
SCITE [19] also reconstructs order of mutations.

We propose to leverage the strengths of both se-
quencing methods for optimal computational infer-
ence of clonal genotypes and prevalences. We present
a novel probabilistic model based on non-parametric
Bayesian integration of bulk and single cell data. We
demonstrate on synthetic and real datasets how si-
multaneous analysis results in improved inference of

salient quantities of interest for biological inference of
clonal dynamics in cancer.

RESULTS
We developed a statistical framework, ddClone, lever-
aging data obtained from both single cell and bulk se-
quencing methods (Figure 1). The ddClone approach
assumes single cell sequencing data will inform and im-
prove clustering of allele fractions derived from bulk
sequencing data in a joint statistical model. ddClone
combines a Bayesian non-parametric prior informed by
single cell data with a likelihood model based on bulk
sequencing data to infer clonal population architecture
through clustered mutations. Intuitively, the prior “en-
courages” genomic loci with co-occurring mutations in
single cells to cluster together. Using a cell-locus bi-
nary matrix from single cell sequencing, ddClone com-
putes a distance matrix between mutations using the
Jaccard distance with exponential decay. This matrix
is then used as a prior for inference over mutation clus-
ters and their prevalences from deeply sequenced bulk
data in a distance-dependent Chinese restaurant pro-
cess [26] framework. The output of the model is the
most probable set of clonal genotypes present and the
prevalence of each genotype in the population. Full
mathematical and implementation details are provided
in Methods and Additional file 1.

Benchmarking over simulated data
We benchmarked ddClone by simulating 10 ground
truth synthetic datasets each with 10 cell genotypes
and 48 genomic loci (Figure 2). Joint bulk and sin-
gle cell data was generated from a phylogenetic Dollo
process (Figure S1, Additional file 1).

We compared ddClone to three methods that operate
on bulk data only: PyClone [2], PhyloWGS [18], and
Clomial [9] and to two methods that leverage single cell
data only: SCITE [19] and OncoNEM [20]. Two per-
formance metrics were evaluated: clustering accuracy
(by V-measure [21]); and accuracy of inferred cellular
prevalences (the average over loci of the absolute dif-
ferences between the inferred and true cellular preva-
lences). For the same bulk data, three sets of single
cell data with different levels of noise were generated:
(i) ideal data with no ADO or doublets; (ii) data with
moderate levels of sampling distortion, in presence of
30% doublet cells and an ADO rate of 30%, and fi-
nally (iii) data with higher levels of sampling distor-
tion reflective of real data, with the same doublet and
ADO rates to ii. We designate these three regimes by
λ = ∞, λ = 10, and λ = 1.12 respectively. ddClone
was supplied with the above single cell data for encod-
ing the prior over clustering. Single cell-only methods
were given the exact same input as ddClone’s prior.
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Under noise levels corresponding to real datasets
(λ = 1.12, Figure 4), ddCloneλ=1.12 had a mean cel-
lular prevalence estimation error of 0.09± 0.03, signif-
icantly outperforming that of both OncoNEMλ=1.12

(0.17 ± 0.03) and SCITEλ=10 (0.18 ± 0.05), while
doing slightly better than the second best perform-
ing bulk data only method, PyClone (0.10 ± 0.05).
ddCloneλ=1.12 also had high clustering accuracy in this
noise regime, with a mean V-measure of 0.77±0.06 rel-
ative to 0.74 ± 0.06 for OncoNEMλ=1.12, 0.71 ± 0.08
for SCITEλ=1.2, and 0.71± 0.10 for PyClone. Clomial
had a slightly higher mean V-measure than PyClone
(0.78 ± 0.07), but it had a worse cellular prevalence
estimation error (0.14± 0.04). PhyloWGS had a mean
V-measure of 0.73 ± 0.03 and a mean cellular preva-
lence estimation error of 0.14± 0.04.

Under λ = 10, the moderate sampling distortion
noise regime, ddCloneλ=10 significantly outperformed
both single cell data only methods, in terms of cellu-
lar prevalence estimation, achieving a mean error of
0.07 ± 0.02 versus OncoNEMλ=10’s 0.13 ± 0.03 and
SCITEλ=10’s 0.18 ± 0.05. ddCloneλ=10 did compara-
bly well to OncoNEMλ=10 and SCITEλ=10 in terms
of clustering accuracy, with a mean V-measure of
0.79± 0.09 against 0.81± 0.03 and 0.75± 0.05 respec-
tively.

With perfect, noiseless single cell data (λ = ∞),
OncoNEMλ=∞ outperformed SCITEλ=∞ and ddCloneλ=∞
both in terms of cellular prevalence estimation, with
an average error of 0.04± 0.01 against 0.06± 0.01 and
0.06 ± 0.01, and in terms of clustering accuracy, with
a mean V-measure of 0.90 ± 0.03 versus 0.87 ± 0.09,
and 0.86± 0.04 respectively.

These results suggest that in presence of simultane-
ous doublets, ADO events and assortment bias noise,
ddClone compares favourably well to other methods
(Figure 3). This is most relevant in the case of im-
proved cellular prevalence estimates, as single cell plat-
forms will likely stay unfit for this type of measurement
in the near future due to under-sampling.

Sensitivity to presence of noise in single cell data
We next directly considered the impact of four types
of noise likely to be present in single cell data: “as-
sortment bias,”, where the quantity of sampled cells
are not representative of the underlying tumour, “dou-
blets,” and “allele drop outs,” affecting the quality of
signal at a single genomic locus and “genotype loss
noise,” where one or more cell genotypes are unavail-
able (i.e. due to under-sampling) for formulation of the
prior.

Assortment bias
Here we compare our method to methods that ex-
clusively accept as input single cell sequencing data:

OncoNEM [20] and SCITE [19]. In contrast to dd-
Clone, the methods above accept cell-mutation data
and not a derived genotype-mutation matrix. In order
to accommodate this in our experiments, we simulated
cells from the genotypes as described below. We note
that even though ddClone is not designed to work with
cell-mutation matrices, in the following simulations we
have used this type of data to remove effects of geno-
type inference methods (e.g., [16]) on the results. We
investigated the effects of sampling bias modelled us-
ing the parameter λ (see Methods sections). For small
values of λ, we expect the sampled cells not to be
representative of the true tumour content and vice
versa. With increasing assortment bias, ddClone per-
forms better than single cell only methods (Figure 4),
most importantly in λ ranges (Methods section) ap-
proximating the real datasets. When the sampled cells
are accurate representations of the underlying sample,
single cell only methods outperform ddClone, as ex-
pected since prevalence estimates map directly to cell
counting, without requiring inference.

