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Abstract estimates improve, the system produces better

best lists, which can in turn enable better updates

We present a perceptron-style discriminative ap-
proach to machine translation in which large feature
sets can be exploited. Unlike discriminative rerank-
ing approaches, our system can take advantage of
learned features in all stages of decoding. We first
discuss several challenges to error-driven discrim-
inative approaches. In particular, we explore dif-
ferent ways of updating parameters given a training
example. We find that making frequent but smaller
updates is preferable to making fewer but larger up-
dates. Then, we discuss an array of features and
show both how they quantitatively increase BLEU
score and how they qualitatively interact on spe-

in future training iterations. In this paper, we fo-
cus on two aspects of the problem of discrimina-
tive translation: the inherent difficulty of learning
from reference translations, and the challenge of
engineering effective features for this task.

Discriminative learning from reference transla-
tions is inherently problematic because standard
discriminative methods need to know which out-
puts are correct and which are not. However, a

proposed translation that differs from a reference
translation need not be incorrect. It may differ
in word choice, literalness, or style, yet be fully
acceptable. Pushing our system to avoid such al-
ternate translations is undesirable. On the other
hand, even if a system produces a reference trans-

The generative, noisy-channel paradigm has hidation, it may do so by abusing the hidden struc-
torically served as the foundation for most of theture (sentence segmentation and alignment). We
work in statistical machine translation (Brown et can therefore never be entirely sure whether or not
al., 1994). At the same time, discriminative meth-a proposed output is safe to update towards. We
ods have provided substantial improvements ovegliscuss this issue in detail in Section 5, where we
generative models on a wide range of NLP tasksshow that conservative updates (which push the
They allow one to easily encode domain knowl-System towards a local variant of the current pre-
edge in the form of features. Moreover, param-diCtion) are more effective than more aggressive
eters are tuned to directly minimize error ratherupdates (which try to directly update towards the
than to maximize joint likelihood, which may not reference).
correspond well to the task objective. The second major contribution of this work is
In this paper, we present an end-to-end disan investigation of an array of features for our
criminative approach to machine translation. Themodel. We show how our features quantitatively
proposed system is phrase-based, as in Koehn eicrease BLEU score, as well as how they qual-
al. (2003), but uses an online perceptron trainingtatively interact on specific examples. We first
scheme to learn model parameters. Unlike miniconsider learning weights for individual phrases
mum error rate training (Och, 2003), our system isand part-of-speech patterns, showing gains from
able to exploit large numbers of specific featuressach. We then present a novel way to parameter-
in the same manner as static reranking systemge and introduce learning into the initial phrase
(Shen et al., 2004; Och et al., 2004). Howevergextraction process. In particular, we introduce
unlike static rerankers, our system does not relyalignment constellatiorfeatures, which allow us
on a baseline translation system. Instead, it upto weight phrases based on the word alignment
dates based on its ownbest lists. As parameter pattern that led to their extraction. This kind of

cific examples. One particular feature we investi-
gate is a novel way to introduce learning into the
initial phrase extraction process, which has previ-
ously been entirely heuristic.

1 Introduction



feature provides a potential way to initially extract over input and output sentences, and features in-
phrases more aggressively and then later dowrelude the scores of various productions used in the
weight undesirable patterns, essentially learning &ree.
weighted extraction heuristic. Finally, we use POS Given featuresp and a corresponding set of pa-
features to parameterize a distortion model in aametersw, a standard classification rujgis to
limited distortion decoder (Zens and Ney, 2004;return the highest scoring output senteg¢cenax-
Tillmann and Zhang, 2005). We show that over-imizing over correspondencéds
all, BLEU score increases from 28.4 to 29.6 on
French-English. fogw) = Argmaxw - ®(x,y,h). (1)

Yy,

2 Approach In the phrase-based model, computing the

2.1 Translation as structured classification argmax exactly is intractable, so we approximate

Machine translation can be seen as a structurefj with beam decoding.

