Statistical learning, sometimes called machine learning, is becoming ever more important as a component of data science, and department members have had active research in this area for more than a decade. Statistical learning methods include classification and regression (supervised learning) and clustering (unsupervised learning). Current research topics of faculty members and their graduate students include construction of phylogenetic trees in evolution, ensembles of models and sparse clustering. Applications include the search for novel pharmaceutical drugs and detection of biogenic patterns.
Recent Highlights

Project title place holder
Project lead place holder
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Project title place holder
Project lead place holder
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
