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A. Justification of Model Comparisons
To compare predictive posterior likelihoods in Section 6,
we use log predictive likelihoods for the held out points.
For mixed distributions, the combination of atoms and den-
sities can make these comparisons difficult. The follow-
ing work shows how we compare models with atoms in the
same locations.

Consider an atomic urban spatial data set X (|X| = N ).
Let D = {D1, . . . , Dn} denote another dataset, held-out
from X , consisting of n1 observations (D1:n1 ) with lo-
cations observed in X , and n2 = n − n1 observations
(D(n1+1):n) with locations not observed in X . Consider
fitting two different ASP models M1 and M2 to X . The
models M1 and M2 differ in which parameters were re-
sampled, or through the prior on G0 (parametric prior or
nonparametric). Consider an ε > 0 such that the Euclidean
distance between any two unique locations in X exceeds
ε. Let yε denote a square of side lengths ε centred at y.
Equation 1 demonstrates a posterior predictive probability
assigned to the area yε given X in ASP models (the hyper-
parameters differ between M1 and M2).

P(Y ∈ yε|X = x) =
1

N + α0

N∑
i=1

1(xi ∈ yε) +

α0

N + α0
H ′(Y ∈ yε|X).

Here, K denotes the number of mixture components in the
realization of G0 which correspond to at least one element
ofX , the ai denote the atoms in the data, |Bi| is the number
of atoms in mixture component i, T =

∑K
i=1 |Bi| is the

number of unique locations, and

H ′(Y ∈ yε|X) ≈

ε2

T + απ0

(
K∑
i=1

|Bi|m(y|aBi) + απ0m(y)

)
.

Note that for the models with parametric priors on G0, K
is fixed at 1 and απ0 = 0. The approximation in Equation 2
comes from the fact that the density of the DPM realization
G0 is assumed to be constant within yε. Since any G0 con-
sidered in an ASP is continuous, this approximation can be

made arbitrarily accurate by choosing ε small enough. In
addition, as ε shrinks, the second summand goes to 0.

B. Notes on Statistical Computation
To determine the posterior predictive densities for graf-
fiti illustrated as Figures 2b and 2d, Markov Chain Monte
Carlo runs consisting of 20000 sweeps were used. A burn-
in of 1000 sweeps was used, and the samples were thinned
to 1 in every 500 to create the plots. The initializations for
the hyperparameters were determined through short runs to
discern which values led to fast mixing, the values were
not necessarily the same for the Vancouver and Manhattan
runs. The trace plots shown as Figure S.1 and Figure S.2
illustrate the values of the hyperparameters for the Vancou-
ver and Manhattan runs, respectively. For the experiments
comparing models, if a hyperparameter was not resampled,
they were held fixed at their initialization. See Table S.1 for
all initial hyperparameter values and the associated normal
random walk kernel specification. Different thinning levels
were used to create the trace plots and to create the poste-
rior predictive. The posterior predictive is computationally
intensive to compute whereas the trace plots were thinned
mainly for readability.

Initial value MCMC proposal SD
Vancouver New York Vancouver New York

α0 1000 10000 50 60
απ0 1.000 1.000 1.000 1.000
c 0.500 3.000 0.500 0.500
κ 0.500 0.001 0.100 0.100
ν 2.000 2.000 0.100 0.100

Table S.1. Initial hyperparameter values and their corresponding
normal random walk MCMC kernel standard deviations.
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Figure S.1. Trace plot summarizing the hyperparameter values of 20 000 MCMC iterations for Vancouver, with the left side showing
the chain trajectory and the right side illustrating the approximate posterior distributions. The results are thinned by using 1 in every 10
elements in the chain.
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Figure S.2. Trace plot summarizing the result of 20 000 MCMC iterations for Manhattan. The results are thinned by including 1 in
every 10 elements in the chain.
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C. An Extended List of Competitors
The following is a summary of the results of experiments
for an extended list of 11 competitor models. This consists
of the four shown in the paper, and seven additional models.
Performance is shown for the Vancouver and Manhattan
data sets.

The new competitors are variants of those shown in the pa-
per in which different hyperparameters are held constant
instead of being resampled. The distinguishing features of
these 11 models are presented in Table S.2. For ASP mod-
els, the column “Base measure” indicates whether the base
measure for the GaP prior for µ is a DPM (non-parametric)
or a single normal measure (parametric). The Normal-
Inverse-Wishart is the base measure for DPM models, and
a piecewise uniform measure is used for the empirical
method. For the other columns, a 3 indicates the hyper-
parameter was resampled, 7 indicates the hyperparameter
was fixed at its initial value, and – denotes that the hyperpa-
rameter is not applicable. Figure S.3 shows the predictive
performance and wall-times for the additional models.

Table S.2. Model specification: 3indicates that a hyperparameter
was resampled versus fixed 7, and – denotes not applicable.

Model Base measure απ0 α0 c κ ν

ASP 1 Normal – 7 7 7 7
ASP 2 Normal – 3 3 3 3
ASP 3 DPM 7 7 7 7 7
ASP 4 DPM 3 3 7 7 7
ASP 5 DPM 3 3 3 7 7
ASP 6 DPM 3 3 3 3 7
ASP 7 DPM 3 3 3 3 3
DPM 1 DPM 7 – – 7 7
DPM 2 DPM 3 – – 3 3
Empirical Grid – – – – –
Mixed DPM 3 – – 3 3



Atomic Spatial Processes

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

Vancouver New York

−20000

−15000

−10000

−5000

0

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Epsilon−neighbourhood

Lo
g 

Li
ke

lih
oo

d

Model type
●

●

●

●

ASP
Mixed
Empirical
DPM

●

●● ●

●

●

●

●

●

●

Vancouver New York

0

2

4

6

8

0

10

20

30

ASP 1

ASP 2

ASP 3

ASP 4

ASP 5

ASP 6

ASP 7

M
ixe

d

Em
pir

ica
l

DPM
 1

DPM
 2

ASP 1

ASP 2

ASP 3

ASP 4

ASP 5

ASP 6

ASP 7

M
ixe

d

Em
pir

ica
l

DPM
 1

DPM
 2

Model

W
al

lti
m

e 
(m

in
s) Model type

ASP
Mixed
Empirical
DPM

Figure S.3. (Left) Predictive log-likelihood for ε-neighbourhoods of held out pieces of graffiti for the extended list of competitor mod-
els. Seven different variations of the ASP model (corresponding to different resampling strategies for the hyperparameters) uniformly
outperform two Dirichlet process mixture models (DPM), an empirical grid based approach, and the DPM-Empirical mixture with
cross-validated mixing proportions. (Right) Walltime in minutes for each of the 11 models.
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