Doublets
Doublets are one source of noise in single cell sequenc-
ing experiments which occurs when two or more cells
are trapped together in a single well during the se-
quencing procedure. As the genotype assigned to a
doublet well will be a hybrid of the genotypes of the
two or more cells that it contains, we assume that this
results in a false positive error where the hybrid geno-
type will have more mutated genomic loci than the
original trapped cells (Methods). We simulated an ad-
ditional 500 datasets across multiple values of rdoublet,
the percentage of doublet events, and multiple val-
ues of m, the number of sampled single cells, where
m ∈ {50, 100, 200, 500, 1000} and rdoublet ∈ (0, 1]. dd-
Clone’s cellular prevalence estimates are in general ro-
bust to presence of uncorrected doublet noise (5). We
reiterate that ddClone is not designed to work with
cell-mutation matrices and the best input to it is the
genotype-mutation matrix, for example, as generated
by the SCG model. SCG is designed to correct for dou-
blets and we anticipate that using it would improve
ddClone’s performance.

Allele drop outs
We next investigated the effect of increasing ADO (loci
with ADO sit at the extremes of the allele count distri-
bution (details in the Methods section)) in ddClone ac-
curacy. Progressively increasing the ADO rate results
in degrading performance in both clustering and cel-
lular prevalence estimates (Figure 6). Unsurprisingly,
the detrimental effect dampens as the number of sam-
pled cells increases.
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Clonal genotype loss
Clonal genotype loss is defined as a lack of inclusion of
a population’s genotype in the encoding of the prior.
We undersampled genotypes by systematically ‘hiding’
single cell genotypes from the prior. Unsurprisingly,
progressively removing more cell genotypes (in increas-
ing order of their prevalence) results in monotonically
degrading performance (Figure 7). However, when as
few as approximately half of the genotypes are avail-
able to encode in the prior, ddClone still outperforms
the naive methods in terms of cellular prevalence es-
timation (Figure 3 and 7). This suggests a degree of
robustness in the presence of under-sampling of clones,
and that even partial prior information will improve
prevalence estimates performance.

Benchmarking over triple-negative breast cancer patient
derived xenograft data
To test our method on a real dataset, we used a sub-
set of samples from a triple-negative breast cancer
xenograft study [22], where breast cancer tissues from
55 patients were transplanted into immuno-suppressed
mice, resulting in 30 xenograft lines. Over 3 years,
these lines were passaged up to 16 generations. Whole
genome sequencing was performed over a subset of pas-
sages to identify point mutations at specific genomic
positions. Deep targeted amplicon sequencing of be-
tween 100 to 300 SNV positions per sample was then
used to establish the allelic prevalences of these mu-
tations. 210 cells from five timepoints that span two
samples were chosen for single cell genotyping, and ap-
proximately 48 SNV positions were targeted for each
timepoint, with some filtration due to poorly perform-
ing cells, or loci [22]. A consensus phylogenetic tree
over cells was inferred using MrBayes [23]. Figure 8
shows the inferred cell genotype matrix ∆ for each
sample. In each timepoint, we only kept genomic loci
that were shared between the bulk and single cell geno-
type data.

Since exact clustering configuration and cellular
prevalences of the genomic loci in the real dataset
is unknown, we used the multi-sample PyClone re-
sults over several timepoints as our benchmark (see
Additional file 1 for details). PyClone in multi-sample
mode borrows statistical strength across all timepoints
to give generally more accurate estimates of clonal
structure in individual timepoints. We ran our method
along with competing methods on each time point in-
dependently. By these criteria, ddClone showed better
performance than the second best performing method
in terms of V-measure (Wilcoxon rank sum test with
p-value < 0.05) and performs comparably well (SA494,
timepoint T and SA501, timepoint X4) or better (all
the other timepoints) than the second best performing

method in terms of accuracy of inferred cellular preva-
lences (Figure 9). ddClone achieved a V-measure of
0.88 and 0.89 for sample SA494 at time points T and
X4 and 0.82, 0.82, and 0.81 for sample SA501 at time
points X1, X2, and X4 respectively. The second best
performing method, PyClone, achieved a V-measure of
0.56, 0.69, 0.70, 0.69, and 0.67 corresponding to sample
SA494 at time points T and X4 and sample SA501 at
time points X1, X2, and X4. Summarizing across sam-
ples ddClone’s clustering was best (mean V-measure
= 0.85, sd = 0.04), followed by PyClone (mean V-
measure = 0.66, sd = 0.06), Clomial (mean V-measure
= 0.61, sd = 0.06), SCITE (mean V-measure = 0.60,
sd = 0.08), OncoNEM (mean V-measure = 0.60, sd =
0.08), and finally PhyloWGS (mean V-measure = 0.53,
sd = 0.05). Mean cellular prevalence estimation error
resulted in a very similar ranking: ddClone (mean =
0.04, sd = 0.01), PyClone (mean = 0.05, sd = 0.04),
Clomial (mean = 0.07, sd = 0.01), PhyloWGS (mean
= 0.08, sd = 0.02), OncoNEM (mean = 0.15, sd =
0.05), and finally SCITE (mean = 0.16, sd = 0.05).

Inference of genotypes from multiple spatial samples in
ovarian cancer
We next evaluated performance on samples from a
high-grade serous ovarian cancer (HGSOvCa) study
[24] where 68 tumour samples from 7 patients (5 to
13 samples per patients) including samples from the
ovary and omentum were obtained during initial de-
bulking surgery, except one patient for whom samples
from the first and second relapses were also available.
Whole-genome sequencing of 31 cryopreserved tissues
and matched normal blood produced a panel of 3,577
to 16,987 somatic genomic aberrations including SNVs
and allele-specific absolute CNVs per patient. To verify
existence and allelic counts of these predicted SNVs,
37 formalin-fixed, paraffin-embedded specimens were
used in targeted deep sequencing of 300 loci per pa-
tient with multiplex PCR amplicons. Single-nucleus
sequencing of a total of 1,680 cells from 3 patients was
used to determine the co-occurrence of between 43 to
84 SNVs per sample. This data in combination with
the single-cell genotyper (SCG) model [16] produced
the cell genotype matrix ∆ for each sample. Similar to
the xenograft triple-negative breast cancer case study,
we only kept genomic loci that were shared between
the bulk and single cell genotype data and evaluated
the results analogously.