classification task, in which the goal is to leamny 2  perceptron-based training
a mapping from an input (French) sentenceo
an output (English) sentenge Given this setup,
discriminative methods allow us to define a broa

To tune the parametesg of the model, we use the
daveraged perceptron algorithm (Collins, 2002) be-

class of featured that operate offx, y). For ex- cause of its efficiency and past success on various

ample, some features would measure the fIuencg(;‘(;taslkS (Qol!mls and R(I);::(’ 20?34; R(zark zt;l.,
of y and others would measure the faithfulness o )- In principle,w could have been tuned by

y as a translation of. _maximizipg conditional probability or maximiz_—
However, the translation task in this framework 9 Mmargin. queyer, these tW.O optlor_ws_req_uwe

differs from traditional applications of discrimina- S'€" Marginalization or numerical optimization,

tive structured classification such as POS taggin peither of which is tractable over the space of out-

and parsing in a fundamental way. Whereas ir?)Ut sentencey and correspondencds In con-

POS tagging, there is a one-to-one correspondené(raaSt’ the perceptron algorithm requires only a de-

between the words and the tagy, the correspon- coder that compu_t_eﬁ 0 w).
dence betwees andy in machine translation is Recall the tradm_onal perceptron update rule on
not only much more complex, but is in fact un- 2" example(x;, y;) is
known. Therefore, we introduce a hidden corre-
spondence structurke and work with the feature
vectore(x, y, h). wherey, = y; is the target outputandy, =
The phrase-based model of Koehn et al. (2003) (. w) = argmax, w - ®(x;,y) is the predic-
is an instance of this framework. In their model, tjon ysing the current parametexs
the correspondende consists of (1) the segmen-  \ye adapt this update rule to work with hidden
tation of the input sentence into phrases, (2) thggriables as follows:
segmentation of the output sentence into the same
number of phrases, and (3) a bijection between w «— w + ®(x;,yy, hy) — ®(x;,yp, hp), (3)
the input and output phrases. The feature vec-
tor ®(x,y, h) contains four components: the log where (y,, h) is the argmax computation in
probability of the output sentenge under a lan- Equation 1, andy:, h) is thetarget that we up-
guage model, the score of translatirginto y  date towards. Ify, h;) is the samergmax com-
based on a phrase table, a distortion score, andutation with the additional constraint that =
length penalty. In Section 6, we vastly increase yi, then Equation 3 can be interpreted as a Viterbi
the number of features to take advantage of the fulipproximation to the stochastic gradient
power of discriminative training.
Another example of this framework is the hier- Ep(njx;,y:;w) ® (Xi; ¥is D) =Ep(y hix,;w) @ (%, ¥, h)
archical model of Chiang (2005). In this model
the correspondende is a synchronous parse tree

W<—W+(I)(XZ7Yt) _‘I)(X27Yp)7 (2)

for the following conditional likelihood objective:

*More components can be added to the feature vector if  P(y; | x;) o< Z exp(w - ®(x;,y;,h)).
additional language models or phrase tables are available. h



) | Dataset | TRAN | DEvV | TEesST |
Input: voté sur demande d ' urgence

Reference: vote on a request for urgent procedure ;iaerr?tences 9§;£ L fi rsotle firs(ialK
[voté sur][demande][d ' urgence ] # words (unk.)| 715K | 10.4K (35)| 10.8K (48)
(@) Pred [vote on | [emergency] [eques] Tat_)le 1 Th_e _Europarl dataset split we used and
various statistics on length 5-15 sentences. The
[voté sur] [demande] [d urgence] number of French word tokens is given, along
(b) Local with the number that. were not.set.en among the
[Vote on] [an urgent] [reques] 414K total sentences inrRIAIN (which includes all
lengths).
|vote’ sur||demande d| D |urgence|
(€) Bold l = which consists of European parliamentary pro-
A
[vote on] [a] [request for] [urgent procedure] ceedings from 1996 to 2003.

