Modern multivariate and time series analyses go beyond the classical normality assumption by modelling data that could combine binary, categorical, extreme and heavy-tailed distributions. Dependence is modeled non-linearly, often in terms of copula functions or stochastic representations. Models for multivariate extremes arise from asymptotic limits. Characterization and modelling of dependence among extremes as well as estimation of probabilities of rare events are topics of on-going research. Advances in high-dimensional multivariate modelling have been achieved by the use of vine pair-copula constructions. Areas of application include biostatistics, psychometrics, genetics, machine learning, econometrics, quantitative risk management in finance and insurance, hydrology and geoscience.
Recent Highlights

Project title place holder
Project lead place holder
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Project title place holder
Project lead place holder
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