Measured against the multi-sample PyClone es-
tablished benchmark, ddClone outperforms all other
methods in terms of clustering accuracy with a mean
V-measure of 0.68 (sd = 0.12). Next best performing
methods are SCITE (mean V-measure = 0.60, sd =
0.08), PyClone (mean V-measure = 0.56, sd = 0.10),
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OncoNEM (mean V-measure = 0.53, sd = 0.11), Phy-
loWGS (mean V-measure = 0.52, sd = 0.12), and fi-
nally Clomial (mean V-measure = 0.52, sd = 0.15).
We note that although Clomial seems to tie with Phy-
loWGS, it did not converge over 4 out of 13 samples
(P3 - Adnx1, P3 Om1, P3 - ROv1, and P3 ROv2).
Similarly, OncoNEM did not converge over 5 out of
13 samples (P2 - ROv2, P3 - Adnx1, P3 - Om1, P3 -
ROv1, and P3 - ROv2). This ranking is very similar in
terms of cellular prevalence metric where ddClone has
the lowest cellular prevalence estimation error (mean
= 0.07, sd = 0.03), followed by PyClone (mean = 0.10,
sd = 0.07). OncoNEM ties SCITE with a mean cel-
lular prevalence error equal to 0.19 (sd = 0.06 and
sd = 0.08 respectively). Then is PhyloWGS (mean =
0.27, sd = 0.11), and finally Clomial (mean = 0.27,
sd = 0.14). This results suggest that using ddClone
over single datasource only methods may help avoid
catastrophic estimation errors best exemplified in the
Omentum site 1 in Patient 9 (P9 - Om1) where dd-
Clone has a cellular prevalence estimation error less
than 5 times of that of the second best performing
method, SCITE.

Investigating mutation clusters in an acute
lymphoblastic leukemia patient
Here we analyze a dataset consisting in targeted se-
quencing of a panel of mutations (mostly single nu-
cleotide variants) in 1,479 single tumour cells from six
acute lymphoblastic leukemia (ALL) patients [12]. The
genomic loci were assumed to be highly diploid. To
confirm mutations in the single cell samples, the au-
thors performed resequencing of the bulk samples over
an average of 46 loci (between 10 to 105) for each pa-
tient.

Figure 11 shows ddClone’s analysis on one of the
patients in this study (patient 1). Four clones were
reported in this dataset, one of which was labelled a
doublet (Figure 11, clone number 4) and was removed
from subsequent analyses. The authors then extracted
consensus genotypes for these clones (Figure 11, panel
A, bottom). ddClone finds 6 clusters. While single cell
genotypes support a merger of clusters 4 and 2, dd-
Clone splits them in two, placing locus chr19:40895668
in a separate cluster. This split is supported by the
bulk data where the VAF of the chr19:40895668 is
about 1.5 times of the mean VAF of cluster 4 (0.33
and 0.22 respectively). Conversely, loci chr17:1657484
and chr1:38226084 have similar bulk VAFs (0.21 and
0.21 respectively), but since they have different prior
genotypes, ddClone assigns them to separate clusters
(clusters 4 and 5 respectively). PyClone assigns these
two mutations to one cluster. We find similar instances
in other patients in this dataset (See Additional file 1).

Due to the lack of multiple samples from within
a patient, we were unable to use the same method
we used to establish benchmark as in the other real
datasets. Despite this, we confirm that ddClone’s esti-
mated cellular prevalences are highly correlated with
the reported bulk variant allele frequencies (R2 = 0.85
across all patients) suggesting that ddClone does not
introduce unreasonable structure in the results (Addi-
tional file 1).

ddClone avoids co-clustering of mutations from distinct
clones with shared cellular prevalences
Methods that cluster mutations based only on cellu-
lar prevalences are prone to grouping together muta-
tions that belong to separate unique clones, if such
clones happen to exist in similar cellular prevalences.
Co-occurrence patterns from single cell data can be
used to distinguish such clones. We define mutually ex-
clusive mutations (MEM) as a pair of mutations that
never co-occur in clones inferred from single cell geno-
type analysis. The MEMs correspond to pair of mu-
tations with a Jaccard distance of one (see Methods).
PyClone, the second best performing method in terms
of clustering, erroneously merges multiple MEMs in 8
out of 13 samples across 3 patients in the HGSOvCa
data (Additional file 2). The numbers of pairs of MEMs
erroneously merged by single-sample PyClone in each
of the 8 samples are 13, 140, 259, 103, 169, 2, 14,
and 1 respectively. Even multi-sample PyClone fails
in correctly clustering MEMs in 9 out of 13 samples
in the HGSOvCa data, although for markedly fewer
mutations. The numbers of pairs of MEMs erroneously
merged by multi-sample PyClone in each of the 9 sam-
ples are 5, 5, 5, 5, 2, 2, 2, 2, and 2 respectively. In
contrast, ddClone only merged MEMs in 2 out of 13
samples (1 pair in the first sample and 2 pairs in the
second sample) in the HGSOvCa data.

One pair of MEMs, 15:26990805 (SNV at chromo-
some 15, coordinate 26990805) and 5:38686543 (SNV
at chromosome 5, coordinate 38686543) from patient
3 in omentum sample 1, had assigned cellular preva-
lences of 0.47 and 0.48 by PyClone, 0.43 and 0.46
by ddClone, and 0.41 and 0.41 by multi-sample Py-
Clone, respectively. PyClone and multi-sample Py-
Clone, both merged these MEMs, however, ddClone
while estimating a cellular prevalence in agreement
with multi-sample PyClone (mean absolute difference
of 0.03), separated them into different clusters. See
Additional file 2 for a complete list of MEMs. In the
TNBC xenograft data, PyClone erroneously merged
6 MEMs in 1 out of 5 samples. Neither multi-sample
PyClone nor ddClone merged any MEMs. Another ex-
ample is loci 17:1657484 and 1:38226084 in Patient 1 in
the ALL dataset. They have similar bulk VAFs (both
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equal to 0.21), but different prior genotypes, and dd-
Clone assigns them to separate clusters while PyClone
co-clusters them. Taken together, results on real data
suggest a marked advantage of using ddClone as mea-
sured by clustering accuracy. We note the gains on
prevalence error were more modest. We suggest this
underscores the importance of single cell data to re-
solve mutation clustering as a reflection of genotype,
while bulk data likely provides an accurate represen-
tation of mutation prevalence. Thus the ddClone ap-
proach can leverage the strengths of both measurement
types and provide an overall improvement in the pa-
rameters of interest.