We split the data into three sets according to

Figure 1. Given the current prediction (a), thereTable 1. TRAIN served two purposes: it was
are two possible updates, local (b) and bold (c)used to construct the features, and the 5-15 length
Although the bold update (c) reaches the referencgentences were used for tuning the parameters of
translation, a bad correspondence is used. The I¢hose features. Bv, which consisted of the first

cal update (b) does not reach the reference, but &K length 5-15 sentences in 2002, was used to
more reasonable than (c). evaluate the performance of the system as we de-

veloped it. Note that the Bv set was not used to
tune any parameters; tuning was done exclusively

Discriminative training with hidden variables o, 1z, At the end we ran our models once on
has been handled in this probabilistic frameworkyccrtq get final number3.

(Quattoni et al., 2004; Koo and Collins, 2005), but
we choose Equation 3 for efficiency. 4 Models

It turns out that using the Viterbi approximation
(which we callbold updating) is not always the Our experiments used phrase-based models
best strategy. To appreciate the difficulty, considefKoehn et al., 2003), which require a translation
the example in Figure 1. Suppose we make thé@ble and language model for decoding and
prediction (a) with the current set of parametersfeature computation.  To facilitate comparison
There are often several acceptable output transldVith previous work, we created the translation
tionsy, for example, (b) and (c). Since (c)’s output tables using the same techniques as Koehn et al.
matches the reference translation, should we u;f«2003)-3 The language model was a Kneser-Ney
date towards (c)? In this case, the answer is negddterpolated trigram model generated using the
tive. The problem with (c) is that the correspon-SRILM toolkit (Stolcke, 2002). We built our
denceh contains an incorrect alignment, §).  OWn phrase-based beam decoder that can handle
However, sincéh is unobserved, the training pro- arbitrary feature§. The contributions of features
cedure has no way of knowing this. While the out-ar¢ incrementally added into the score as decoding

putin (b) is f_arther from the reference, its corre- 2\We also experimented with several combinations of jack-
spondenceh is much more reasonable. In short, knifing to prevent overfitting, in which we selected features

it does not suffice fow to be good; bothy, and  ©n TRAIN-OLD (1996-1998 Europarl corpus) and tuned the
' parameters on RAIN, or vice-versa. However, it turned out

h; need to be gOOd'_ A major Cha”_enge In US'_ngthat using RAIN-OLD was suboptimal since that data is less
the perceptron algorithm for machine translationrelevant to Oev. Another alternative is to combinerRRIN-

i i ; ; OLD and TRAIN into one dual-purpose dataset. The differ-
is determining the targe(tyt, ht) in Equation 3. ences between this and our current approach were inconclu-

Section 5 discusses possible targets to update tQye.

wards. 3In other words, we used GIZA++ to construct a word
alignment in each direction and a growth heuristic to com-
bine them. We extracted all the substrings that are closed un
3 Dataset 9

der this high-quality word alignment and computed surface

. d h h i ﬁtatistics from cooccurrences counts.
Our experiments were done on the French-Englis “In our experiments, we used a beam size of 10, which we

portion of the Europarl corpus (Koehn, 2002),found to be only slightly worse than using a beam of 100.



proceeds.

We experimented with two levels of distortion:
monotoni¢ where the phrasal alignment is mono-
tonic (but word reordering is still possible within
a phrase) andimited distortion where only ad-

\

/
1 \ N
1 n-best 4 translations
reachable \ xo

reference

) " local pure,
jacent phrases are allowed to exchange positions hybrid
(ZenS and Ney’ 2004) In the fUturea we plan to ex- (a) Updates when the reference is reachable

plore our discriminative framework on a full dis-
tortion model (Koehn et al., 2003) or even a hier-
archical model (Chiang, 2005).

