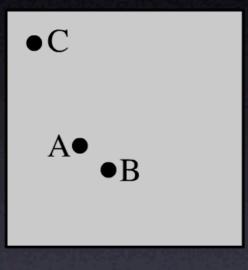
Approximation of continuous LMPs[1]

Alexandre Bouchard-Côté

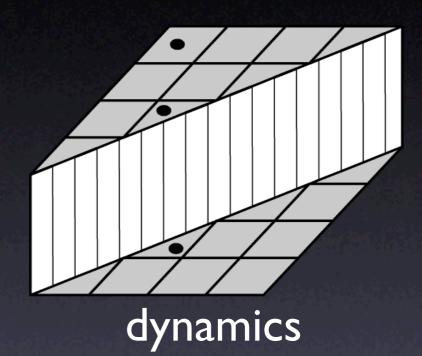
Supervisors: Prakash Panangaden, Doina Precup Reasoning and Learning Lab, McGill University Sponsored by: NSERC, McGill School of Computer Science.

Motivation: example

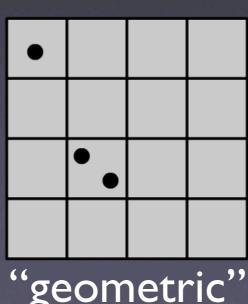
Continuous system:



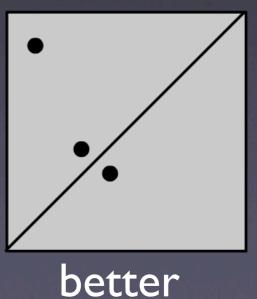
state space



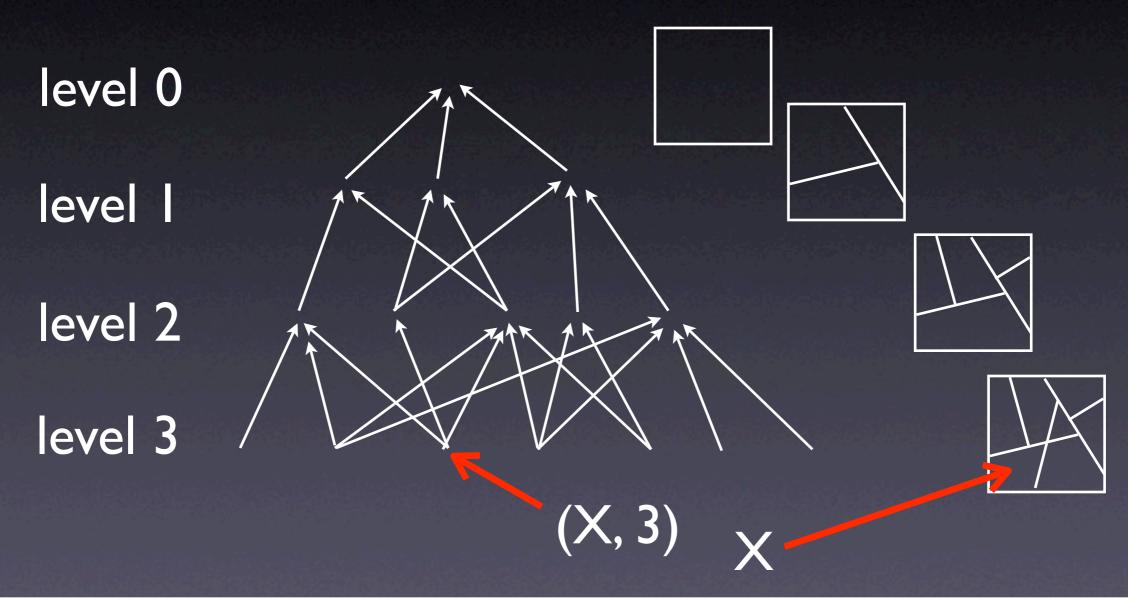
Possible finite state approx.:



"geometric"