ddClone overrides its prior in presence of evidence in the
bulk data
ddClone is provided with a prior genotype-mutation
matrix. When this prior encodes identical genotypes
for two genomic loci, ddClone is very likely to clus-
ter the pair together. However, if there is evidence in
the bulk data suggesting that the mutations do not
belong to a cluster, i.e, their bulk VAFs corrected for
CNA are too dissimilar, we expect the model to over-
ride its prior and assign those genomic loci to separate
clusters. We define prior overriding mutations (POM)
as a pair of mutations that have identical prior geno-
type, but are clustered separately by ddClone. The
TNBC xenograft dataset had on average 41 (rang-
ing from 32 to 61) POM pairs. For instance, in sam-
ple SA501, timepoint X1, 20:3209183 and 2:152063945
were a POM pair with corrected bulk VAF of 6. On
average about 10 (from 0 to 27) POM pairs were in
the HGSOvCa data, including genomic loci 9:35546540
and X:154158018 from patient 2, omentum site 2 with
a corrected bulk VAF of 1.56. In the ALL dataset, in
patient 1, loci chr19:40895668 and chr17:1657484 had
identical prior genotypes, but a corrected bulk VAF
ratio of 1.4, and ddClone put them into separate clus-
ters. In this dataset, Patients 1 to 5 had 3, 4, 105,
320, and 1264 such pairs, with an average corrected
bulk VAF ratio of 1.36± 0.13, 1.61± 0.25, 1.72± 0.61,
1.40 ± 0.39, and 1.69 ± 1.19 respectively. There were
no such pairs in Patient 6.

Discussion
The ddClone approach presented here exemplifies the
combined statistical strength of orthogonally derived
observations for inference of clonal populations from
NGS sequencing. Single cell sequencing methods are
continually improving, however they will likely always
be limited by the effect of small DNA inputs and
sparsely sampled cell populations. Bulk methods on
the other hand will require computational deconvolu-
tion approaches to disentangle the unobserved under-
lying clonal constituents used to generate a measure-
ment of interest. Here we show that bulk and single

cell measurements when fused together with joint sta-
tistical inference can overcome the limitations of both
methods leading to more accurate inference. Single cell
sequencing experiments typically generate a bulk tem-
plate as a control sample and so statistical integration
can be ubiquitously applied. In particular, we show
how ddClone resolves clonally mutually exclusive mu-
tations which would otherwise be co-clustered in bulk
and therefore underestimating the number of clones
present in a sample of interest. We note samples anal-
ysed by ddClone from the ovarian cancer study were
heavily intermixed as reported in [24] representing a
situation where multiple clones co-existed in different
anatomic sites at relatively equal prevalence. This is
similar to what might be observed in haematological
malignancies where relatively less anatomic isolation
of clones is the default model for clonality and thus
clones are likely to co-exist at equal prevalence [12].
Failure to resolve clones in these scenarios could lead
to poor and spurious biological interpretation and un-
derestimation of tumour complexity. Multiple samples
where clonal prevalences vary would lead to more ac-
curate inference as demonstrated by [2], however we
show in the single sample scenario, ddClone can over-
come under-clustering of mutations that arises from
multiple clones co-occurring at near equal prevalences.

While the ddClone presents an advance in statisti-
cal integration, several limitations remain. As investi-
gators continue to dissect longitudinal clonal dynam-
ics through temporal sampling, extensions to leverage
statistical signals across multiple samples will be nec-
essary. Furthermore, we expect the method will gen-
eralise well to different single cell platforms offering
longer reads with phased mutations. However consider-
ing more mutations will come at a computational cost
that may not scale to whole genome dimensions. This
may limit the utility of ddClone in the case of whole
genome analysis. In addition, we showed with theoret-
ical and simulated ‘clean’ single cell data, single cell
only methods outperform ddClone. This is expected,
and reflects in the context of future potential for accu-
rate single cell methods, the need for bulk observations
to infer prevalence of clones may diminish.

We emphasize that multi-sample PyClone does not
constitute ground-truth. For example, we observe some
erroneous clustering of mutations based on VAFs in its
results. Nevertheless, previous research demonstrates
that using samples from multiple regions or time-
points improves the accuracy of the clonal structure
inference methods [9, 8, 25] since statistical strength
can be borrowed across multiple measurements. In this
context, we use multi-sample analysis as a convenient
benchmark against which we quantitatively assess per-
formance using single sample data. This may be sub-
optimal and thus our study illuminates the need to
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create ground truth datasets either through extensive
orthogonal measurement, or through engineered ad-
mixtures of related cell populations in defined propor-
tions.

We focused our work on point mutations in this re-
port, but other clonal marks such as structural vari-
ations and also epigenetic markers can be used to in-
fer clonal composition and dynamics. Extensions to
the model for features with different statistical prop-
erties will be required to integrate non point mutation
features of the genome. The use of Jaccard index to
summarise the prior genotypes in our model may be
suboptimal, due to different noise levels, among other
reasons. We implemented an augmented Jaccard index
taking this asymmetry into account. While for the ma-
jority of datasets it has marginal effect, it improves the
performance of ddClone in one of the real datasets ana-
lyzed here. Continued improvement of summary statis-
tics, including for example phylogenetic models, to en-
code prior knowledge should lead to further increases
in accuracy.

Finally, the model we have proposed is unidirec-
tional, encoding single cell data as a Bayesian prior
and bulk data with a likelihood model. Future im-
provements may be realised by implementing a bi-
directional inference framework which iteratively im-
proves predictions from bulk data informed by sin-
gle cell and single cell data informed from bulk data.
These limitations represent open problems for future
work stimulated by our contribution here. We antici-
pate that our work here lays a foundation upon which
complementary bulk and single cell measurements in
cancer can be statistically integrated to sharpen the
investigator’s view of clonal dynamics. We contend
this is an important step towards ultimately realis-
ing quantitative fitness properties leading to a deeper
understanding of cancer progression and morbidity in
patients.

Methods
Concepts and definitions
Given (i) variant allele counts and (ii) copy number at
each genomic locus, (iii) tumour cellularity, and (iv)
single cell genotype data, our method infers (i) cellu-
lar prevalences and (ii) cluster assignments for those
genomic loci. We review these notations below.
Variant allele counts: we assume that at each ge-

nomic locus i, a total of di reads map to locus i,
out of which bi reads harbour the variant allele.

Variant allelic prevalence: the expected fraction
of reads, ξ, that harbour the variant allele. How-
ever, this quantity is not observed directly, rather,
we observe, for each locus of interest, the number
of variant reads divided by the total number of
reads in all cells.

Copy number at each genomic locus. Copy num-
ber variations influence the allelic prevalence ξ.
An example of this influence is shown in Figure
12.b, where ξ = 2×5

2×1+3×3+3×5 = 5
13 .

Tumour cellularity, t, is the fraction of cancer cells
in the sample. Hence the fraction of normal cells
would be 1−t. We assume that tumour cellularity
is estimated independently from our model.