Throughout the following experiments, we
trained the perceptron algorithm for 10 iterations. o
The weights were initialized to 1 on the trans- hybrid
lation table, 1 on the language model (the blan-
ket features in Section 6), and O elsewhere. The
next two sections give experiments on the two key
components of a discriminative machine translafigure 2: The three update strategies under two
tion system: choosing the proper update strateggcenarios.

(Section 5) and including powerful features (Sec-

tion 6). e Hybrid updating Do a bold update if the ref-
erence is reachable. Otherwise, do a local up-
date.

4 \

/ R
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\\\ n-besty -

translations
"4+
reference

pure: do nothing

reachable

_

(b) Updates when the reference is unreachable

5 Update strategies

This section describes the importance of choosing . i

a good update strategy—the difference in BLEU Figuré 2 shows the space of translations
score can be as large as 1.2 between diﬁererﬁchematlcally. On each _tra|n|ng example, our de-
strategies. An update strategy specifiesttiiget coder produces am-best list. The reference trans-
(yt, hy) that we update towards (Equation 3) given'ation may or may not be reachable.

the current set of parameters and a provided ref- B0ld updating most resembles the traditional
erence translatiofx;, y;). As mentioned in Sec- perceptron update rule (Equation 2). We are en-

tion 2.2, faithful output (i.e.y; — y;) does not sured that the target outpgit will be correct, al-

imply that updating towardsyy, h) is desirable. though the correspondend:eml.ght.be bad. An.—
In fact, such a constrained target might not everPther weakness of bold updating is that we might
be reachableby the decoder, for example, if the N0t make full use of the training data. _
reference is very non-literal., Local updatln_g uses every example, but its steps
We explored the following three ways to choose@® More cautious. It can be viewed as “dy-
the target(y., hy): namic reranking,” \{vhere parameter; are updated
using the best option on the-best list, similar
e Bold updating Update towards the highest tg standard static reranking. The key difference
scoring option(y, h), wherey is constrained s that, unlike static reranking, the parameter up-
to be the referencg; buth is unconstrained. dates propagate back to the baseline classifier, so
Examples not reachable by the decoder arghat then-best list improves over time. In this re-
skipped. gard, dynamic reranking remedies one of the main
weaknesses of static reranking, which is that the
@erformance of the system is directly limited by
the quality of the baseline classifier.
Hybrid updating combines the two strategies:

°Since BLEU score{-BLEU with & = 4) involves com- jt makes full use of the training data as in local
puting a geometric mean ovegrams; = 1, ..., k, itis zero . N .
if the translation does not have at least éngram incommon  Updating, but still tries to make swift progress to-
with the reference translation. Since a BLEU score of zerowards the reference translation as in bold updat-
is both unhelpful for choosing from the-best and common ing

when computed on just a single example, we instead used a

smoothed version for choosing the targst!_, “2EU(z.v) We conducted experiments to see which of the

We still report NIST’s usual 4-gram BLEU. . updating strategies worked best. We trained on

e Local updating Generate an-best list using
the current parameters. Update towards th
option with the highest BLEU score.



Model | DEVBLEU | TESTBLEU |

\ Decoder | Bold | Local | Hybrid |

[ Monotonic [ 34.3] 34.6 | 345 | . ( d)'\/'onofogigo —
— n " LANKET (untune . .
| Limited distortion| 33.5| 34.7 | 33.6 | BLANKET 34 8.4
Table 2: Comparison of BLEU scores between dif- BLANKET +LEX 35.0 29.2
f t undati trateaies for th toni d BLANKET+LEX+POS 35.3 29.6
I_er_endl:jp ating sdra eg|es or the monotonic and—p5p-rcn ERT) 345 588
imited distortion decoders on#£y. Full-distortion
Pharach (MERT) | 349 | 29.5

5000 of the 67K available examples, using theTable 3: Main results on our system with differ-
BLANKET+LEX+POS feature set (Section 6). Ta-ent feature sets compared to minimum error-rate
ble 2 shows that local updating is the most effectrained Pharaoh.

