A simple measure of conditional dependence

To join via Zoom: To join this seminar, please request Zoom connection details from headsec@stat.ubc.ca

Title: A simple measure of conditional dependence

Abstract: We propose a coefficient of conditional dependence between two random variables Y and Z given a set of other variables X1,…,Xp, based on an i.i.d. sample. The coefficient has a long list of desirable properties, the most important of which is that under absolutely no distributional assumptions, it converges to a limit in [0,1], where the limit is 0 if and only if Y and Z are conditionally independent given X1,…,Xp, and is 1 if and only if Y is equal to a measurable function of Z given X1,…,Xp. Moreover, it has a natural interpretation as a nonlinear generalization of the familiar partial R2 statistic for measuring conditional dependence by regression. Using this statistic, we devise a new variable selection algorithm, called Feature Ordering by Conditional Independence (FOCI), which is model-free, has no tuning parameters, and is provably consistent under sparsity assumptions. A number of applications to synthetic and real datasets are worked out.

Event Type
Location
Zoom
Speaker
Mona Azadkia, Postdoctoral Researcher, Seminar for Statistics, Department of Mathematics, ETH Zürich
Event date time
-