Cell genotype data. Let M denote the number of
cell genotypes in the tumour sample and N be
the number of genomic loci in our model. Cell
genotype data is modelled as a binary matrix
∆ ∈ {0, 1}M×N with rows corresponding to cell
genotypes and columns to genomic loci. ∆m,n = 1
if the genotype m is mutated at locus n. We as-
sume in this work that cell genotype data is de-
rived from single cell sequencing studies.

The desired outputs are cluster assignments of ge-
nomic loci and their cellular prevalences. Cellular
prevalence φi for a particular genomic locus i is defined
as the fraction of cells in the sample that harbour a
mutation at that genomic locus. For example, in Fig-
ure 12.b cellular prevalence for the depicted genomic
locus is 5

9 . Thus 1−φi, the fraction of cancer cells from
the reference population, is 1 − 5

9 = 3
9 . We define the

clonal prevalence of a genotype to be the fraction of
cells in the tumour sample harbouring that genotype.

Notation
Let X = {x1, x2, ..., xN} be the set of the N genomic
loci of interest, indexed by $ = {1, 2, ..., N}.

We adopt the notation j : i for j ≤ i, j, i ∈ N to
denote {j, j + 1, j + 2, ..., i}, a subset of successive in-
tegers.

We define a clustering of X as a partition T of its
index set $, that is T = {T1, T2, ..., TK} such that
tk∈1:KTk = $ where K is the number of partitions,
t denotes the disjoint union operator and each subset
Tk is called a cluster.

We define xA for A ⊂ $ to be {xi|i ∈ A}. For ex-
ample xTk

is the set of data points in cluster Tk and
xi:j = {xi, xi+1, xi+2, ..., xj}.

Furthermore, let T (.) : N → N map data point in-
dices to their clusters, that is T (i) = k iff i ∈ Tk.

Partitions of a graph
Let G(V,E) denote an undirected graph G where V is
the set of vertices and E is the set edges, i.e., a set of
unordered pairs {u, v} ⊂ V. The set of edges E induces
a partitioning on V, where each connected component
of V corresponds to a cluster. With a slight abuse of
notation, let T (E) = T (G(V,E)) denote this partition-
ing and T kE denote its k-th cluster. A directed graph
G(V, E) consists in a set of vertices V and a set of di-
rected edges E where each edge is an ordered pair of
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vertices. For a directed graph G, we define its under-
lying undirected graph U(G) to be the graph obtained
by replacing all directed edges in G with undirected
ones. Let T (E) be the partitioning induced by U(G),
the underlying undirected graph of G. Throughout this
document the G corresponding to E is always appar-
ent from the context, with V always being the set of
our data points. Let TE : N→ N map vertex indices to
their clusters, that is TE(i) = k iff i ∈ T kE .

Traditional CRP

ddCRP can be explained through an alternative rep-
resentation of the Chinese Restaurant Process (CRP).
We follow the notation in [26]. In the traditional CRP,
customers enter a Chinese restaurant and opt to sit at
a table where the probability of joining a table is pro-
portional to the number of customers already sitting
at that table. Customers may also choose to sit at a
new table with probability proportional to α, a model
parameter. In the Chinese restaurant metaphor, cus-
tomers represent the genomic loci and tables represent
clusters [27].

Let zi denote the table assignment for customer i
and assume that customers 1 : i − 1 have occupied
tables 1 : K, let nk be the number of customers sitting
at table k. Customer sitting configuration induces a
partitioning of customer indices. CRP draws zi as in
Equation (1).

p(zi = k|z1:(i−1), α) ∝
{
nk for k ≤ K
α for k = K + 1

(1)

Alternative representation of Traditional CRP

Traditional CRP can equivalently be viewed as cus-
tomers joining other customers instead of joining other
tables. Let ci denote the customer index with whom
customer i is sitting and C = c1:N . This defines a di-
rected graph G(V, E) with V the set of customer indices
and E the set of ordered pairs (i, ci).

As described above, this induces TE = T (C) a parti-
tioning of customer indices. Each cluster corresponds
to a table in the traditional representation. Figure 12.a
shows an example C and its corresponding T (C).

In a generalization of this model, the probability for
a customer i to connect to a customer j is propor-
tional to a function of the distance between them. The
distance matrix D encodes our knowledge about the
data points’ dissimilarity from a secondary source. In
this work, this distance matrix is computed from the
cell genotypes derived from single cell genotyping ex-
periments. The non-increasing decay function f takes

non-negative finite values. This is summarized in equa-
tion 2.

p(ci = j|D,α) ∝
{
f(di,j) for i 6= j
α for i = j

(2)

This defines the ddCRP model. We note that picking
a constant decay function f(x) = 1 reduces ddCRP to
traditional CRP, since in that case, Equation (2) is
identical to Equation (1).

The ddClone model
We assign each genomic locus to a customer. Through-
out this document, we use cell genotype data from
single cell genotyping studies to compute the distance
between genomic loci. We note that this is not a re-
quirement of the model, and other sources could be
used to define dissimilarity between genomic loci.

Distance matrix
We have used the Jaccard distance to form the distance
matrix D ∈ [0, 1]N×N between genomic loci. Jaccard
distance is computed as 1− JaccardIndex that is:

JaccardDist(A,B) = 1−|A ∩B|
|A ∪B|

= 1−
∑M
i=1(Ai ×Bi)∑M
i=1(Ai +Bi)

(3)

where AM×1 and BM×1 are binary column vectors,
each representing a genomic locus. Intuitively, this as-
signs a higher distance to genomic loci that co-occur
less often in the single cell genotypes and vice versa.
We note that our use of the Jaccard index to compute
distances between genomic loci is related to distance-
based phylogenetic inference methods [28]. As the Jac-
card index is agnostic to the different FN and FP noise
rates inherent in the single cell data, we have proposed
and investigated a modified Jaccard distance (MJD).
The results show that while over simulated data, MJD
has a marginal effect on ddClone’s performance, us-
ing MJD substantially improves performance over one
of the real datasets. See the Additional file 1 for the
formulation and more details.

Let λ = {s, α, a} be the collection of hyperparam-
eters in our model. For brevity, we first assume that
these hyperparameters are fixed, and in Additional file
1 discuss their resampling scheme.

Bulk population assumptions
Similar to PyClone, we make the simplifying assump-
tion that the clonal population in the bulk data, with
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respect to a specific mutation, comprises three sub-
populations, namely, the normal, the reference, and
the variant subpopulations. Figure 12.b illustrates this
assumption. To avoid confusion with the cell genotype
states coming from the single cell sequencing study, we
refer to the assumed copy number of the subpopula-
tions in the bulk data as locus genotypes. This data is
usually not available directly from the bulk data, and
has to be inferred or accounted for in the inference
procedure.