tive, especially when using the limited distortion

decoder. 6 Features

In bold updating, only a small fraction of the
5000 examples (1296 for the monotonic decodef his section shows that by adding an array of
and 1601 for the limited distortion decoder) hadexpressive features and discriminatively learn-
reachable reference translations, and, thereford)g their weights, we can obtain a 2.3 increase
contributed to parameter updates. One mighth BLEU score on [Ev. We add these fea-
therefore hypothesize that local updating performgures incrementally, first tuning blanket features
better simply because it is able to leverage moréSection 6.1), then adding lexical features (Sec-
data. This is not the full story, however, since thetion 6.2), and finally adding part-of-speech (POS)
hybrid approach (which makes the same numbefeatures (Section 6.3). Table 3 summarizes the
of updates) performs significantly worse than lo-performance gains.
cal updating when using the limited distortion de- For the experiments in this section, we used the
coder. local updating strategy and the monotonic decoder

To see the problem with bold updating, recafor efficiency. We train on all 67K of the length 5—

- 6
the example in Figure 1. Bold updating tries to 1o sentences inRAIN.
reach the reference at all costs, even if it meang

. . . .1 Blanket features
abusing the hidden correspondence in the process. _
In the example, the alignment, &) is unreason- The blanet features.(.lfANKET) consist of the
able, but the algorithm has no way to recognizelranslation log-probability and the language model
this. Local updating is much more stable since it0g-probability, which are two of the components
only updates towards sentences inthbest list. ~ Of the Pharaoh model (Section 2.1). After discrim-

When using the limited distortion decoder boldinative training, the relative weight of these two

updating is even more problematic because th&eatures is roughly 2:1, resulting in a BLEU score

added flexibility of phrase swaps allows more pre_lncrease from 33.0 (setting both weights to 1) to

posterous alignments to be produced. Limited?’S"L' followi il e ai f
distortion decoding actually performorsethan The following simple example gives a flavor

monotonic decoding with bold updating, but bet-Of the discriminative approach. The un_tuned
ter with local updating. system translated the French phrasente-cing

i . languesinto five languagesn a DEv example.
Another difference between bold updating andAIthough the probabilityP(five | trente-cing =

local updating is that the BLEU score on the train—o.065 is rightly much smaller thad®(thirty-five |

ing data is dramatically higher for bold Updaﬂngtrente-cinq — 0.279, the language model favors
than for local (or hybrid) updating: 80 for the for- g, languagesover thirty-five languages The
mer versus 40 for the latter. This is not S“rprismgtrained system downweights the language model

given that bold updating aggressively tries to Ob'and recovers the correct translation.
tain the references. However, what is surprisingis

that although bold updating appears to be overfit- SWe used sentences of length 5-15 to facilitate compar-

. . isons with Koehn et al. (2003) and to enable rapid experimen-
ting severely, its BLEU score on theeld does not tation with various feature sets. Experiments on senteoices

suffer much in the monotonic case. length 5-50 showed similar gains in performance.



6.2 Lexical features j ’ ai is often used in a paraphrastic construction

The blanket features provide a rough guide forVhich should be translated into the simple past
translation, but they are far too coarse to fix spell English. For that to happ_en, ai needs to
cific mistakes. We therefore adiéxical fea- P€ aligned withl. Since ["ai,l) has a small
tures (LEX) to allow for more fine-grained con- SCcore compare toj (ai, I havg in the original
trol. These features come in two varieties. Lexicafranslation table, downweighting the latter pair
phrase features indicate the presence of a speciffloWs this sentence to be translated correctly.
translation phrase, such asd-t-il, are therg, and A general trend is that literal phrase translations
lexical language model features indicate the presare downweighted. Lessening the pressure to liter-
ence of a specific output n-gram, suchaighe  ally translate certain phrases allows the language
Lexical language model features have been exmodel to fill in the gaps appropriately with suit-
ploited successfully in discriminative language@Plé non-literal translations. This point highlights
modeling to improve speech recognition perfor-the strength of discriminative training: weights are
ity of the two kinds of lexical features: IBN-  tions between overlapping phrases, which is some-
KET+LEX achieves a BLEU score of 35.0, an im- thing not achievable by estimating the weights di-
provement of 1.6 over BANKET. rectly from surface statistics.

