
Painless Unsupervised Learning with Features

Taylor Berg-Kirkpatrick Alexandre Bouchard-Côté John DeNero Dan Klein
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1 Proof of the gradient

We first prove the following lemma:

Lemma 1 If φ, ψ are real-valued functions such that:

1. φ(x0) = ψ(x0) for some x0,

2. φ(x) ≤ ψ(x) on an open set S containing x0,

3. φ and ψ are differentiable at x0,

then ∇ψ(x0) = ∇φ(x0).

Proof: Without loss of generality, φ, ψ are univariate functions with φ(x0) =
ψ(x0) = 0, and x0 = 0.

Let δ = ψ′(x0) − φ′(x0) and consider a sequence an > 0 converging to zero
with an ∈ S. We have:

lim
n→∞

ψ(an)− φ(an)
an

= δ,

and since the numerator and denominator are both positive for all n, we conclude
that δ ≥ 0.

By doing the same argument with a sequence bn < 0 converging to zero, we
get that δ ≤ 0, hence the derivatives are equal.
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Theorem 2 Algorithm 2 computes the gradient of the log marginal likelihood:

∇L(w) = ∇`(w, e)

.

Proof: To prove the theorem, we introduce the following notation:

H(w) = −
∑
z

Pw(Z = z|Y = y) logPw(Z = z|Y = y),

and we set:

ψ(w) = L(w)
φ(w) = `(w, e) +H(w0).

If we can show that ψ, φ satisfy the conditions of the lemma, we are done since
the second term of φ depends on w0, but not on w.

Property (3) can be easily checked, and property (3) follows from Jensen’s
inequality. To show property (1), note that:

φ(w0) =
∑
z

Pw0(Z = z|Y = y) log
Pw0(Z = z,Y = y)
Pw0(Z = z|Y = y)

− κ||w0||22

=
∑
z

Pw0(Z = z|Y = y) logPw0(Y = y)− κ||w0||22

= L(w0).
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