Locus genotype state priors
Let ψi = (giN , g

i
R, g

i
V ) ∈ (N0 × N0)3 represent the as-

sumed locus genotype state at each genomic locus i in
the bulk data where N0 = N ∪ {0}.

Let giN represent the normal locus genotype N , giR
represent the reference locus genotype R, and giV rep-
resent the variant locus genotype V . Each giS is a pair
of non-negative integers that denote the copy number
for the locus genotype S ∈ {N,R, V } at the genomic
locus i. For example, giN = (2, 3) means that the nor-
mal locus genotype in the bulk tumour sample has
two copies of the reference allele and three copies of
the variant allele at genomic locus i. Here (0, 0) de-
notes a homozygous deletion. For g ∈ G = N0×N0, let
ζ : G → N0 be the total copy number of locus genotype
g. We define µ(g), the probability of sampling a vari-
ant allele from a subpopulation with locus genotype g
as follows:

µ(g) =


ε for b(g) = 0
1− ε for b(g) = ζ(g)
b(g)
ζ(g) otherwise

where ε is the sequencing error probability, the prob-
ability of observing a variant allele when sequencing a
true reference allele.

To capture the effects of locus genotypes, cellular
prevalence, and tumour cellularity, we define ξ(ψ, φ, t)
as follows:

ξ(ψ, φ, t) =
(1− t)ζ(gN )

Z
µ(gN ) +

t(1− φ)ζ(gR)

Z
µ(gR)+

tφζ(gV )

Z
µ(gV )

where Z = (1− t)ζ(gN ) + t(1−φ)ζ(gR) + tφζ(gV ) is
the normalizing constant.

To compute the likelihood, we sum over possible val-
ues of ψi. Since the discrete space of Ψ values quickly
becomes intractable, we only consider a limited num-
ber of locus genotypes. This is done by defining an in-
formative prior πi over ψi (more details in Additional
file 1).

The likelihood function

Given the priors over locus genotypes, the emission
likelihood for one locus is:

p(bi|φi, di, πi, t) =
∑
ψi∈G3

p(bi|φi, di, ψi, t)p(ψi|πi) (4)

To address overdispersion, we have modelled the con-
ditional distribution of variant allele counts bi with a
Beta-Binomial distribution, characterized in terms of
mean and precision as follows:

p(b|d,m, s) =

(
d

b

)
B(b+ sm, d− b+ s(1−m))

B(sm, s(1−m))
(5)

where B is the Beta function. To reflect our assump-
tions over the sample sub-population structure, we set
the mean value to a function of locus genotypes, cellu-
lar prevalence, and cellularity for each data point, that
is m = ξ(ψn, φn, t). To reduce the number of parame-
ters, all loci share the same precision s.

Synthetic data simulation

Single cell instantiation

To simulate cells, we first sample observed prevalences
Φ = {Φobserved

1 ,Φobserved
2 , ...,Φobserved

M } for each geno-
type from a Dirichlet distribution Φobserved ∼ Dir(λΦ),
where Φ = {Φ1,Φ2, ...,ΦM} are the true prevalences
for genotypes 1 to M. We then simulate m cells from
a multinomial distribution with parameters Φobserved,
i.e., (n1, n2, ..., nM ) ∼ Mult(Φobserved) where ni is the
number of cells that have genotype i. This process
is equivalent to sampling the cells from a Dirichlet-
multinomial distribution, that is, (n1, n2, ..., nM ) ∼
Dirichlet-multinomial(λΦ). The larger the λ is, the
closer are the two vectors Φobserved and Φ. In fact as
the value of λ grows, the Dirichlet-multinomial distri-
bution progressively better approximates the Multino-
mial distribution. For each dataset, we represent the
average error between true and observed prevalences
by eΦ = 1

M

∑M
1 |Φi − Φobserved

i |, the average absolute
difference between true and observed genotype preva-
lences. We measure the discrepancy between the true
and the observed prevalences by the number of absent
genotypes in the samples of cells and by eΦ, the aver-
age error between true and observed prevalences.

For λ = 0.01, on average only about 1 out of 10 geno-
types are observed in the sampled cells and eΦ = 0.17.
In contrast, when λ = 1000, on average, over 9 out
of 10 genotypes are observed and observed preva-
lences closely resemble the true genotype prevalences
(eΦ = 0.008).



Salehi et al. Page 10 of 14

Modeling doublet noise
AssumeK cells c1, c2, ..., cK with genotypes ∆c1 ,∆c2 , ...,∆cK

are trapped in a well wd, where ∆ci correspond to
rows in the binary genotype matrix ∆ as defined in
the Methods section. We define the reported genotype
for wd as the logical OR between genotypes of its con-
stituent cells , i.e., ∆Wd

= ∆c1OR ∆c2OR ...OR ∆cK .
In this study we assume that for a doublet, exactly two
cells are trapped in a well simultaneously (K = 2).

For a fixed value of rdoublet, we first sample m cells as
the original set. Second we sample an extra rdoublet∗m
cells to act as co-trapped cells. Finally we randomly
pick rdoublet ∗m of the original set and combine each
with one of the cells from the co-trapped cells by
recording the logical OR of their respective genotypes.
These constitute the doublets. Listing 1 shows the
pseudo code for simulating doublets.

Algorithm 1 Simulating Doublet Noise
1: procedure SimulateDoubletNoise (m, rdoublet,∆)
2: NtrappedCells ← round(rdoublet ×m)
3: originalCells ← sampleCells(∆,m)
4: trappedCells ← sampleCells(∆, NtrappedCells)
5: noisyCells ← originalCells
6: for i in 1 : NtrappedCells do
7: Randomly pick without replacement a cell ci from orig-

inalCells
8: noisyCells[ci] ← noisyCells[ci] OR trappedCells[i]
9: end for

10: return noisyCells
11: end procedure

In Algorithm 1, sampleCells(∆,m) is a method that
given a genotype matrix ∆, returns an array X of size
m, with the i-th item X[i] is a row in the genotype
matrix ∆.

Modelling allele dropout noise
To simulate the effect of ADOs, we first pick m
cells from a multinomial distribution with parameters
equal to the true prevalence of each genotype, that
is (n1, n2, ..., nM ) ∼ Mult(Φ), where ni is the num-

ber of cells that have genotype i,
∑M
i=1 = m, and Φ

is the true prevalence of each genotype. This results
in a binary cell-genotype matrix G ∈ {0, 1}m,M with
rows corresponding to sampled cells and columns cor-
responding to genomic loci where Gi,j = 1 if cell i is
mutated at locus j. We assume that ADO affects a cell
by turning a mutated locus into an unmutated one and
causing a false negative error. When an unmutated lo-
cus is affected, it mimics a deletion and does not alter
the genotype matrix. At a fixed ADO rate, rADO, we
randomly pick rADO of the mutated loci across all sam-
pled cells and set their value to zero. This constitutes
the modified binary matrix G that we use as input to
ddClone.

