Painless Unsupervised Learning with Features

Taylor Berg-Kirkpatrick Alexandre Bouchard-Co6té John DeNero Dan Klein

Computer Science Division
University of California at Berkeley
Berkeley, CA 94720

1 Proof of the gradient
We first prove the following lemma:

Lemma 1 If ¢, are real-valued functions such that:

1. ¢(xo) = (o) for some xo,

2. ¢(x) < 1p(x) on an open set S containing x,
3. ¢ and 1) are differentiable at x,
then Vi)(xo) = Vo(xo).

Proof: Without loss of generality, ¢, 1) are univariate functions with ¢(x¢) =
w(.ilfo) =0, and Trog = 0.

Let 6 = ¢/(z0) — ¢'(x0) and consider a sequence a,, > 0 converging to zero
with a,, € S. We have:

lim Y(an) — dlan)

n—00 Qn,

=4,

and since the numerator and denominator are both positive for all n, we conclude
that § > 0.

By doing the same argument with a sequence b,, < 0 converging to zero, we
get that 6 < 0, hence the derivatives are equal. |



Theorem 2 Algorithm 2 computes the gradient of the log marginal likelihood:

VL(w)=V{(w,e)

Proof: To prove the theorem, we introduce the following notation:

H(w)= - Pu(Z=12[Y =y)log Pu(Z=2|Y =y),

and we set:

Y(w) = L(w)
o(w) =L(w,e)+ H(wy).

If we can show that ¢, ¢ satisfy the conditions of the lemma, we are done since

the second term of ¢ depends on wy, but not on w.
Property (3) can be easily checked, and property (3) follows from Jensen’s

inequality. To show property (1), note that:

Pu(Z=2Y =)
W) = Y Puy(Z = 2]Y = y)log % ’ — k|[wol[2
¢( 0) . 0( Z| y) 0g PWQ(Z ZDI Y) KH 0”2

=Y Puwy(Z =2|Y = y)log P, (Y = y) — xllwo|[3