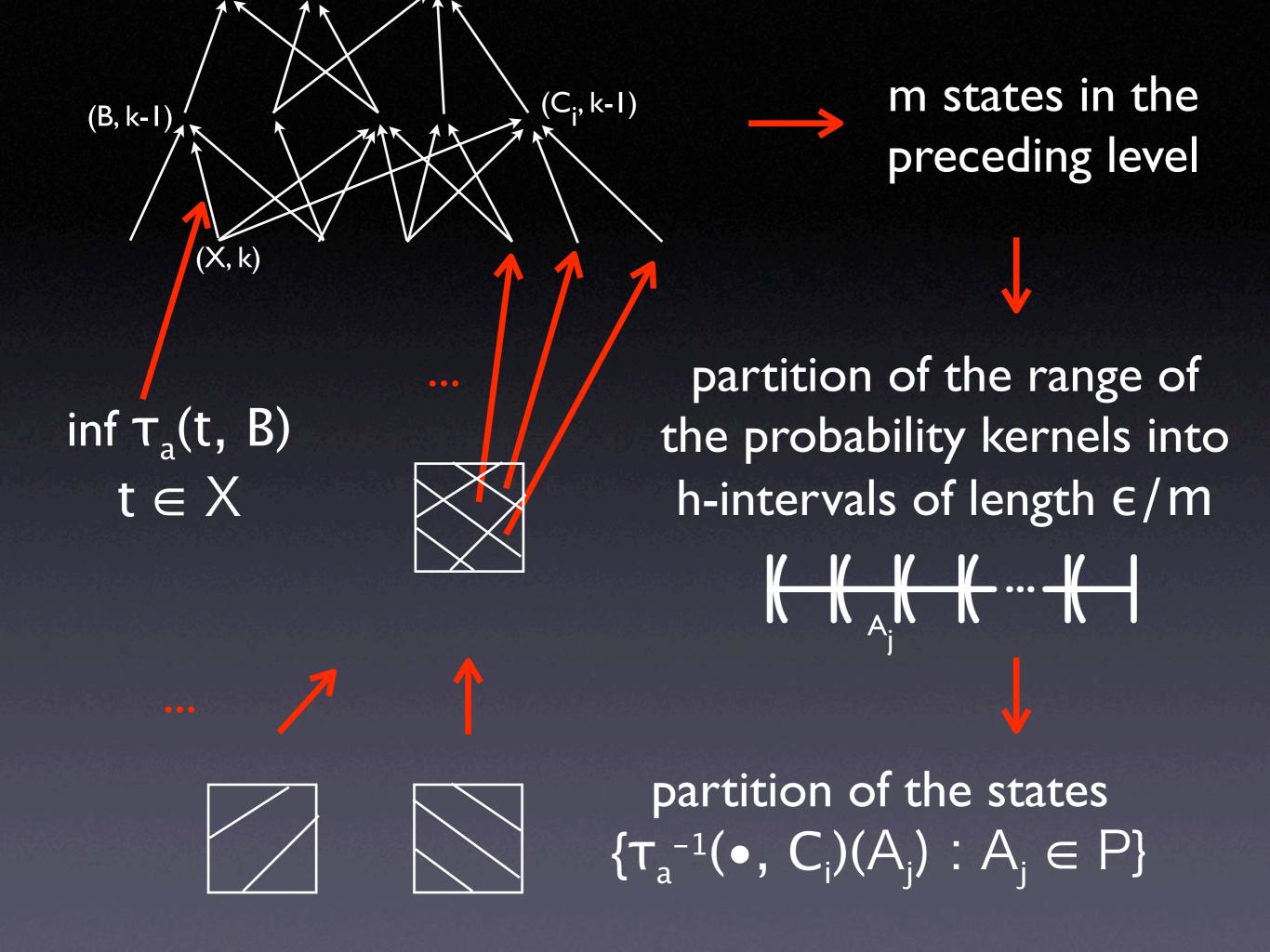


The approx. scheme^[2]



[2] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden. (2002).