Algorithm 2 Simulating Allele Dropout Noise
1: procedure SimulateADONoise (m, rADO,∆)
2: NdroppedAlleles ← round(rdoublet ×m)
3: G ← sampleCells(∆,m)
4: mutatedLoci ← {(i, j) : G[i, j] = 1}
5: droppedLoci ← randomly pick NdroppedAlleles loci from mu-

tatedLoci
6: for (i, j) in droppedLoci do
7: G[i, j] ← 0
8: end for
9: return G

10: end procedure

Inference
We use a Gibbs sampler to draw samples from the
posterior distribution of the model. We initialize the
sampler such that all customers are in their own clus-
ters. Let c−i be the customer connection configuration
with customer i’s outgoing connection removed. Let
xi = (bi, di) denote the observed data, namely, variant
and total allele counts.

The full conditional distribution of ci is:

p(ci|c−i, x1:N , λ) ∝ p(ci|λ)p(x1:N |ci, c−i, λ) (6)

where p(ci|λ) is the same as Equation (2) and λ is
the set of all hyperparameters. Let xTk

be the set of
customers in cluster Tk or equivalently, the set of cus-
tomers sitting at table k, then the likelihood term fac-
tors in:

p(x1:N |c−i, ci = j, λ) =
∏

Tk∈T (C)

p(xTk
|λ) (7)

where T (C) is the partitioning induced by cur-
rent customer connection configuration C. The term
p(xTk

|λ) further expands as:

p(xTk
|λ) =

∫
(
∏
i∈Tk

p(xi|θ, λ))p(θ|λ)dθ (8)

where the likelihood p(xi|θ, λ) = p(bi|φi, di, πi, t) is
the same as Equation (4).

Since our prior over cellular prevalences φi is non-
conjugate to the likelihood, we resort to a cached ver-
sion of Griddy Gibbs method [29] to compute the
above integral. At the end of each iteration (i.e., when
all customers are reassigned), we sample φk, for each
cluster k as follows:

φk ∼ p(φk|xTk
, πTk

, t, λ) ∝ p(φTk
|λ)p(xTk

|φTk
, λ, πTk

, t)

(9)

where p(φTk
|λ) is the probability density function of

a uniform distribution.
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Approximating λ in real datasets
First, we computed, for simulated datasets with var-
ious values of λ, the concordance between bulk and
single cell data as measured by the coefficient of de-
termination (R2), that is, how well mutation cellular
prevalences (φ) estimated from the bulk data corre-
spond to that estimated from the single cell data.

We then measured the observed concordance be-
tween mutation cellular prevalences as estimated
from bulk data by multi-sample PyClone (for TNBC
Xenograft and HGSOvCa datasets) or corrected bulk
VAFs (for the ALL dataset) and single cell data.
Lastly, we compared at what value for λ, the R2 value
in the simulated dataset matched the R2 value of each
real dataset. The estimated λ values are 1.13 ± 0.31,
2.00 ± 0.21, and 2.24 ± 0.21 for HGSOvCa, TNBC,
and ALL datasets respectively. For the ALL dataset,
in computing the coefficient of determination, we set
aside the outlier Patient 5 which had an R2 = 0.08.
We note that since single cell data in the real dataset
are affected by source of noise other than sampling
distortion, including doublets and ADOs, the above
procedure overestimates λ.

Clustering summarization
To cluster genomic loci we first compute the posterior
similarity matrix and then maximize the PEAR index
to compute a point estimate [30] as implemented in
the R package mcclust [31]. We estimate the cellular
prevalence for each genomic locus as the mean of after
burn-in MCMC samples.

Availability of data and materials
Our model is implemented in R [32] programming lan-
guage and is freely available as an open source R pack-
age on GitHub [33] under GPLv2 licence. The source
code is also deposited to a DOI assigning repository
at https://doi.org/10.5281/zenodo.208259. It is built
upon the implementation of ddCRP in [26].

Computational complexity
Computing the Distance Matrix takes O(N2M) where
N and M are the rows and columns of the input matrix
to ddClone. In the intended use of ddClone, the input
matrix would be the binary genotype matrix ∆, in
which case N is the number of genotypes and M is
the number of genomic loci. Computing the clustering
result takesO(M2). The complete analysis with 10,000
MCMC iterations on a machine with 40x cores of Intel
Xeon 2.20GHz CPU and 500GB of RAM memory, for a
dataset of 37 genomic loci takes about 6 hours (365.9±
47.32 minutes) to finish (averaged on 4 samples from
Patient 2 in the HGSOvCa dataset).
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Figure 1 The workflow of ddClone. This figure shows the workflow of our method, ddClone. The ddClone approach is predicated on
the notion that single cell sequencing data will inform and improve clustering of allele fractions derived from bulk sequencing data in
a joint statistical model. ddClone combines a Bayesian non-parametric prior informed by single cell data with a likelihood model
based on bulk sequencing data to infer clonal population architecture. Intuitively, the prior encourages genomic loci with co-occurring
mutations in single cells to cluster together. Using a cell-locus binary matrix from single cell sequencing, ddClone computes a
distance matrix between mutations using the Jaccard distance with exponential decay. This matrix is then used as a prior for
inference over mutation clusters and their prevalences from deeply sequenced bulk data in a distance-dependent Chinese restaurant
process framework. The output of the model is the most probable set of clonal genotypes present and the prevalence of each
genotype in the population.

Figure 2 Simulated phylogenetic tree and the resulting binarized cell genotype matrix Transposed binarized simulated cell
genotypes ∆ from Generalized Dollo process over a fixed phylogeny. The original cell genotype matrix ∆CN is in copy number space.
We binarize it by setting entries with non zero variant allele copy number to one (coloured red) and setting entries with variant allele
copy number of zero to zero (coloured blue). The clonal prevalence of each genotype is in parenthesis.

Figure 3 Benchmarking results over simulated data Performance results for ddClone, single cell only, and bulk data methods on
ten synthetic datasets. ddClone and single cell only methods were provided with single cells, either (i) 50 cells, sampled from a
Multinomial distribution with true genotype prevalences as parameters (labeled ddClone(λ =∞), OncoNEM(λ =∞), and
SCITE(λ =∞)) in absence of doublet and ADO noise, or (ii) 50 cells sampled from a Dirichlet-multinomial distribution with
λ = 10, constituting moderate to small levels of sampling bias, (labelled as ddClone(λ = 10), OncoNEM(λ = 10), and
SCITE(λ = 10), or (iii) 50 cells sampled from a Dirichlet-multinomial distribution with λ = 1.12, constituting high levels of sampling
bias, (labelled as ddClone(λ = 1.12), OncoNEM(λ = 1.12), and SCITE(λ = 1.12), where in case of (ii) and (iii), 30% of cells are
doublet and rADO = 30%. Panel A shows V-measure clustering performance. Panel B shows the average over loci of the absolute
differences between the inferred and true cellular prevalences. This result shows that in presence of reasonable levels of noise,
ddClone performs comparably well in terms of both V-measure and the accuracy of inferred cellular prevalences.