To understand the effect of adding lexical fea-
tures, consider the ten with highest and lowes
weights after training: While lexical features are useful for eliminating
specific errors, they have limited ability to gener-

-3 Part-of-speech features

64 any comments ? -55  (des, of) X k

63 (ya-t-il, are there) | -52 (y a-t-il, are there any) ~ alize to related phrases. This suggests the use of
62 there any comments -42  there any of similar features which are abstracted to the POS
57 any comments -39 of comments 7 .

46 (des, any) 38 of comments ? level.” In our experiments, we used the TreeTag-

ger POS tagger (Schmid, 1994), which ships pre-
trained on several languages, to map each word
to its majority POS tag. We could also relatively

These features can in fact be traced back to th
following example:

Input a-t-il des | observations 7 .
B P Zre there any | of | comments ? easily base our features on context-dependent POS
B+L | are there any | comments ? tags: the entire input sentence is available before

The second and third rows are the outputs oflecoding begins, and the output sentence is de-
BLANKET (wrong) and BANKET +LEX (correct), coded left-to-right and could be tagged incremen-
respectively. The correction can be accredited télly.
two changes in feature weights. First, the lexical Where we had lexical phrase features, such
feature ¥ a-t-il, are there any has been assigned as (a réalisation du droitthe righ), we now
a negative weight andy(@-t-il, are ther§ a pos- also have their POS abstractions, for instance
itive weight to counter the fact that the former (DT NN IN NN, DT NN). This phrase pair is
phrase incorrectly had a higher score in the origiundesirable, not because of particular lexical facts
nal translation table. Secondlgs of) is preferred  aboutla réalisation but because dropping a nom-
over (des any), even though the former is a better inal head is generally to be avoided. The lexical
translation in isolation. This apparent degradatioanguage model features have similar POS coun-
causes no problems, because wHesshould ac- terparts. With these two kinds of POS features,
tually be translated tof, these words are usually we obtained an 0.3 increase in BLEU score from
embedded in larger phrases, in which case the isd®8LANKET+LEX to BLANKET+LEX+PQOS.

lated translation probability plays no role. Finally, when we use the limited distortion de-
Another example of a related phenomenon isoder, it is important to learn when to swap adja-
the following: cent phrases. Unlike Pharaoh, which simply has a
Input | ... | pourcelaque| j al | voté favorablement . uniform penalty for swaps, we would like to use
B ... | forthat i have | voted in favour . ; ; ; ;
B+L || | for this reasonl i voted in favour context—in particular, POS information. For ex-

Countérintuitively, the  phrase .pair ample, we would like to know that if a (3J, JJ)

() _a" ,I'havg ends up _W'th _a ] very _negatlve "We also tried using word clusters (Brown et al., 1992)
weight. The reason behind this is that in Frenchijnstead of POS but found that POS was more helpful.



w Features | -ConsT | +CONST |
(m] abri [m](m] croissance ] ce
[ zéro m neme BLANKET 31.8 32.2
BLANKET+LEX 32.2 325

BLANKET+LEX+POS 32.3 325

L]
L]

secure

refuge
zero

growth
rate
that

~~
2

(b) © Table 4: Dev BLEU score increase resulting from

Figure 3: Three constellation features with exam—addmg constellation features.

ple phrase pairs. Constellations (a) and (b) have

large positive weights and (c) has a large negativgood phrase pairs, we introduce an alignment con-

weight. stellation feature to indicate the presence of a par-
ticular alignment constellatioh.