Approximating Labelled Markov Processes.



Implementation difficulties

Infimum of measurable functions

$$\inf \tau_a(t, B)$$

$$t \in X$$

Generate partition (check if a set is empty)

Invert a measurable function

$$\{\tau_a^{-1}(\cdot, C_i)(A_j)\}$$

How to "invert" the kernels

Representation of $\tau_a^{-1}(\bullet, C)((a,b])$

Instance's variables:

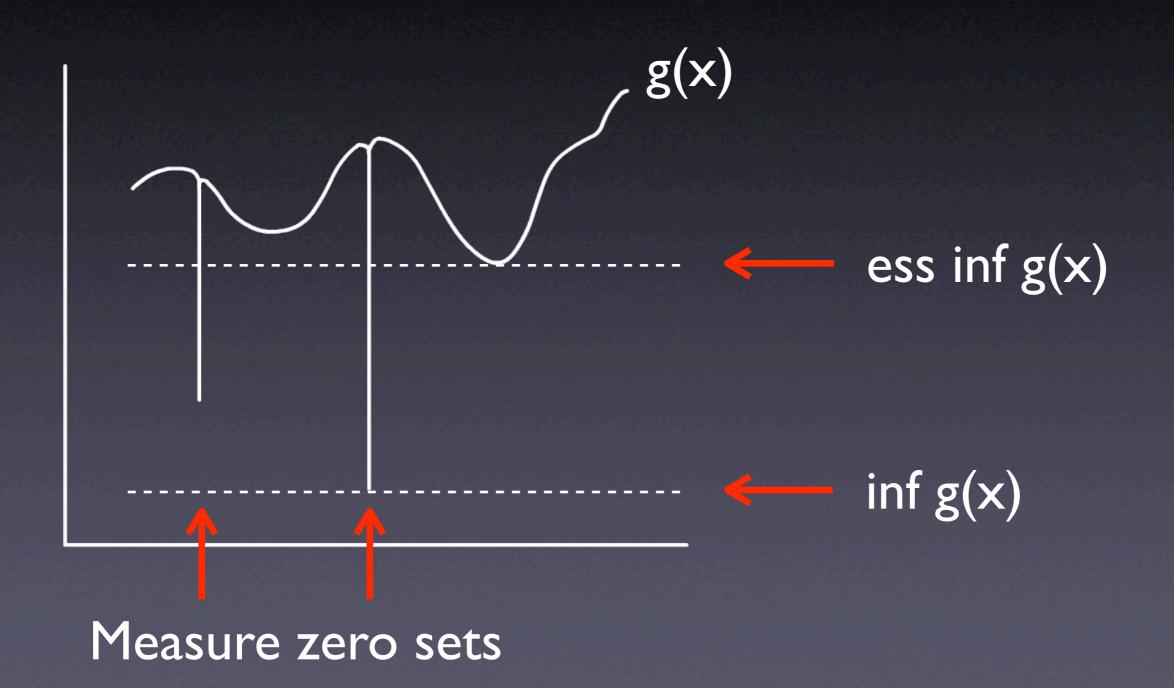
$$f_a$$
 C (a,b]

Operations:

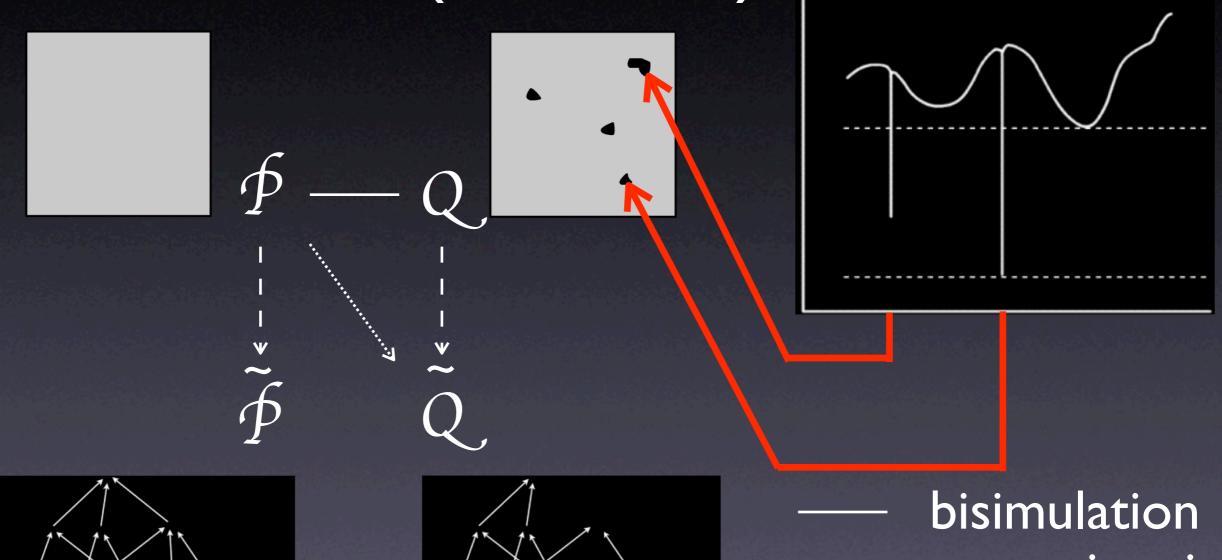
Check if
$$s_0 \in \tau_a^{-1}(\bullet, C)((a,b])$$

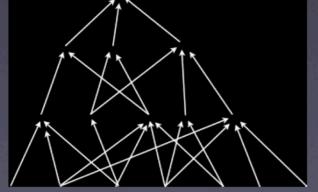
Output true iff $\int_C f_a(s_0, x) d\mu(x) \in (a,b]$

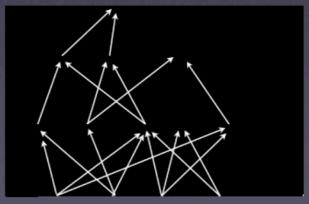
Infimum



Proof of correctness (sketch)







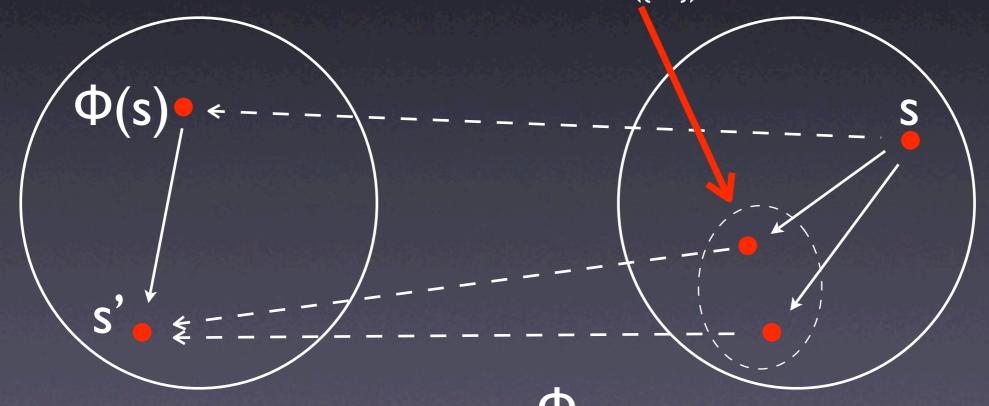
→ approximation
 → sampling
 approximation

E-homogeneity

M₁ ∈-homogenous w.r.t. M if

 $\exists \Phi: S \rightarrow S_1 \text{ surj. s.t.} \forall s \in S \quad \forall a \in A$