Figure 4 Performance analysis in presence of sampling distortion Effect of sampling distortion on V measure index (left) and mean
absolute error of cellular prevalences (right) across multiple values for the total number of single cells (specified on top of each
panel). Each box plot represents 10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are sampled from a
Dirichlet-multinomial distribution with sample size m ∈ {50, 100, 200, 500, 1000} and parameters equal to the true prevalence of
each genotype scaled by the concentration coefficient λ. The larger the λ, the closer the Dirichlet-multinomial distribution
approximates the multinomial distribution. At higher values of λ the sampled cells better represent the true proportions of genotypes.
Estimated values of λ for the real datasets are annotated on panel B. We note that OncoNEM did not converge when number of
cells exceeded 100 (boxes marked by a star). This result suggests that ddClone’s clustering and cellular prevalence estimates are
fairly robust to presence of distorted single cell sampling.

Figure 5 Performance analysis in presence of doublets Effect of presence of doublets on V measure index (left) and mean absolute
error of cellular prevalences (right) across multiple values for the total number of single cells (specified as m on top of each panel).
Each box plot represents 10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are sampled from a
multinomial distribution with sample size of m and parameters equal to the true prevalence of each genotype. Progressively
increasing percentage of doublet cells results in minor degrading performance in cellular prevalence estimate. Overall, this result
suggests that ddClone’s cellular prevalence estimates are robust to presence of uncorrected doublet noise.

Figure 6 Performance analysis in presence of allele drop outs Effect of presence of allele drop outs (ADO) on V measure index
(left) and mean absolute error of cellular prevalences (right) across multiple values for the total number of single cells (specified as m
on top of each panel). Each box plot represents 10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are
sampled from a multinomial distribution with sample size of m and parameters equal to the true prevalence of each genotype. As
expected, progressively increasing the ADO rate results in degrading performance in both clustering and cellular prevalence
estimates. The detrimental effect dampens as the number of sampled cells increases.

Figure 7 Performance analysis in presence of loss of multiple genotypes Effect of removing genotypes on V measure index (left)
and mean absolute error of cellular prevalences (right). Unsurprisingly, progressively removing more cell genotypes (in increasing
order of prevalence) results in monotonically degrading performance However, when as few as approximately half of the genotypes
are available to encode in the prior, ddClone still outperforms the naive methods in terms of cellular prevalence estimate.
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Figure 8 Genotypes curated for the triple-negative breast cancer data Binary cell genotype matrices for sample SA494 over 29
genomic loci (left) and sample SA501 over 38 genomic loci (right). These are manually curated from a single cell genotype
sequencing experiment [22]. Briefly, MrBayes was used to infer a consensus phylogenetic tree over the single nuclei. Then they were
grouped into clades according to high probability branching splits. Finally, each clade was assigned a consensus genotype by taking
the mode genotype of the clade at each genomic locus. Colour red indicates a mutated locus, while colour blue indicates a
non-mutated locus.

Figure 9 Benchmarking results over TNBC dataset Performance results for ddClone and existing methods over TNBC SA501 X1,
X2, X4, and SA494 T, X4. Panel A shows clustering assignment performance. Panel B shows cellular prevalence approximation
mean absolute error. Evaluated against multi-sample PyClone, ddClone outperforms the second best performing method (PyClone)
in terms of V-measure (Wilcoxon rank sum test with p-value < 0.05) and performs as well (SA494, timepoint T) or better (all the
other timepoints) than the second best performing method in terms of accuracy of inferred cellular prevalences.

Figure 10 Benchmarking results over HGSOvCa dataset Performance results for ddClone and existing methods over HGSOvCa
data, from 3 patients, Patient 2 (P2) at sites Om1, Om2, ROv1, ROv2, Patients 3 (P3) at sites Adnx1, Om1, Rov1, Rov2, and
Patients 9 (P9) at sites LOv1, LOv2, Om1, Om2, and ROv1. Panel A shows clustering assignment performance. Panel B shows
cellular prevalence approximation mean absolute error. Abbreviations are Om1: Omentum sample 1, Om2: Omentum sample 2,
ROv1: Right ovary sample 1, ROv2: Right ovary sample 2, LOv1: Left ovary sample 1, LOv2: Left ovary sample 2, and Adnx1:
Adnexa sample1).

Figure 11 Analysis results of an acute lymphoblastic leukemia dataset [12] Analysis results of a patient with ALL (Patient 1) [12].
The variant allele frequencies from the bulk data (panel A, top) along with the consensus genotypes estimated from the binary cell
matrix (panel A, bottom). These two constitute the input to the ddClone model. We note that the binary cell matrix (B) is displayed
here for comparison and is not an input to ddClone. This binary cell matrix was used in [12] to cluster the cells into clones (vertical
bar at the right side of the figure) and consensus genotypes (bottom part of panel A). ddClone clusters mutations into 6 groups
(panel C, top) and estimates cellular prevalence (Φ) for each (panel C, bottom). ddClone’s estimated Φ are highly correlated with the
corrected bulk VAFs (R2 = 0.98, also see Additional file 1) suggesting that it does not introduce unreasonable structure in the data.
Furthermore, when there is evidence in the bulk, it can override its prior and splits clusters as necessary. For instance, even though
locus chr19:40895668 has the same prior genotype as loci in cluster 4, its VAF in the bulk data is 1.5 times that of the mean of loci
in cluster 4. This hints at a finer structure in cluster 4 and ddClone has automatically assigned chr19:40895668 to a separate cluster.

Figure 12 Hypothesized sitting arrangement in ddCRP/Subpopulation assumptions in the bulk data A. Induced table sitting
T (C) by a particular customer connection configuration C. Bold arrows show customer connections and dotted arrows point to
equivalent table sittings. Since customer 7 only has a self-loop, the corresponding table has only one customer. B. Our assumption
about clonal architecture in the tumour, with respect to a particular genomic locus. In this example, normal subpopulation represents
a collection of un-mutated diploid cells. Reference subpopulation comprises cells that have a copy number amplification event, but
no single nucleotide mutations. Variant subpopulation is a collection of cells that have a SNV at the particular genomic locus.
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