Table 4 details the effect of adding constella-

phrase is constructed aft(_ar a (NN, NN) phrasetion features on top of our previous feature Séts.
they are reasonable candidates for swapping bFY'/'V

. ‘e get a minor increase in BLEU score from each
cause of regular word-order differences betweel?e

. . ature set, although there is no gain by adding
French and English. While the bulk of our reSUItSPOS features in addition to constellation features,

are prt_asented for the monotonic case, the limite robably because POS and constellation features
distortion results of Table 2 use these lexical swa . . . .
rovide redundant information for French-English

features; without parameterized swap features, a{’-

curacy was below the untuned monotonic baselineranSIationS'
y " Itis interesting to look at the constellations with

An intere_sting statistic is the number of_nonzerohighest and lowest weights, which are perhaps sur-
;ea:ure WetlghtSB that Wer:e Iearlnecir $S|ntg eadbrising at first glance. At the top of the list are
es_lur(; Set. +If‘NK';T 1a§50n'|>|,' ; e? u(ra%s, word inversions (Figure 3 (a) and (b)), while long
\g e l:Ab'\:KETB EX iSL ) +Pn(])lsl.onh ed ?r " monotonic constellations fall at the bottom of the

emarkably, BANKET+LEX as Tewer i (c). Although monotonic translations are much

fe}aturesTon:_y 1.2;1'I'tm”“gr(1)ls _T?'S |st_an effect more frequent than word inversions in our dataset,
ot generalization ability— information some- when translations are monotonic, shorter segmen-

what reduces the need for specific lexical featurest,a,[ionS are preferred. This phenomenon is another

manifestation of the complex interaction of phrase

_ segmentations.
Koehn et al. (2003) demonstrated that choosing

the appropriate heuristic for extracting phrases i¥ Final results

very important. They showed that the difference

in BLEU score between various heuristics was aél’he last column of Tabl_e 3 shows the performance

large as 2.0. of our methods on the final&ST set. Our best test
The process of phrase extraction is difficult toBL[_EU score is 29.6 using BANKET +LEx+POS,

optimize in a non-discriminative setting: many an increase of 1.3 BLEU over our untuned feature

heuristics have been proposed (Koehn et a1 €t BLANKET. The discrepancy betweereh per-

2003), but it is not obvious which one should beformlar;qi and fST p;rformar;cr? 'f] due to tem-
chosen for a given language pair. We propose (I)_rgu IS anfle rom RAIN and nigh variance in
natural way to handle this part of the translation score.

pipeline. The idea is to push the learning proces KWE; alsto Icozrgggreevot" mdogil W't?], Pfharaoh
all the way down to the phrase extraction by pa- oehnetal, )- We tune araon s four pa-

rameterizing the phrase extraction heuristic itself.;%rggters L[J;mgllzmvl\r; 'ml:;[n _errgr rat_e training E%Cg
The heuristics in Koehn et al. (2003) decide ) on Ev. € obtained an Increase ot L.

whether to extract a given phrase pair based on the °As in the POS features, we map each phrase pair to its

underlying word alignments (see Figure 3 for thregority constellation. .

. . . Due to time constraints, we ran these experiments on
examples), which we cationstellations Since we  54qq training examples using bold updating.
do not know which constellations correspond to *For example, the Bv BLEU score for B ANKET+LEX

ranges from 28.6 to 33.2, depending on which block of 1000
8Both the language model and translation table composentences we chose.

nents have two features, one for known words and one for 2We used the training scripts from the 2006 MT Shared
unknown words. Task. We still tuned our model parameters oRATN and

6.4 Alignment constellation features



BLEU over the Pharaoh, run with the monotoneported by a FQRNT fellowship to second author
flag1® Even though we are using a monotonic de-and a Microsoft Research New Faculty Fellowship
coder, our best results are still slightly better tharto the third author.

the version of Pharaoh that permits arbitrary dis-
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