 $\Sigma_{s'\in S} \mid P_1(\Phi(s), s', a) - \Sigma_{t\in \Phi^{-1}(\{s'\})} P(s, t, a) \mid k \leq \epsilon^k$



$$M_1 = (S_1, A, R_1, P_1)$$

 $\overline{(S,A,R,P)} = M$

Link between 0-homogeneity and bisimulation

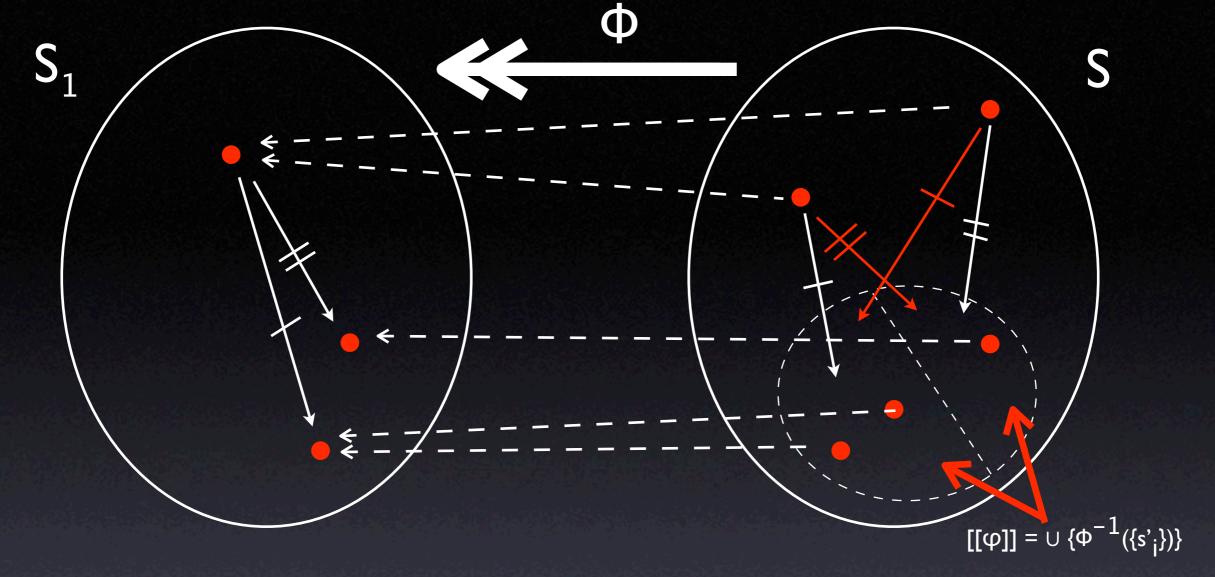
Let $R\equiv 0$, $M_1=(S_1,A,R,P_1)$, M=(S,A,R,P) be MDP's (and therefore LMP's). Then they are 0-homogenous with mapping Φ iff $\{\Phi^{-1}(\{s'\}): s'\in S_1\}$ is a bisimulation equivalence relation on M.

Proof idea

Enough: if s_1 , s_2 are s.t. $\Phi(s_1) = \Phi(s_2) = s$, then they satisfy the same formulas in \mathcal{L}_0 .

Structural induction on \mathcal{L}_0 .

As usual, the "hard" step is $\langle a \rangle_q \phi$. By induction hypothesis, [[ϕ]] has the form: [[ϕ]] = $\cup \{\Phi^{-1}(\{s'_i\})\}$



For each of these s', we have, by 0-homogeneity:

$$\begin{split} \Sigma_{t \in \Phi^{-1}(\{s'i\})} \ P(s_j, t, a) &= P_1(\Phi(s_j), s'_i, a) \text{ for } j = 1, 2 \\ \therefore P(s_j, [[\phi]], a) &= \Sigma_i \sum_{t \in \Phi^{-1}(\{s'i\})} P_1(s, s'_i, a) \end{split}$$

:.
$$P(s_1, [[\phi]], a) = P_1(s_2, [[\phi]], a)$$

$$\therefore s_1 \models \langle a \rangle_q \phi \Leftrightarrow s_2 \models \langle a \rangle_q \phi$$